Содержание

Для чего нужен редуктор давления воды, принципы действия

Редуктор давления воды — прибор который стабилизирует и уменьшает давление в водопроводной сети, защищая тем самым от высокого давления и гидроудара как сам трубопровод, так и подключенное к нему бытовое оборудование. Редуктор давления представляет из себя компактное устройство в герметичном металлическом корпусе, имеющем два резьбовых отверстия на входе и выходе. Иногда для удобства подключают манометр и винт для регулировки давления.

                                        Редуктор давления воды

Принцип действия редуктора давления 

Работа любого редуктора давления воды основана на равновесии двух сил — первую силу представляет давление воды, вторую силу создает сжатая пружина. В соответствии с конструкцией редукторы различают мембранного типа и поршневого.

Мембранные редукторы отличаются более качественными показателями работы, а так же критические значения давления, например Honeywell заявляет о сохранении работоспособности редуктора при превышении давления до 25 бар. Так же мембранные редукторы позволяют регулировать выходное давление от 1 до 7 бар. В отличие от своего собрата, поршневые являются более дешевым вариантом редукторов давления, но и соответственно они имеют более скромные характеристики.


Рассмотрим принцип работы редуктора давления для воды. Разделим редуктор на две половины первая слева (см. рисунок) будет называться отсек подачи воды, там у нас действует давление P вх, а второй условно назовем отсек полученного давления P вых, Отсек входного давления так же соединен с полостью, где находится пружина — точка 1. Это может быть сильфон (тонкая трубка) или же просто высверленное внутри, в корпусе редуктора отверстие. 

Начнем изучение процессов происходящих в редукторе: 
— первый процесс который рассмотрим, вода статична т.е. краны все закрыты, трубы все запечатаны и движение воды нет. Давление Pвх стремится уравняться с давлением Рвых и как результат давление Р вх стало бы равно давлению Р вых, если бы не перемычка доставляющая давление к пружине. Вот благодаря этой перемычке редуктор закрывается и давление не растет за редуктором. 

— второй процесс — кран открыт, через редуктор проходит вода, есть динамика. Так вот, при открытии кранов, давление Р вых падает, на клапан, который держит пружину, перестает воздействовать давление Р вых. Благодаря пружине через рычаг происходит открытие запирающего клапана, вода из отсека Р вх попадает в отсек Р вых, что влечет за собой повышение Р вых, оно растет до значения при котором опять произойдет компенсация давления воды и силы сжатия пружины. Рычаг начинает давить на клапан Р вх — запирается, давление Р вых начинает падать, после рычаг опять начинает открываться …. и процесс идет по вот такому замкнутому кругу.

При закрытии крана, вода останавливается и мы переходим к процессу номер 1. 

Здесь хотелось бы остановиться на одной проблеме. Через некоторое время эксплуатации внутри редуктора давления, скапливаются отложения присутствующие в нашей «чистой» водопроводной воде, в основном они оседают на седлах клапанов, и разъедают резину, делая ее не эластичной. Все это в конце концов приведет к тому, что при закрытии кранов, редуктор не сможет закрыть клапан Р вх и он останется открытым. Это приведет к росту давления за редуктором, что отрицательно может сказаться на пластиковых механизмах и гибких подводках широко используемых в санузлах.

Все это означает: 

1. установка редуктора давления без манометров, лишена всякого смысла, вы не узнаете работает у Вас редуктор давления или нет. 

2. редуктор давления, как и все другие используемые в быту приборы, нуждается в периодическом обслуживании. 

 Принцип работы редуктора давления

 

 Работа регулятора построена на принципе выравнивания усилий диафрагмы и настроечной пружины. Когда происходит открытие крана водопроводе то выходное давление редуктора понижается, это приводит к уменьшению давления на диафрагму. Усилие пружины при этом оказывается выше, и, выпримляя его, она одновременно открывает рабочий клапан до того момента, пока рабочее давление на выходе не станет равным заданному значению. При этом давление на входе редуктора, а также его скачки никак не влияют на открытие или закрытие клапана. Работа такого редуктора построена на принципе выравнивания усилий диафрагмы и настроечной пружины. При открытии крана в водопроводе выходное давление редуктора уменьшается, что приводит к снижению давления на диафрагму. Усилие пружины при этом оказывается большим, и, выравнивания его, она одновременно открывает рабочий клапан до тех пор, пока рабочее давление на выходе не станет равным заданному значению. При этом давление на входе редуктора, а также его скачки никак не влияют на открытие или закрытие клапана. Установленный на входную трубу редуктор понижает до нужного уровня и стабилизирует давление во всей системе водопровода дома или квартиры. Если же это не было сделано при монтаже системы, то можно установить редуктор отдельно на бойлер, посудомоечную или стиральную машину, которые обычно не рассчитаны на высокое давление. Особенно важно это сделать при наличии в системе насоса, при включении и отключении которого возникает гидроудар.

 Большинство редукторов регулируемые, хотя встречаются и нерегулируемые экземпляры. Регулирование выходящего давления выполняется специальным винтом. Обычно, вкручивая винт по часовой стрелке, внутренняя пружина вдавливает мембрану и открывает клапан. Таким образом, увеличивается выходящее давление. Для понижения давления винт необходимо выкрутить в противоположном часовой стрелке направлении. Регулирование редуктора выполняется при закрытых кранах, смесителях. Перед регулировкой рекомендуется открыть кран на пару минут. Это необходимо, чтобы сбежала вода. В этом случае из труб выгоняется скопившийся воздух и мусор (металическая стружка, окалина) после монтажных работ.

Чем еще редукторы могут отличаться друг от друга? При покупке редуктора необходимо точно знать размер труб, на которые он будет ввинчиваться. А также следует учитывать расположение резьбы на трубе. Если резьба на трубе снаружи, то резьба в патрубке редуктора должна быть внутри. С одной стороны, вопрос не требует особого внимания, но как показывает практика, перед самой установкой выясняется, что нужен еще один переходник или ниппель, для того чтобы можно было смонтировать все элементы.

Условия применения:
Водная среда не содержащая масла и сжатый воздух.
Максимальное давление не более 16 бар.
Максимальная температура не более 70 °C.

Шкала соответствий «мм/дюймы»

:

 8-10 мм — 1/4″
15 мм — 1/2″
20 мм — 3/4″
25 мм — 1″
32 мм — 1 1/4″
40 мм — 1 1/2″
50 мм — 2″
65 мм — 2 1/2″
100 мм — 4″

К примеру, если внешний диаметр трубы приблизительно равен 15мм это значит, что на эту трубу накручиваются патрубок редуктора, фитинги и прочее оборудование с маркировкой «1/2”» — 1/2 дюйма.

Определившись с главными размерами: размерами для подключения к трубам, не стоит забывать про общие габариты редуктора. Возможно, установка будет выполняться в труднодоступном месте, где не будет возможности или будет крайне затруднительно накручивать редуктор на трубы. Чаще всего подобные вопросы следует решать во время монтажа трубопровода, но если трубы уже проложены, то помнить про возможные препятствия при монтаже следует всегда.

                 Схема установки редукторов давления в магистрали холодной и горячей воды

             Схема установки редукторов давления в магистрали

Места установки редуктора.

Часто встречается установленный редуктор давления в водопроводной системе перед подключенным бойлером, стиральной машиной или перед другим бытовым оборудованием. Так бывает, если перед монтажом трубопровода в квартире, заранее не была предусмотрена установка одного редуктора на всё помещение сразу. Иногда перед редуктором ставится фильтр грубой очистки. Такая защита редуктора будет не лишней, хотя некоторые модели редукторов имеют внутри собственный фильтр грубой очистки. Тем не менее, лишний фильтр никогда не помешает.

 

 Наш Интернет-магазин предлагает редукторы давления компании Honeywell (Германия) и IVR (Италия)

 

 

                          Редукционные клапаны давления                        Редукторы давления

                             Honeywell (Германия)                                 IVR (Италия)                         

                             Honeywell (Германия)                                     
                                 

 

        

 

Работа любого редуктора давления воды основана на равновесии двух сил — первую силу представляет давление воды, вторую силу создает сжатая пружина. В соответствии с конструкцией редукторы различают мембранного типа и поршневого.

Мембранные редукторы отличаются более качественными показателями работы, а так же критические значения давления, например Honeywell заявляет о сохранении работоспособности редуктора при превышении давления до 25 бар. Так же мембранные редукторы позволяют регулировать выходное давление от 1 до 7 бар. В отличие от своего собрата, поршневые являются более дешевым вариантом редукторов давления, но и соответственно они имеют более скромные характеристики.

Рассмотрим принцип работы редуктора давления для воды. Разделим редуктор на две половины первая слева (см. рисунок) будет называться отсек подачи воды, там у нас действует давление P вх, а второй условно назовем отсек полученного давления P вых, Отсек входного давления так же соединен с полостью, где находится пружина — точка 1. Это может быть сильфон (тонкая трубка) или же просто высверленное внутри, в корпусе редуктора отверстие.

Начнем изучение процессов происходящих в редукторе:

первый процесс который рассмотрим, вода статична т.е. краны все закрыты, трубы все запечатаны и движение воды нет. Давление Pвх стремится уравняться с давлением Рвых и как результат давление Р вх стало бы равно давлению Р вых, если бы не перемычка доставляющая давление к пружине. Вот благодаря этой перемычке редуктор закрывается и давление не растет

за редуктором.

второй процесс — кран открыт, через редуктор проходит вода, есть динамика. Так вот, при открытии кранов, давление Р вых падает, на клапан, который держит пружину, перестает воздействовать давление Р вых. Благодаря пружине через рычаг происходит открытие запирающего клапана, вода из отсека Р вх попадает в отсек Р вых, что влечет за собой повышение Р вых, оно растет до значения при котором опять произойдет компенсация давления воды и силы сжатия пружины. Рычаг начинает давить на клапан Р вх — запирается, давление Р вых начинает падать, после рычаг опять начинает открываться …. и процесс идет по вот такому замкнутому кругу.

При закрытии крана, вода останавливается и мы переходим к процессу номер 1.

Здесь хотелось бы остановиться на одной проблеме. Через некоторое время эксплуатации внутри редуктора давления, скапливаются отложения присутствующие в нашей «чистой» водопроводной воде, в основном они оседают на седлах клапанов, и разъедают резину, делая ее не эластичной. Все это в конце концов приведет к тому, что при закрытии кранов, редуктор не сможет закрыть клапан Р вх и он останется открытым. Это приведет к росту давления за редуктором, что отрицательно может сказаться на пластиковых механизмах и гибких подводках широко используемых в санузлах.

Все это означает:

1. установка редуктора давления без манометров, лишена всякого смысла, вы не узнаете работает у Вас редуктор давления или нет.

2. редуктор давления, как и все другие используемые в быту приборы, нуждается в периодическом обслуживании. 

Редуктор давления воды в системе водоснабжения

Не всегда очевидна необходимость стабилизировать рабочее давление в водопроводе. А между тем редуктор в некоторых условиях просто необходим для сохранности оборудования и сантехнической системы в целом. Это и будет темой нашего обзора: типы редукторов, их установка и настройка.

 

Зачем нужен редуктор давления

 

Не всегда давление на точке разбора водоснабжения соответствует норме. Скорее, даже так: оно почти никогда норме не соответствует, и если давление ниже нормируемого — это всего лишь малоудобное явление, то с высоким напором могут возникнуть вполне конкретные технические проблемы.

 

Причина такого несоответствия проста: нормативы пишутся людьми, слабо себе представляющими детали технической реализации для их соблюдения. Например, в многоэтажках Москвы установлены предельные нормы в 4,5 и 6 кгс/см2 для горячего и холодного водоснабжения соответственно. Не учитывается тот факт, что естественная гравитационная разница давлений в любом стояке составляет около 1 кгс/см2 на каждые 10 м высоты. Подобные ограничения не позволили бы подать горячую воду выше 15-го этажа без соответствующего превышения нормы в самой низкой точке водоразбора.

Давление целенаправленно завышается, и это, в принципе, нормальная практика в высокоэтажных объектах, но только при задействовании специальных технических средств. Без них жители нижних этажей попадают в группу риска: магистральная система способна выдержать высокое давление и его скачки, но что будет с бытовой сантехникой, если даже системы на сшитом полиэтилене, которые на сегодня считаются самыми надёжными, рассчитаны на давление до 10 бар?

Пример подключения редуктора на вводе холодной и горячей воды в квартире. 1. Шаровой вентиль. 2. Обратный клапан. 3. Счетчик расхода воды. 4. Редуктор с манометром. 5. Фильтр грубой очистки

 

К специальным средствам, защищающим внутреннюю сантехнику от избыточного давления и гидроударов, относятся водяные редукторы. Их установка почти всегда ложится на плечи жильцов и требуется не только в нижних этажах высоток, но и в любых других местах, где периодические замеры давления показывают уход от нормы, трубы сильно шумят при протоке, а возможно даже, что от близко расположенного коллектора давление в момент переключения заставляет трубопровод вполне заметно подрагивать.

 

Устройство: как работает редуктор

 

Главная задача водопроводного редуктора — стабилизировать давление на выходе и поддерживать его в заданном диапазоне вне зависимости от мгновенных изменений на входе, при этом обеспечивая номинальный проток. И хотя в магазинах сантехники можно насчитать десятки разновидностей редукторов, практически все они решают свои задачи за счёт одинаково устроенного поршневого механизма.

По принципу своей работы редуктор схож с вентильным краном: шток и широкий поршень в узком посадочном месте регулируют просвет, ограничивая напор воды. Разница лишь в том, что при статическом положении поршня давление на выходе будет всегда изменяться пропорционально давлению на входе, а в редукторе положение поршня определяется соотношением текущего давления и жёсткости регулируемой пружины. Подстройка редуктора «на ходу» возможна за счёт так называемого пилотного контура: если давление в нём поднимается, клапан перенаправляет поток на мембрану, которая опускает шток с пропускным поршнем и снижает проходное сечение.

 

 

Помимо основного механизма регуляции давления, наиболее продвинутые образцы редукторов могут также включать в себя некоторые из следующих дополнительных устройств:

1. Выходной манометр. Он необходим для контроля за исправной работой. Регулировочный маховик редуктора, как правило, имеет градуированную шкалу, но отклонение в результате может составлять около 0,5 бар.

2. Сетчатый фильтр грубой очистки. Внутренние каналы бытовых редукторов очень чувствительны к засорению и удаление мелкого мусора из воды критически важно.

3. Клапан сброса воздуха. Этот узел помогает избежать сбоев в работе и шумов, вызванных завоздушиванием.

4. Шаровой кран. Позволяет совместить в редукторе функцию запорной арматуры для установки на входе в систему.

 

Типы водопроводных систем, нуждающихся в стабилизации

 

Редукторы устанавливают не только в многоэтажных домах, где есть опасность избыточного давления. Сама возможность выровнять напор очень привлекательная для повышения комфорта. Давление в стояках ХВС и ГВС почти всегда отличается, из-за этого возможна неправильная работа смесителей. Парная установка регуляторов давления способна решить эту проблему.

Опасность гидроудара свойственна и автономным системам водоснабжения, например, при питании от скважины. Из-за некорректной работы обратных клапанов в магистральной трубе создаётся разрежение, которое усиливает напор при включении насоса. Подобная динамическая нагрузка очень негативно воздействует как на насосное оборудование, так и на водопровод в целом, а в особенности на компрессионные фитинги.

 

Установка регулятора давления может быть обязательна для сохранения действия гарантии на многие виды бытовой и отопительной техники. Сюда относятся водонагреватели, котлы отопления с прямой автоматической подпиткой системы, стиральные и посудомоечные машины.

 

Общая и локальная установка

 

В своде правил по водоснабжению и канализации указано, что установка регуляторов давления должна проводиться сразу после запорной арматуры на вводе, то есть до приборов учёта. Это звучит здраво, ведь в таком случае редуктор будет защищать все гидротехнические устройства, включая счётчик и узел фильтрации.

 

Но при установке до узла учёта должна исключаться любая возможность забора воды, а значит, технические пробки для промывки фильтра и штока окажутся запломбированы, а сам редуктор лишится возможности обслуживания. Этим можно пренебречь, но даже в таком случае очень сложно предусмотреть разное гидродинамическое сопротивление и добиться выравнивания давлений в коллекторах холодной и горячей воды. Нужно либо устанавливать в них дополнительные манометры для более точной подстройки, либо располагать регуляторы давления сразу перед коллекторами, как и поступает большинство опытных сантехников.

 

Если нет возможности произвести установку на вводе системы, но некоторые узлы требуют защиты от избыточного давления, возможна и локальная установка. Существует достаточно много примитивных моделей редукторов под 20 мм трубную резьбу, и даже без точной подстройки они вполне справляются со своей защитной функцией.

 

Настройка и устранение неисправностей

 

Считается оптимальным и наиболее удобным давление воды на выходе из крана в 2–3,5 кгс/см2. Но такого значения не всегда просто добиться, особенно учитывая необходимость нормализации статического давления, когда водоразбор закрыт, и вода не двигается.

Все редукторы отличаются разным быстродействием. При появлении протока давление падает на 0,5–1,2 атм в зависимости от действующей уставки. Через несколько секунд давление снова повышается (если это позволит давление на входе редуктора), но не до статического уровня, а немного ниже. В идеале выходное давление должно быть как минимум на 1,5 кгс/см2 ниже входного значения, иначе проток воды будет замедляться слишком сильно. Это стоит учитывать при регулировке рабочего давления насосной станции.

 

Неисправный редуктор обычно не пропускает воду вовсе или попросту не снижает давление, что можно заметить только при парной установке манометров или наличии водоразбора до редуктора. Обслуживание устройства заключается только в промывке механизма и встроенного фильтра. Если это не помогло, налицо механическая неисправность или влияние времени. Впрочем, весь механизм регулятора виден наглядно при извлечении штока.

 

Поломка может заключаться в лопнувшей пружине, износе поршня или мембраны. Не все запчасти можно найти в продаже, но при наличии их или донора замена не вызовет сложностей за счёт доступности основных механизмов редуктора для обслуживания.

 

http://www.rmnt.ru/ — сайт RMNT.ru

Редуктор или регулятор давления воды в системе водоснабжения для дома и квартиры — RMNT

Централизованные системы водоснабжения редко блещут образцовыми рабочими параметрами и стабильностью работы. Гидравлические удары, скачки давления или просто необходимость его ограничения до приемлемых значений — вот основные показания для установки редуктора или регулятора давления.

Рабочие характеристики систем водоснабжения

Работа систем холодного и горячего водоснабжения определяется такими ключевыми характеристиками как давление и напор. Значения обоих этих параметров регулируются государственными нормами. При этом следует различать понятия характеристик системы на узле подачи в многоквартирный дом, на вводе в жилой объект и в месте подключения сантехприборов.

СНиП 2.04.02–84 определяет общую формулу расчёта для многоэтажных жилых зданий. Если принять, что на каждом этаже давление должно составлять хотя бы 10 м. вод. ст (1 Атм), то на каждый этаж выше первого следует добавлять по 4 м. вод. ст для обеспечения достаточного давления на вводе. Очевидно, что давление в квартире на 1 этаже может быть существенно выше, чем на самом верхнем, это вызвано технологической необходимостью. Интересно, что при этом СНиП 2.04.01–85 устанавливает минимальные и максимальные значения давления на вводе в квартиру: не более 4,5 Атм для ГВС и не более 6 Атм для ХВС.

Если разобраться, то без специального оборудования при естественном перепаде давления снабжение холодной водой может осуществляться при количестве этажей до 12, горячей — до 9. И это при условии, что на вводе в дом поддерживается стабильное давление не выше установленного предела. В реальных же условиях давление на вводе в дом приходится существенно завышать, иначе при пиковом потреблении падение напора будет настолько большим, что в самых высоких точках водоразбора поступления воды не буде вовсе. А если давление выходит за установленные нормы, влияние оперативных переключений в системе водоснабжения и вызванных ими скачков давления будет еще более губительным. В связи с этим на нижних этажах зданий приходится ограничивать и нормализовать давление на локальном участке системы водоснабжения, то есть попросту установить редуктор или регулятор.

Требования к подключению сантехнического и бытового оборудования.

Нормы нормами, но ведь действуют также и требования к подключению сантехприборов. Классическая «четвёрка» бытовой сантехники — унитаз, рукомойник, ванная и душ — требуют минимального давления в месте подключения не менее 0,2–0,3 Атм, что полностью соответствует действующим нормам. При этом максимальное значение давления определяется исключительно характеристиками оборудования и в большинстве примеров составляет не менее 6 Атм, что также находится в рамках нормативных параметров.

Сложнее дело обстоит при подключении нетипичных приборов и бытовой техники. Разброс параметров здесь больше: минимальное давление для подключения качественной душевой кабинки может составлять от 1 до 4 Атм, а при наличии системы тропического душа — от 3 до 5 Атм. При этом в случае установки тропического душа ограничивается также и максимальное давление, в итоге рабочий диапазон оказывается совсем небольшим — порядка 0,6–1 Атм. Обеспечить устойчивую работу приборов с разными требованиями к параметрам водоснабжения достаточно сложно, особенно при большой разветвлённости системы.

Для организации сети водоснабжения квартиры с большим количеством разношерстных потребителей требуется установка нескольких редукторов давления. Один устанавливается в месте врезки в магистральный стояк, максимальное давление на выходе определяется допустимыми значениями оборудования, требующего наиболее высоких показателей. Так, при наличии тропического душа это будет порядка 4–5 Атм, при его отсутствии — 6 Атм.

Дополнительные редукторы могут быть установлены на отводах коллектора. Например, если в системе предусмотрена отдельная линия подвода воды к стиральной машине, для которой максимальное давление ограничено 2–3 Атм. Если на отходящей линии коллектора имеется несколько точек водоразбора с разными требованиями к давлению, наиболее правильным будет локальная установка редуктора в точке подключения оборудования. Идеальным способом организации систем водоснабжения считается такой, при котором потребители основной «четвёрки» подключены через отдельный коллектор с редуктором на 1–1,5 Атм для снижения расхода воды.

Виды редукторов

Редукторы различаются по устройству и принципу действия на мембранные, клапанные и лабиринтные. Клапанные устройства получили наибольшее распространение в силу дешевизны, простоты устройства и возможности регулирования давления на выходе в широких пределах.

Мембранные редукторы стоят дороже, но при этом они не столь чувствительны к наличию в воде механических примесей и имеют наибольшую пропускную способность. При этом регулировка давления на их выходе выполняется с более высокой точностью и, как правило, в большем диапазоне.

1 — клапанный редуктор КФРД2.012-0; 2 — мембранный редуктор КФРД10-2.0 (СУИЕ.493611.008)

Лабиринтные редукторы не имеют компонентов активной механики, они просто ограничивают давление за счёт системы мелких каналов, из-за чего оптимально подходят для локальной установки в точках подключения оборудования.

Редукторы всех типов имеют набор рабочих параметров, определяющих возможность их использования в той или иной системе водоснабжения. К таким параметрам относятся предельное давление на входе, температура воды, диаметр и тип подключения. Дополнительные отличия могут касаться диапазона регулирования и предельной скорости протока. Также производитель может указывать некоторые специфические требования, например, к предварительной фильтрации или месту установки. Редукторы также можно различать и по компоновке.

Прибор может иметь статическую заводскую настройку, то есть маховика для регулировки в его конструкции не предусмотрено. Также, помимо самого редукционного клапана в одном корпусе могут находиться:

  • фильтр механической очистки;
  • запорный кран;
  • манометр.

Обычно себя оправдывает лишь однокорпусное исполнение редуктора с манометром, облегчающим процесс настройки. Два таких редуктора желательно устанавливать в качестве основных в местах врезки в стояки ГВС и ХВС. Дополнительные редукторы, устанавливаемые в точках питания коллекторов, могут манометров не иметь. При необходимости измерительный прибор лучше разместить на предназначенном для этого отводе распределителя.

Использование в обвязке насосной станции

Обычно при питании системы водоснабжения автономной насосной станцией установка редуктора не требуется. Считается, что регулятор давления из группы автоматики насоса поддерживает работу системы в пределах установленных параметров, не допуская критических перепадов и бросков. Однако, как и в любом правиле, здесь имеются исключения.

Некоторые скважинные насосы могут в процессе работы провоцировать резкие скачки давления. Происходит так от того, что между открытием водоразбора, срабатыванием реле включения и выходом на полную мощность имеется некоторая задержка во времени. При этом на конечном участке системы давление резко снижается, а вблизи источника наоборот наблюдается его рост. Вследствие этого образуется фронт своего рода ударной волны, который следует от начальной до конечной точки системы. Учитывая тот факт, что в общем случае водопровод не рассчитан на динамическое изменение основных параметров, подобные процессы не могут сказываться благоприятно на долговечности оборудования.

Другой частный случай — работа насоса без гидроаккумулятора под контролем электронного регулятора давления. Такой принцип действия наиболее характерен для систем, включающих накопительные нагреватели. Воздушный карман в верхней части ёмкости выступает в роли демпфера, однако полноценной заменой гидроаккумулятору бойлер назвать нельзя. Избежать постоянных скачков давления при включении станции и в процессе работы можно путём установки редуктора давления сразу после обратного клапана насоса, тем самым уберегая остальные компоненты системы от разрушительного действия гидроударов.

Наконец, к системе водоснабжения частного дома может, так же как и в квартире, подключаться широкий спектр оборудования и техники с различными требованиями к давлению в водопроводе. Даже если насосная станция сконфигурирована правильно, с выравниванием давления в разных ветках системы можно справиться только путём установки нескольких редукторов давления с соответствующей настройкой давления на выходе.

Локальное подключение редуктора

Стиральные и посудомоечные машины, а также душевые кабинки зачастую не могут быть установлены на объектах индивидуального строительства просто по той причине, что в водопроводной системе нет достаточно высокого давления. В коммунальном секторе ситуация прямо противоположная. Такого рода техника — наиболее уязвимая часть системы водоснабжения, превышение давления даже на 10–20% сверх предельных значений, установленных производителем, может привести к поломке впускного клапана или внутренней системы трубопроводов.

Редукторы лабиринтного типа надёжно защищают бытовую технику от повышенного давления. И хотя их стоимость в принципе сопоставима с клапанными и мембранными устройствами, есть большая экономическая разница в месте установки редуктора. Врезка регулятора давления в магистраль подразумевает удаление части трубопровода и установку соединительных фитингов, что зачастую нельзя осуществить без специального оборудования и соответствующей квалификации. Установка же редуктора непосредственно в точке водоразбора требует только разводного ключа и мотка уплотнительной ленты.

Редуктор должен устанавливаться сразу после запорной арматуры для возможности замены и обслуживания. Лабиринтные редукторы в наибольшей степени чувствительны к наличию в воде механической примеси, поэтому если система водоснабжения не имеет узла фильтрации, на входе редуктора требуется установка фильтра. Для этого наиболее рационально использовать компактные фильтры механической очистки. Также оправдана установка фильтра со встроенным редуктором давления.

Настройка контура ГВС

Если сравнить давление в патрубках для подключения смесителя, на выходе горячей воды оно всегда будет ниже. При этом нет разницы в том, осуществляется ли подача ГВС централизованно, либо же нагревательный прибор является частью локальной системы водоподготовки. В обоих случаях сеть ГВС имеет дополнительный узел, за счёт чего её гидродинамическое сопротивление выше, соответственно и падение давления больше. Из-за этой разницы возможна некорректная работа смесителей: невозможность точно отрегулировать температуру, сбой настройки время от времени и т. д.

Для корректной работы требуется, чтобы давление в трубопроводах ГВС и ХВС было одинаковым с допустимой разницей до 0,1–0,2 Атм. Обращаем внимание, что при магистральной подаче горячей воды установка регуляторов давления производится на вводе в квартиру. Как уже говорилось, оптимально наличие встроенных манометров для повышения удобства одновременной настройки обоих устройств.

Если же водонагревательный узел является частью квартирной системы водоснабжения, редуктор на горячий водопровод нужно устанавливать уже на выходе бойлера. Если такое расположение неудобно, регулировку можно производить также и на ветке питания нагревательного прибора, однако в таком случае требуется установка контрольного манометра на ветке ГВС, например, на распределительном коллекторе.

Требования к выполнению монтажа

Большинство редукторов для бытовых систем водоснабжения рассчитаны на присоединение резьбового типа диаметром до 50 мм, для более крупных трубопроводов используется подключение на фланцах. Сам процесс монтажа предельно прост, здесь может выполняться как жёсткая упаковка с использованием уплотнительной тефлоновой ленты, либо накидными резьбовыми гайками с кольцевыми уплотнениями.

Несколько иначе обстоит дело с выбором места установки. Если редуктор будет расположен сразу после вводного крана, все остальные элементы сети водоснабжения будут работать под стабильным давлением, что может показаться наиболее оптимальным вариантом. Однако в таком случае требуется согласование с местным водоканалом и опломбирование узла после установки. Это затруднит последующую замену или обслуживание устройства.

К слову, фильтр грубой механической очистки и счетчик-водомер нормально переносят скачки давления, поэтому редуктор может быть установлен сразу после обратного клапана за узлом учёта. Желательно, чтобы обычный сетчатый фильтр при этом был заменён на компактную колбу с ячейкой 100 мкм. Обязательно нужно следить за правильным направлением движения жидкости, которое указано стрелкой на корпусе прибора. Если редуктор имеет встроенный манометр, последний должен при установке быть обращён вверх.

Регулировка редуктора производится при полном отсутствии протока. После того, как настройка произведена, необходимо проточить несколько литров и проследить, что давление по-прежнему соответствует норме или произвести повторную, более точную настройку. При соблюдении норм монтажа регулятор давления воды в обслуживании не нуждается, требоваться может разве только периодическая промывка встроенного фильтра.

≋ Нужен ли бойлеру редуктор давления? • От чего он защитит?

Нужен ли бойлеру редуктор давления?

Содержание

  1. От чего защитит редуктор давления?
  2. Выбор и установка редуктора давления

Настала ли пора принимать решение купить бойлер, или же водонагреватель уже приобретен и стоит в коробке у Вас на объекте, следующая задача – правильное его подключение.

Несмотря на многочисленные рекомендации производителей, установка бойлера часто выполняется в полном несоответствии с правилами монтажа. Далеко не всегда такой подход к задаче обусловлен нехваткой денег у потребителя.

Что же чаще всего горе-специалисты «забывают» установить при подключении к водопроводу электрических водонагревателей? Ответ один – редуктор давления.

редуктор давления Honeywell

Причиной отсутствия редуктора давления зачастую выступает недостаточная квалификация монтажников и незнание последствий такого опрометчивого решения.

Кроме того, далеко не каждый потребитель вникает в тонкости монтажа водонагревательного оборудования и прислушивается к рекомендациям производителя. Как следствие, очень часто при монтаже бойлера своими руками редуктор давления, цена которого не так уж и значительна, попросту не устанавливается.

От чего защитит редуктор давления?

редуктор давления Itap

Редуктор давления — устройство небольшое и предназначено для уменьшения входного давления воды в водопроводе и защиты сантехнического, водонагревательного оборудования, стиральной машинки от гидравлических ударов.

Гидравлический удар (или гидроудар) появляется из-за мгновенного изменения давления воды в системе водоснабжения. Распространенным последствием высокого давления или гидроудара являются разорванные этим давлением переходные шланги, которые мы не рекомендуем использовать для монтажа. Проявление такого удара характерно также разрушением ослабленных ржавчиной труб и срывом слабых заглушек. При работающем бойлере гидроудар с большой вероятностью может привести к разрыву бака!

Обычный бойлер рассчитан на давление поступающей воды до 4 атмосфер – тогда его срок службы будет выше. Различные производители комплектуют бойлеры предохранительными клапанами с разной настройкой (6-9 Бар), при достижении давления свыше настройки клапана, начинается его работа. Сбрасывается избыточное давление части воды из бойлера через специальное отверстие, к слову, контролируйте работу мастера, чтобы он обязательно надел трубку для отвода сбрасываемой воды в канализацию или в подготовленную емкость.

Одной из причин постоянно капающего предохранительно-обратного клапана бойлера может служить чрезмерное давление воды (более 8 атмосфер) на входе.

Повышенное давление в трубах может возникнуть не только по причине выхода из строя температурного датчика, но и по вине водоканала, ведь в квартиру вода может подаваться с давлением более 10 атмосфер! Особенно часто такое наблюдается в многоэтажных домах на нижних этажах ночью.

Анализ статистики отказа бойлеров показал, что порядка 70% всех поломок было связано с резким перепадом давления, гидравлическими ударами и продолжительными вибрациями.

установка редуктора давления

Если редуктор давления не установлен на входе в квартиру, перед бойлером его установка будет обязательна.

Подключенный на входе в бойлер, редуктор давления станет гарантом защиты от гидравлических ударов и протекающего по причине повышенного давления предохранительного обратного клапана.

Грамотный монтаж бойлера: выбор и установка редуктора давления

Какой редуктор давления следует приобрести – решать самому владельцу водонагревателя. Устройства эти различаются:

  • По допустимому уровню температуры воды (низкотемпературные – 0-40°С, высокотемпературные – до 130°С).
  • По типу (мембранный или поршневой).
  • По уровню входного давления воды (до 15, 25, 30 или 60 бар).
  • По возможности или невозможности их калибровки, настройки (регулируемые редукторы давления настраиваются вращением винта).
  • По наличию или отсутствию места под манометр (и наличию самого манометра в комплекте).
  • По материалу корпуса (латунь или ее сплавы) и производителю.

выбор редуктора давления

Какой редуктор лучше?

Из-за того, что цена редукторов давления достаточно высока, а скупой платит дважды, доверять стоит только проверенным брендам. Лучшие редукторы выпускают Honeywell (США), ITAP (Италия), Valtec (Италия). Самый дешевый вариант с удовлетворительной надежностью – Honeywell (США) и ITAP (Италия).

Чтобы не столкнуться с подделкой (сегодня подделывается продукция даже именитых брендов), редуктор давления купить рекомендуется в специализированном магазине, а не на рынке.

В любом случае, какой бы редуктор давления Вы не купили, его нужно правильно установить. Монтаж редуктора давления возможен в любой плоскости, как вертикальной так и горизонтальной.

Важно знать: редуктор давления должен быть установлен в строгом соответствии с инструкцией, которая к нему прилагается, силами квалифицированного мастера.

Например, категорически запрещен монтаж «вверх ногами» относительно вертикальной плоскости и «задом наперед» относительно горизонтальной. Корректное направление входа/выхода воды указывается стрелкой на корпусе редуктора.

Стоит помнить и о том, что, как и водяной счетчик, редуктор давления может забиваться ржавчиной и прочим присутствующим в трубах мусором. Установка фильтра грубой очистки перед редуктором (даже если у него имеется встроенный фильтр) — обязательна.

Только специалисты обеспечат правильный монтаж водонагревателя и грамотную установку сопутствующего защитного оборудования, продлевающего срок его службы!

Для чего устанавливают регулятор давления воды?

Регулятор давления воды — это устройство, выравнивающее и понижающее давление в водопроводной системе.

Главное предназначение данного прибора состоит в предохранении трубопровода и подсоединенного к нему оборудования от повышенной нагрузки и образующейся в результате этого ударной волны.

Если углубиться в особенности конструкции редуктора, то это компактное устройство, расположенное в закрытом железном корпусе. Отверстия входа и выхода оборудованы резьбой. В качестве дополнительного элемента нередко используется манометр и винтовой механизм, дающий возможность контролировать давление.

Устройство регулятора давления воды

Прочный герметичный корпус защищает редуктор от повреждений. В состав такого прибора входит несколько элементов:

  1. Сетчатый фильтр;
  2. Прижимной и пружинный механизмы;
  3. Винт и гайки;
  4. Поршень;
  5. Клапан, оснащенный прокладкой и уплотняющими кольцами;
  6. Диафрагма.

Эксплуатация редуктора должна выполняться при определённых условиях: в водной среде не должно быть воздуха и масел, а предельные значения давления и температурный режим ограничиваться отметками в 16 бар и 70 градусов.

При активации крана с водой уменьшаются показатели редукторного и диафрагменного давления. Напор пружины дает возможность выровнять рабочее давление в водопроводной системе.

Редуктор часто устанавливают на технику, не имеющую защиты от повышенного водного давления и оснащенную насосом, активация которого может спровоцировать появление гидроударной волны.

Принципы работы регулятора давления воды

Производители выпускают несколько типов устройств, созданных для регулировки водного давления.

Рассмотрим существующие виды редукторов подробнее. И начнем с поршневого регулятора.

Поршневой

Ключевым достоинством считается простота конструкции. Контроль давления осуществляется при помощи компактного подпружиненного поршня, уменьшающего или увеличивающего размер отверстия и за счет этого выравнивающего давление в трубопроводе.

Параметр гидродавления на выходе регулируется за счет сжатия или расслабления пружины, обусловленного вращением регулирующего винта.

Главный минус использования таких устройств состоит в необходимости осуществлять предварительное очищение воды, поскольку поршень интенсивно засоряется и в результате перестает работать.

Этот недостаток учитывает большинство крупных производителей, комплектующих свои приборы фильтрами. Диапазон давления находится в пределах 1-5 атмосфер.

Мембранный

Еще одна популярная разновидность регулятора давления воды – мембранная. Преимущество таких изделий заключается в высоком уровне надежности. Это неприхотливые приборы, обладающие высокой пропускной способностью. Главным элементом таких редукторов является подпружиненная мембрана, она находится в автономной камере, которая абсолютно герметична. Уровень сжимания пружины, отражается на маленьком клапане, увеличивающем или снижающем пропускную способность регулятора.

У приборов мембранного типа отсутствуют явные недостатки, они считаются самыми надежными и производительными.

Проточный

Спросом пользуются и редукторы проточного типа.

Ключевая особенность таких регуляторов заключается в полнейшем отсутствии мобильных деталей, за счет чего повышается их надежность.

Давление стабилизируется по внутреннему лабиринту, протекая сквозь который, потоки воды утрачивают скорость. Выходя наружу, водные массы соединяются в общий поток и движутся медленно.

Минус такого прибора состоит в потребности устанавливать на выходе еще один редуктор.

Классификация по различным параметрам

Современные модели регуляторов давления воды, устанавливаемых в квартирах, классифицируются по нескольким параметрам.




Производительность бытовых приборов составляет около 3 кубометров за час.

Выбирая модель регулятора, следует, в первую очередь, обращать внимание на этот параметр. По данному критерию устройства для регулировки водного давления подразделяются на бытовые, коммерческие и промышленные.

У коммерческого оборудования производительность находится в пределах 3-15 кубометров. У промышленных приборов этот показатель еще больше.

По типу подключения редукторы делятся на резьбовые и фланцевые. Первые применяются для трубопроводов диаметром два дюйма, а вторые для более объемных систем.

Еще один критерий, на который нужно обращать внимание при выборе – регулирующий диапазон. В продаже представлены модели с большим регулировочным интервалом (от 1,5 до 12 бар) и филигранно настраиваемые устройства (от 0,5 до 2 бар).

Немаловажное значение имеет и параметр максимального входного давления. Выпускаются устройства для комплектации водопроводных систем с уровнем давления максимум в 16 бар с большей мощностью, выдерживающие около 25 бар.

Подразделяются регуляторы и по предельному рабочему температурному режиму. Для водоснабжения холодной водой приобретают с придельным показателем в 40 градусов. Для снабжения горячей водой используют модели, выдерживающие температуру в 70 градусов.

Тонкости установки

Редукторы, контролирующие водное давление, в основном устанавливают на горизонтальных участках водопровода. Но при необходимости монтаж может быть выполнен и вертикально. Бесперебойное функционирование обеспечивается за счет фильтрующих элементов, с помощью которых выполняется механическое очищение воды. В обычных ситуациях, регуляторы оснащают запорной арматурой и монтируют за водосчетчиками.

Правильно интегрированный в систему редуктор не нуждается в специальном обслуживании. Установка нужных показателей давления осуществляется при нулевом водоразборе, для которого характерны закрытые толчки. За счет прокрутки установочной составляющей редуктора в сторону движения часовой стрелки увеличивается давление на участке за прибором. Поворот в противоположную сторону уменьшает данный показатель. Диаметр устройства выбирают исходя из предполагаемого расхода жидкости. Правильно интегрированный в систему редуктор не требует сложного обслуживания, но чтобы продлить срок его службы рекомендуется периодически чистить фильтровальные сетки. Износившиеся в ходе работы сетчатые детали можно заменить, при этом даже не придется демонтировать корпусную коробку.

Что касается стоимости такого оборудования, то она напрямую зависит от характеристик и фирмы производителя.

Установка регуляторов давления воды в системе водоснабжения квартиры не считается сложной, но лучше поручить эту работу профессионалам, их услуги обойдутся недорого. Профессионально выполненный монтаж обеспечит продолжительную эксплуатацию оборудования, сведут к минимуму вероятность поломок.

Можно ли обойтись без редуктора?

Все владельцы квартир тщательно подбирают сантехническое оборудование, чтобы гарантировать себе и членам своей семьи максимальное удобство от его использования. В проектирование водоснабженческих систем вкладывается масса сил, но обычные перепады давления в трубопроводе способны негативно повлиять на функционирование современной техники.

Регулятор предохраняет систему от водного удара, возникающего вследствие сбоев в работе станции или неправильных действий сотрудников водоканала.

Редукторы выполняют важную функцию, они стабилизируют гидродавление и за счет этого препятствуют образованию аварийных ситуаций. При наличии регулятора, выпущенного надежным производителем, проблем с эксплуатацией водопровода из-за появления гидроударной волны не будет.

Редуктор не только защищает водопровод от гидроударов, но и способствует экономному расходованию водных ресурсов – это еще одно весомое преимущество его применения. Это актуально не только для владельцев квартир, но и для собственников загородных домовладений, поскольку снижение количества потребляемой жидкости, уменьшает объем сточных вод, а это значит, что услугами ассенизаторов придется пользоваться реже.

Помимо перечисленных функций, регуляторы еще и снижают уровень шума в водозаборных приборах. Ведь именно повышенное давление провоцирует возникновение шума в водопроводе, его можно уменьшить или полностью нивелировать за счет стабилизации напора.

Если у вас возникнет необходимость купить регулятор давления воды для установки в квартире, предварительно изучите характеристики имеющихся в продаже приборов, чтобы не ошибиться с выбором. При покупке нужно обращать внимание на устройство прибора и материал изготовления. Одними из самых надежных и долговечных считаются редукторы брендов Valtec, Honeyvell, Far. Регуляторы давления перечисленных производителей обладают оптимальными эксплуатационными параметрами и изготовлены из прочных материалов, приобрести их можно по доступной стоимости.

как отрегулировать и настроить в системе водоснабжения квартиры

Регулировка — что это такое?

Регулировка редуктора давления воды – это настройка прибора на поддержание напора после него на заданном уровне.

Напор воды на выходе регулируется клапаном, который нагружен пружиной.

Увеличение или уменьшение сжатия пружины позволяет изменять напор в большую или меньшую сторону.

Заводские настройки

Заводская настройка большинства моделей редукторов выполнена на 3,0 бара. У некоторых производителей настройка на 2,0 бара. Например, у VALTEC для регулятора 1/2″ диаметром. При этом, все производители исходят из того, что входное давление находится в стандартных пределах 5,0 – 6,0 бар.

Комфортным считается напор от 1,0 до 2,5 бар.

Когда нужно регулировать и убирать стандартные настройки?

Далеко не всегда входная мощность соответствует стандартным 5,0 – 6,0 бар.  Если напор в питающей сети значительно отличается от нормативного, то и напор воды после редуктора будет отличным от заводских настроек.

Для примера рассмотрим регулятор, настроенный на 3,0 бара, при входном давлении 5,0 бар. То есть на разницу в 2,0 бара.

Кстати, именно эта величина, разница между входным и выходным давлением воды, и есть фактическая величина настройки нагрузки пружины на клапан.

Если входной напор будет 2,5 бара, то выходная величина составит всего 0,5 бара, что очень мало для нормального пользования. Потребуется настройка.

Если входной напор составит 7,0 бар, то выходное значение будет 5,0 бар, что очень много. Потребуется настройка.

Отступление от стандартов может быть при таких условиях:

  • потребление воды значительно превышает мощности центральных сетей и насосных станций, напор будет низким;
  • верхние этажи высоких зданий, давление низкое;
  • нижние этажи высоких зданий, давление будет высоким;
  • не корректная работа повышающих насосов в здании, напор может быть низким или завышенным.

При таких ситуациях необходимо произвести перенастройку редуктора. Изменение давления воды на входе может произойти и в процессе длительной эксплуатации сетей водоснабжения. В том числе и по причине уменьшения проходного сечения труб в здании из-за образования отложений и коррозии.

Регулировка может потребоваться не один раз, на протяжении длительного пользования водой.

Редукторы подвержены износу, приводящему к протеканию воды. Их можно ремонтировать, для чего необходима разборка. После сборки прибора потребуется его регулировка.

Как настроить регулятор своими руками?

Принцип действия приборов одинаковый, но регуляторы разные по устройству конструкции.

В том числе есть отличия в исполнении регулировочных винтов. Для их вращения могут понадобиться различные инструменты.

Для более точной настройки можно использовать манометр. У некоторых приборов есть специальные резьбовые места для их присоединения.

Подготовка

В зависимости от конструкции регулировочного винта, могут понадобиться:

  • шестигранник на 4 или 6 мм;
  • стандартная отвертка с плоской широкой лопаткой;
  • спецключ или стальная полоса толщиной около 2 мм и шириной до 20 мм.

Для визуального контроля давления на выходе после редуктора может понадобиться манометр с переходником, для присоединения к шлангу душа или гусаку смесителя.

Настройка регулятора производится при минимально возможном расходе воды через один водоразборный кран.

Настройка

Для настройки регулятора давления в системе водоснабжения квартиры следует выполнить следующие действия:

  • перекрыть все краны на внутреннем водопроводе;
  • установить манометр на редуктор или присоединить к внутреннему водопроводу;
  • приоткрыть 1 кран так, чтобы расход воды был минимальный, то есть тонкая струйка, не распадающаяся на отдельные капли;
  • визуально определить давление в водопроводе по манометру, до начала регулировки;
  • снять пробку с отверстия в корпусе, где установлен регулировочный винт;
  • вставить инструмент в винт, подходящий по конфигурации;
  • для увеличения напора необходимо вращать винт против часовой стрелки, нагрузка пружины на клапан уменьшится, и клапан будет закрываться при большем давлении;
  • для уменьшения напора следует вращать винт по часовой стрелке, нагрузка пружины на клапан будет возрастать, и клапан будет закрываться при меньшем давлении;
  • произвести пробное пользование водой из крана, для проверки комфорта пользования водой;
  • при необходимости скорректировать настройку;
  • закрыть пробку заглушки отверстия на редукторе, отсоединить манометр.

У некоторых моделей установлена головка вращения регулировочного винта и даже может иметься шкала с указанием условных величин.

Можно произвести регулировку давления в водопроводе и без манометра. Для этого, после каждого полного оборота регулировочного винта, следует проверить напор из водоразборного крана, в том числе и удар струи по ладоням.

Один оборот винта изменяет величину примерно на 0,5 – 1,0 бар. Для более точной настройки, в конце регулировки, следует делать пол оборота винта.

Этот метод может оказаться даже более приемлемым, ведь напор настраивается, прежде всего, для комфортного пользования водой, в том числе и при мытье рук.

Последствия отсутствия регулировки

Если регулировку не производить, никаких опасных, с технической стороны, последствий не наступит. Однако пользоваться водой из крана или смесителя, при избыточно высоком, или наоборот, очень слабом напоре, весьма не удобно.

Заключение

Регулировка давления воды после редуктора — очень простая процедура, которую легко выполнит каждый пользователь. Не стоит лишать себя комфорта в пользовании водой из крана.

Мембранный редуктор давления воды: какой регулятор лучше

Определение устройства

Мембранный редуктор – разновидность регуляторов давления, применяемых как в частных домах, так и в квартирах многоэтажек. Рабочий элемент прибора – гибкая каучуковая мембрана, посредством которой и происходит регулировка поступающего потока воды.

Применяется не только в водопроводных сетях, но и в системах отопления или технологических сетях, где необходима транспортировка неагрессивных жидкостей. Является самым точным и надежным прибором контроля давления среди всех типов устройств, имеющихся в настоящее время на рынке.

Качественный регулятор мембранного типа позволяет устанавливать выходное давление воды на уровне 1-7 бар с погрешностью не более 5% и выдерживает входящее давление до 25 бар.

Материал, из которого изготавливается гибкая диафрагма – армированный этилен-пропиленовый каучук.

Обозначается он аббревиатурой EPDM и имеет такие характеристики:

  • foto18866-2рабочая температура в пределах от -60 до +120°С;
  • низкая чувствительность к резким перепадам температуры высокой цикличности;
  • низкая остаточная деформация;
  • стойкость к механическому воздействию и истиранию;
  • производители гарантируют, что эластичность может сохраняться до 20 лет с начала эксплуатации.

У материала есть единственный недостаток – высокая цена по сравнению с более доступным аналогом в виде ТЭП-уплотнителей. Срок годности последних не превышает 5 лет согласно гарантийным обязательствам производителей, а сам материал не обладает такими показателями стойкости, как EPDM.

Поэтому при покупке регулятора нужно обращать внимание на материал, из которого изготовлена мембрана. Информация об этом должна быть указана в паспорте к прибору.

Принцип работы

Внутренняя камера мембранного редуктора имеет достаточно сложное строение.

Входящий поток воды проходит к выходному отверстию через клапан. Также, он воздействует на эластичную диафрагму. И чем выше давление воды, тем сильнее давление на мембрану, и тем сильнее перекрывается пропускной клапан.

Регулировка давления в редукторе происходит как раз при помощи мембраны, которая поджимается сверху пружиной. Усилие пружины регулируется винтом.

От давления пружины зависит реакция мембраны на входной поток жидкости. То есть, чем сильнее пружина давит на мембрану, тем сложнее входящему потоку поднять ее и увеличить проход.

В конструкции предусмотрено движение только мембраны и клапана. Пружина находится в отдельной сухой камере и изолирована от влияния воды той же мембраной, что исключает преждевременную коррозию металла.

foto18866-3

Преимущества и недостатки

Мембранные редукторы – явные фавориты на рынке сантехнической арматуры.

Регуляторы подобного типа не подвержены загрязнению именно из-за эластичности мембраны, которая не накапливает на своей поверхности мелкие загрязнения. Поэтому прибор не требует постоянных прочисток, не требователен к качеству воды и служит долго.

Мембранный редуктор по сравнению с поршневым имеет более высокую точность регулировки выходного давления воды. Это еще одна заслуга конструкции, которая имеет и недостатки.

Из-за своей сложности, этот регулятор дороже, а обслужить его самостоятельно уже не получится. Чистку и замену ремонтного комплекта поршневого редуктора может выполнить практически любой человек на своей же кухне с минимальным набором инструмента.

А вот для замены диафрагмы мембранного редуктора нужно вызывать соответствующего специалиста. Но ситуации, требующие вмешательства в работу прибора такого типа, возникают крайне редко.

Какой лучше?

Чтобы сложить общее впечатление о двух типах редукторов, в таблице ниже приведены их основные сравнительные характеристики:

ХарактеристикаМембранный редукторПоршневой
Пропускная способность2,5 м.куб/час1,6 м.куб/час
Точность регулировки±5%±10%
Чувствительность к качеству водынетЕсть
Требования к положению установкиВ любом положении (вертикально, горизонтально, под углом)В горизонтальном положении во избежание истирания уплотнительного кольца поршня
Уровень шумаНизкийВысокий (за счет большого количества металлических компонентов)
Габариты корпусаКрупнееКомпактнее
Срок службыПрактически неограничен±1 год до ремонта либо замены
Стоимость35-45$15-25$

Как видно из таблицы, преимущества мембранных редукторов очевидны. Этот тип регуляторов можно рекомендовать для установки в любых условиях, при любом качестве воды. Конечно, если планируется установить прибор один раз и забыть.

Если же нужна временная установка, либо бюджет на приобретение редуктора давления ограничен, можно рассматривать поршневой.

Как выбрать?

foto18866-4Вопросы, которые нужно решить перед выбором регулятора:

  1. Какой диаметр трубы в дюймах, на которую будет устанавливаться прибор?
  2. Нужна внутренняя или наружная резьба патрубков?
  3. Нужно ли устанавливать фильтр жесткой очистки перед редуктором?
  4. Нужен ли манометр?

Теперь нужно определиться с регуляторами давления, на которые стоит обратить внимание. На рынке уже сформировался список производителей, которые поставляют качественную продукцию с отличными отзывами.

На сегодняшний день, это:

  • Valtec (Россия),
  • Zelmer (Германия),
  • Herz (Австрия),
  • Honeywell (Германия).

Продукцию этих производителей можно покупать без опаски получить некачественное изделие. Однако, перед покупкой стоит ознакомиться с паспортом, которым комплектуется любое качественное изделие.

Обратить пристальное внимание нужно на строки, где указаны материалы корпуса и металлических деталей внутренней начинки редуктора, а также, на материалы мембраны и уплотнительного кольца.

Мембрана должна быть изготовлена только из EPDM, если это действительно качественное изделие от производителя, а не подделка, которые тоже могут попадаться.

Также, в паспорте указываются габаритные размеры изделия в зависимости от диаметров резьбы патрубков.

foto18866-5

Где купить, какова цена?

Есть простой способ приобрести оригинальный продукт без риска попасть в руки мошенников и получить копию. Как правило, производители сантехнической продукции указывают на официальных сайтах авторизованные магазины, где можно приобрести их товар с документацией, гарантией и технической поддержкой.

Также можно приобрести на Яндекс маркете или любой другой большой интернет площадке.

Примерные цены на фильтры под резьбу 1/2 дюйма от производителей:

Правила монтажа

Есть несколько основных моментов, которые стоит учесть при монтаже регулятора давления:

  1. Сам мембранный редуктор нечувствителен к загрязнениям и пропускает их, но остальная техника в доме может прекрасно накапливать твердые частицы. Поэтому перед входом в редуктор лучше установить проточный фильтр жесткой очистки. Если условия стесненные, стоит обзавестись хотя бы косым фильтром и иногда прочищать его.
  2. В редуктор стоит установить манометр на постоянной основе, а не только в момент установки. Это упростит контроль за давлением воды в системе.
  3. Счетчик ставится строго после редуктора, чтобы учитывать стабильный поток воды без погрешностей.
  4. До запуска системы обязательно нужно установить запорный шаровый кран перед входом в редуктор. Он устанавливается первым, и только потом к водопроводу можно подключать остальные приборы. Это делается для того, чтобы можно было перекрыть подачу воды на всю систему сразу в случае поломок.

foto18866-6

Заключение

Мембранный редуктор – оптимальный выбор для регулировки потока воды в квартире или частном доме. Этот прибор относится к разряду «один раз поставил, настроил и забыл», а его цена с лихвой оправдывается преимуществами.

Типы фитингов, используемых в трубопроводах

Перейти к содержанию
  • На главную
  • ТрубопроводыРазвернуть / Свернуть
    • ТрубопроводРазвернуть / Свернуть
      • Направляющая труб
      • Размеры и спецификации труб
      • Таблицы графиков труб
      • Коды цветов бесшовных труб
      • Производство труб
      • Осмотр труб
    • ФитингиРазвернуть / Свернуть
      • Руководство по трубным фитингам
      • Производство трубных фитингов
      • Размеры и материалы трубных фитингов
      • Осмотр трубных фитингов — Визуальный осмотр и испытания
      • Размеры отвода
      • — 90 и 45 градусов Размеры трубных колен и обратных труб
      • Размеры тройника
      • Размеры трубного редуктора
      • Размеры заглушки
      • Размеры трубной муфты
    • Фланцы расширяются / сжимаются
      • Направляющая фланца
      • Отверстие и длинная приварная шейка Фланец
      • Фланец
      • Мы Размеры фланца с шейкой ld
      • Размеры фланца RTJ
      • Размеры фланца внахлест
      • Размеры фланца с длинной приварной шейкой
      • Размеры фланца, приварного внахлест
      • Размеры фланца с муфтой
      • Размеры глухого фланца
      • Размеры фланца с отверстием
    • Свернуть
      • Направляющая клапана
      • Детали клапана и трим клапана
      • Задвижка
      • Проходной клапан
      • Шаровой клапан
      • Обратный клапан
      • Дисковый затвор
      • Заглушка
      • Игольчатый клапан
      • Давление
      • 9000
    • Материал трубыРасширение / свертывание
      • Направляющая материала трубы
      • Углеродистая сталь
      • Легированная сталь
      • Нержавеющая сталь
      • Цветные металлы
      • Неметаллические
      • ASTM A53
      • ASTM A105
      Collapse
    • 0003
      • Олет s Направляющая
      • Втулка и размеры
      • Втулка и размеры
      • Резьба и размеры
      • Latrolet и размеры
      • Эльболет и размеры
      Шпильки
    • Развернуть / свернуть
      • Процедура затяжки шпильки
      • Направляющая болта
      • Схема затяжки болта
      • Размеры тяжелой шестигранной гайки
    • Прокладки и жалюзи для очков Развернуть / Свернуть
      • Направляющая прокладок
      • Прокладка спирально навитая
      • Размеры прокладки спиральной навивки
      • Размеры прокладки и прокладки RTJ
      • Размеры
      • Очки
      • Очки
        • P & IDExpand / Collapse
          • Как читать P&ID
          • Схема технологического процесса
          • Символы P&ID и PFD
          • Символы клапана
        • ОборудованиеРасширение / свертывание
          • Типы насосов
          • 021
          • Сосуд под давлениемРазвернуть / свернуть
            • Скоро
        • Курсы
        • ВидеоРазвернуть / свернуть
          • Видеоуроки
          • हिंदी Видео
        • Блог О нас
        • Запрос продукта
      HardHat Engineer HardHat Engineer Search Искать:
      • Home
      • Трубопровод
        • Трубопровод
          • Направляющая
          • Размеры и график труб
          • Таблицы графиков труб
          • Цветовые коды сварных труб
          • Осмотр труб
        • Фитинги
          • Руководство по трубопроводным фитингам
          • Производство трубных фитингов
          • Размеры и материалы трубных фитингов
          • Осмотр трубных фитингов — визуальный осмотр и испытания
          • Размеры колена — 90 и 45 градусов Be
          • Труба Присоединительные и возвратные размеры
          • Размеры тройника
          • Размеры трубного редуктора
          • Размеры заглушки
          • Размеры трубной муфты
        • Фланцы
          • Направляющая фланца
          • Диафрагма и фланец с длинной приварной шейкой
          • Фланец
          • Приварной фланец Размеры
          • Размеры фланца RTJ
          • Размеры фланца для соединения внахлест
          • Размеры фланца с длинной приварной шейкой
          • Размеры фланца, приварного внахлест
          • Размеры фланца
          • Размеры глухого фланца
          • Размеры фланца с диафрагмой
        • Клапаны
        • Детали клапана и трим клапана
        • Запорный клапан
        • Проходной клапан
        • Шаровой клапан
        • Обратный клапан
        • Поворотный клапан
        • Пробка
        • Игольчатый клапан
        • Материал предохранительного клапана
        • Материал предохранительного клапана
        • 9 0002
        • Направляющая по материалам труб
        • Углеродистая сталь
        • Легированная сталь
        • Нержавеющая сталь
        • Цветные металлы
        • Неметаллические
        • ASTM A53
        • ASTM A105
      • Olets
        • Размеры Weld 3 и Olets3
        • Гнездо и размеры
        • Резьба и размеры
        • Latrolet и размеры
        • Эльболет и размеры
      • Болты шпильки
        • Направляющая шпильки
        • Процедура затяжки болтов
        • Таблица гаек фланца
        • Размеры 9000
        • Прокладки и жалюзи для очков
          • Направляющая для прокладок
          • Спирально-навитая прокладка
          • Размеры спирально-навитой прокладки
          • Прокладка и размер RTJ
          • Очковые слепые и проставки
          • Размеры для очков
        P&000
        • Технологический поток Диаграмма
        • Символы P&ID и PFD
        • Символы клапана
      • Оборудование
        • Насос
          • Работа и типы центробежного насоса
        • Сосуд под давлением
          • Видео Скоро
        • 9003
        • Видео Обучающие видео
      • हिंदी Видео
    • Блог
    • Обо мне
      • Контакты
    .

    Фитинги для стыковой сварки, общие — переходники, колпачки, заглушки, обжимные ниппели

    Фитинг для стыковой сварки: переходник

    Применяются переходники для изменения диаметра трубы в одном направлении. Стандартно существует 2 варианта: концентрический редуктор, обычно используемый в вертикальных трубопроводах, и эксцентричный редуктор, который используется в горизонтальных трубопроводах.

    Концентрическое пространство пространство пространство пространство пространство пространство Эксцентрик

    TF и ​​BF

    На изометрическом виде по горизонтальной линии должен быть указан эксцентриковый переходник, либо должна быть собрана плоская сторона внизу или вверху.Возможно, вы когда-нибудь видели на рисунке аббревиатуру «TF» или «BF». Это означает

    соответственно «верхний плоский» и «нижний плоский».

    Например:

    1. Нижний плоский эксцентриковый переходник часто используется в эстакаде для удержания трубопровода на одной и той же высоте после изменения размера трубы. При использовании концентрического или плоского эксцентрикового переходника в трубной эстакаде, возможно, изменится опорная деталь.
    2. Верхний плоский эксцентриковый редуктор часто используется во всасывающих линиях насоса, чтобы избежать скопления газовых карманов.Эксцентрические редукторы позволяют избежать небольших «мертвых зон», которые существуют за концентрическими редукторами.

    Некоторые рисовальщики также указывают разницу в размерах T между осевыми линиями. Поскольку используется эксцентриковый редуктор на вертикальной линии, также может иметь значение, какая сторона должна быть ориентирована на север, юг, восток или запад.

    Длина переходников

    Длина редуктора очень мала по сравнению с диаметром, поэтому в некоторых измерениях переход от одного диаметра к другому происходит очень резко.Например, редуктор NPS 6 — NPS 2½ имеет длину 140 мм. На этом коротком расстоянии внешний диаметр трубопровода будет уменьшен с 168,3 мм. до 73 мм. На этапе проектирования новой системы трубопроводов проектировщик трубопроводов обязательно должен подумать об этом.

    Альтернативой для более плавного потока было бы применение нескольких редукторов, например:

    • NPS 6 — NPS 5 (L = 140 мм)
    • NPS 5 — NPS 4 (L = 127 мм)
    • NPS 4 — NPS 3½ (L = 102 мм)
    • NPS 3½ — NPS 3 (L = 102 мм)
    • NPS 3 — NPS 2½ (L = 102 мм)

    Итак, теперь расстояние составляет примерно 573 мм, если труба NPS 6 уменьшена до NPS 2½, и обеспечивается более плавный поток.На практике этот пример, вероятно, никогда не появится, я надеюсь, я уверен, что есть лучшие дизайнеры, такие как я.

    Фитинг под сварку встык: CAP

    Обычно применяется колпачок для закрытия конца трубы. Заглушка, как показано на изображении ниже, доступна для всех размеров труб, а иногда также используется для других целей.

    Широкие вариации крышек — это так называемые эллипсоидальные или выпуклые головки. Используются для закрытия труб большого диаметра и аналогичны тем, которые используются при строительстве судов.

    Часто на судне можно увидеть название «Klöpperboden» ASME F и D, и это немецкое название особой головы. F и D — это аббревиатуры от фланцевых и выпуклых, и эта форма также известна как торисферическая головка.

    «Korbbogenboden» — это тоже немецкое обозначение, которое можно найти на чертеже судна. Эта голова похожа на эллипсоидальную.

    Фитинг под сварку встык: заглушка

    окурок End всегда будет использоваться с внахлестом фланцем, как задний фланец; оба показаны на изображении ниже.

    Эти фланцевые соединения используются при низком давлении и в некритических приложениях и представляют собой дешевый метод отбортовки.
    В трубопроводной системе из нержавеющей стали, например, могут применяться фланцы из углеродистой стали, поскольку они не контактируют с продуктом в трубе.

    Наконечники

    доступны почти для всех диаметров труб. Размеры и допуски на размеры определены в стандарте ASME B.16.9. Легкие коррозионно-стойкие заглушки (фитинги) определены в MSS SP43.

    Фитинг: прессовочные ниппели

    Обжимные ниппели часто используются в системах труб малого диаметра и похожи на стыковые переходники. Доступны концентрические и эксцентрические, с различными концами. Самые распространенные типы:

    • PBE = гладкие оба конца
    • BBE = скошенные оба конца
    • TBE = оба конца с резьбой

    Диапазон размеров NPS 1/8 — NPS 8. Изготовлен из бесшовных труб A106 класса B или холоднотянутого прутка, прошедшего термообработку в соответствии с ASTM A234.Выбор сырья зависит от размера и измельчения. Доступная толщина стенки: стандартная (STD), сверхпрочная (XS), размер 160 или двойная сверхпрочная (XXS).

    .

    Редукционный клапан с пилотным управлением / редукционный клапан / редуктор давления

    Применение продукта

    Наша продукция включает в себя полный ассортимент клапанов , фланцев, литых фитингов и другого промышленного оборудования по вашему запросу.

    (1) Шаровой кран обладает не только функциями быстрого открывания, простотой обслуживания, хорошей герметичностью, но и безопасным огнестойким и антистатическим дизайном. Lung Yun производит различные виды шаровых кранов: моноблочные, двухкомпонентные, трехкомпонентные, с резьбовым концом, концом под сварку с раструбом, конец под сварку встык, фланцевого типа, с полным отверстием, с уменьшенным отверстием.Выбор материала шарового крана включает нержавеющую сталь, углеродистую сталь и чугун. Рабочее давление от 1000 до 6000 фунтов на квадратный дюйм по вашему выбору. Конструкции различных уплотнений по требованию клиента. Выбрав подходящий шаровой кран для использования в трубопроводной системе, Lung Yun — лучший поставщик.

    (2) Задвижка предназначена для обеспечения прямого потока жидкости при полностью открытом клапане. Задвижка не предназначена для регулирования расхода. Запорный клапан не нужно часто открывать, он поддерживает клапан в полностью открытом или закрытом положении.

    (3) Проходной клапан отличается от шарового клапана, это тип клапана, используемый для регулирования потока в трубопроводе, состоящий из подвижной заглушки и кольцевого седла в, как правило, сферическом корпусе. При установке клапанов важно направление потока снизу вверх.

    (4) Игольчатый клапан имеет маленькое седло и штифт, что позволяет точно регулировать скорость потока. Игольчатые клапаны не только обычно используются в приложениях для измерения расхода, но и при низком расходе должны поддерживаться в течение некоторого времени.

    (5) Редукторы давления автоматически перекрывают поток жидкости или газа при определенном давлении. Регуляторы давления газа используются для регулирования давления газа и не подходят для измерения расхода. Редукционные регуляторы давления используются для определения рабочего давления в различных областях.

    (6) Дисковый затвор используется для отключения или регулирования потока, а его функция позволяет быстро перекрывать.Существует много различных типов дроссельных заслонок, каждый из которых адаптирован для разных давлений и различных применений в промышленности.

    (7) Фланец является частью трубопроводной системы, которая используется для внутренней или внешней части трубы. Существует множество типов труб с фланцами, используемых во всех сферах сантехники. Фланец подобен мосту связи, соединяющему трубу или фитинги, что является необходимой системой. Фланец играет важную роль в соединительном трубопроводе.

    (8) Трубная арматура предназначена для установки или ремонта трубопроводов или систем труб, которые включают угол 90 градусов, колено улицы, красное колено, колено 45 градусов, колено 45 градусов, тройник V-типа, тройник, красный. Тройник, крестик, шестигранный ниппель, красный. Розетка M / F, красная. Шестигранный ниппель, квадратная заглушка, гнездо с полосой, шестигранная крышка, красный цвет. Гнездо с полосками, круглая крышка, шестигранная задняя гайка, шестигранная втулка, переходная коническая втулка F / F, Union Teflon Flat F / F, Union Conical BW / BW, Union Teflon Flat BW / BW, Union Conical M / F, Union Teflon Flat M / F, Union Conical M / M, Union Teflon Flat M / M, Муфта, Полумуфта, Ниппель с шестигранной головкой, Шестигранная заглушка, Ниппель для шланга с наружной резьбой, Ниппель с двойным шлангом, Ниппель для шланга BW, Сварочный ниппель, Гибкое соединение, Ниппель для цилиндра, JIS Union , Женский шестигранный ниппель, специальный союз для Южной Кореи, ниппель Parrel и специальный союз для Японии.

    Если продукты не указаны выше, отправьте нам запрос с указанием типа продукта , материала, размера и количества . Мы ответим вам в течение 24 часов.

    .

    Неразрушающий контроль — Испытание под давлением — это неразрушающий контроль, выполняемый для проверки целостности корпуса высокого давления на новом оборудовании, работающем под давлением.

    Что подразумевается под давлением?

    Испытание под давлением — это неразрушающий контроль, выполняемый для проверки целостности корпуса, работающего под давлением, на новом оборудовании, работающем под давлением, или на ранее установленном оборудовании, работающем под давлением, и трубопроводном оборудовании, которое подвергалось изменению или ремонту на своих границах.

    Испытания давлением требуются в соответствии с большинством нормативов по трубопроводам для проверки того, что новая, модифицированная или отремонтированная система трубопроводов способна безопасно выдерживать номинальное давление и герметична.Соблюдение правил трубопроводов может быть предписано регулирующими и правоохранительными органами, страховыми компаниями или условиями контракта на строительство системы. Испытания под давлением, требуемые по закону или нет, служат полезной цели защиты рабочих и населения.

    Испытание давлением может также использоваться для определения номинального давления для компонента или специальной системы, для которых невозможно определить безопасное значение расчетным путем. Прототип компонента или системы подвергается воздействию постепенно увеличивающегося давления до тех пор, пока не произойдет измеримая текучесть, или, альтернативно, до точки разрыва.Затем, используя коэффициенты снижения номинальных характеристик, указанные в коде или стандарте, подходящем для компонента или системы, можно установить номинальное расчетное давление на основе экспериментальных данных.

    Коды трубопроводов

    Существует множество норм и стандартов, касающихся трубопроводных систем. Два правила, имеющих большое значение для испытаний под давлением и герметичности, — это Кодекс ASME B31 для трубопроводов, работающих под давлением, и Кодекс ASME по котлам и сосудам высокого давления. Хотя эти два правила применимы ко многим трубопроводным системам, другие нормы и стандарты могут быть соблюдены в соответствии с требованиями властей, страховых компаний или владельца системы.Примерами могут служить стандарты AWWA для трубопроводов систем передачи и распределения воды. Кодекс ASME B31 для напорных трубопроводов состоит из нескольких разделов. Их:

    • ASME B31.1 для силовых трубопроводов
    • ASME B31.2 для трубопровода топливного газа
    • ASME B31.3 для технологических трубопроводов
    • ASME B31.4 для систем транспортировки жидкости для углеводородов, сжиженного нефтяного газа, безводного аммиака и спиртов
    • ASME B31.5 для холодильных трубопроводов
    • ASME B31.8 для газотранспортных и газораспределительных систем
    • ASME B31.9 для строительных трубопроводов
    • ASME B31.11 для трубопроводных систем транспортировки жидкого навоза

    Кодекс ASME по котлам и сосудам под давлением также включает несколько разделов, в которых содержатся требования к испытаниям под давлением и испытаниям на герметичность для трубопроводных систем, сосудов высокого давления и других устройств, удерживающих давление. Это:

    • Раздел I для энергетических котлов
    • Раздел III для компонентов атомной электростанции
    • Раздел V неразрушающего контроля
    • Раздел VIII для сосудов под давлением
    • Раздел X для сосудов под давлением из армированного стекловолокном пластика
    • Раздел XI по проверке компонентов атомной электростанции в процессе эксплуатации

    Существует большое сходство требований и процедур тестирования многих кодексов.В этой главе будут обсуждаться различные методы испытаний на герметичность, планирование, подготовка, выполнение, документация и стандарты приемки для испытаний под давлением. Оборудование, полезное для опрессовки, также будет включено в обсуждение. Приведенный ниже материал не следует рассматривать как замену полному знанию или тщательному изучению конкретных требований кодов, которые должны использоваться для тестирования конкретной системы трубопроводов.

    Методы проверки герметичности

    Существует множество различных методов испытаний под давлением и испытаний на герметичность в полевых условиях.Семь из них:

    1. Гидростатические испытания с использованием воды или другой жидкости под давлением
    2. Пневматические или газожидкостные испытания с использованием воздуха или другого газа под давлением
    3. Комбинация пневматических и гидростатических испытаний, при которых сначала используется воздух низкого давления для обнаружения утечек
    4. Первоначальное сервисное испытание, которое включает проверку на герметичность при первом запуске системы
    5. Испытание на вакуум, при котором используется отрицательное давление для проверки наличия утечки
    6. Испытание статическим напором, которое обычно проводится для дренажного трубопровода с водой, оставшейся в стояке на заданный период времени
    7. Обнаружение утечек галогена и гелия

    Гидростатические испытания на герметичность
    Гидростатические испытания являются предпочтительным методом проверки на герметичность и, возможно, наиболее часто используемым.Наиболее важной причиной этого является относительная безопасность гидростатических испытаний по сравнению с пневматическими испытаниями. Вода — гораздо более безопасная жидкая среда для испытаний, чем воздух, потому что она почти несжимаема. Следовательно, объем работы, необходимой для сжатия воды до заданного давления в системе трубопроводов, существенно меньше работы, необходимой для сжатия воздуха или любого другого газа до того же давления. Работа сжатия сохраняется в жидкости в виде потенциальной энергии, которая может быть высвобождена внезапно в случае отказа во время испытания под давлением.

    Расчет потенциальной энергии воздуха, сжатого до давления 1000 фунтов на квадратный дюйм (6900 кПа), по сравнению с потенциальной энергией того же конечного объема воды при 1000 фунтов на квадратный дюйм (6900 кПа) показывает соотношение более 2500 кПа. Следовательно, Потенциальное повреждение окружающего оборудования и персонала в результате отказа во время испытания под давлением намного серьезнее при использовании газообразной испытательной среды. Это не означает, что гидростатические испытания на герметичность не представляют никакой опасности. При гидростатическом испытании может возникнуть значительная опасность из-за попадания воздуха в трубопровод.Даже если весь воздух выпущен из трубопровода перед подачей давления, рабочим рекомендуется проводить любые испытания под высоким давлением с учетом требований безопасности.

    Пневматические испытания на герметичность
    Жидкость, обычно используемая для пневматических испытаний, — это сжатый воздух или азот, если источником является газ в баллонах. Азот не следует использовать в закрытом помещении, если существует вероятность того, что выходящий азот может вытеснить воздух в ограниченном пространстве. Известно, что люди теряли сознание при таких обстоятельствах, прежде чем осознавали, что им не хватает кислорода.Из-за большей опасности травмирования газообразной испытательной средой давление, которое может использоваться для визуального осмотра на предмет утечек, для некоторых норм трубопроводов ниже, чем в случае гидростатических испытаний. Например, для пневматических испытаний ASME B31.1 позволяет снизить давление до 100 фунтов на кв. Дюйм (690 кПа) или расчетного давления во время проверки на утечку.

    Комбинированные пневматические и гидростатические испытания
    Низкое давление воздуха, чаще всего 25 фунтов на кв. Дюйм (175 кПа), сначала используется для определения наличия серьезных утечек.Такое низкое давление снижает опасность травм, но все же позволяет быстро обнаруживать крупные утечки. При необходимости ремонт можно провести до гидростатических испытаний. Этот метод может быть очень эффективным для экономии времени, особенно если требуется много времени, чтобы заполнить систему водой только для обнаружения утечек с первой попытки. Если утечки будут обнаружены при гидростатическом испытании, потребуется больше времени, чтобы удалить воду и высушить трубопровод в достаточной степени для ремонта.

    Гидростатико-пневматическое испытание на герметичность отличается от двухэтапного испытания, описанного в предыдущем абзаце.В этом случае испытание под давлением проводится с использованием комбинации воздуха и воды. Например, сосуд высокого давления, предназначенный для содержания технологической жидкости с паровой фазой или воздухом над жидкостью, может быть спроектирован так, чтобы выдерживать вес жидкости до определенной максимальной ожидаемой высоты жидкости. Если сосуд не был спроектирован так, чтобы выдерживать вес при полном заполнении жидкостью, можно было бы испытать этот сосуд только в том случае, если он был частично заполнен технологической жидкостью до уровня, дублирующего эффект максимально ожидаемого уровня.

    Первоначальное тестирование на утечку при обслуживании
    Эта категория тестирования ограничена кодами определенными ситуациями. Например, ASME B31.3 ограничивает использование этого метода для работы с жидкостями категории D. Гидравлические системы категории D определены как неопасные для человека и должны работать при давлении ниже 150 фунтов на квадратный дюйм (1035 кПа) и при температуре от -20 до 366 ° F (от -29 до 185 ° C). Код ASME B31.1, раздел 137.7.1, не разрешает начальные эксплуатационные испытания внешних трубопроводов котла. Однако тот же раздел ASME B31.1 позволяет проводить первоначальные эксплуатационные испытания других систем трубопроводов, если другие типы испытаний на герметичность нецелесообразны. Первоначальные эксплуатационные испытания также применимы к проверке компонентов атомной электростанции в соответствии с Разделом XI Кодекса ASME по котлам и сосудам высокого давления. Как указано, этот тест обычно выполняется при первом запуске системы. В системе постепенно повышается до нормального рабочего давления, как требуется в ASME B31.1, или до расчетного давления, как требуется в ASME B31.3. Затем давление поддерживается на этом уровне, пока проводится проверка на утечки.

    Проверка на герметичность в вакууме
    Проверка на герметичность в вакууме — это эффективный способ определить, есть ли утечка где-либо в системе. Обычно это делается путем создания вакуума в системе и удержания вакуума внутри системы. Утечка указывается, если захваченный вакуум повышается до атмосферного давления. Производитель компонентов довольно часто использует этот тип проверки на герметичность в качестве проверки на герметичность производства. Однако очень сложно определить место или места утечки, если она существует.Дымогенераторы использовались для определения места втягивания дыма в трубопровод. Это очень сложно использовать, если утечка не достаточно велика, чтобы втягивать весь или большую часть дыма в трубу. Если дыма образуется значительно больше, чем может быть втянут в трубу, дым, который рассеивается в окружающий воздух, может легко скрыть место утечки. Очевидно, что этот метод не подходит для испытания трубопровода при рабочем давлении или выше, если только трубопровод не должен работать в вакууме.

    Испытание статической головки на герметичность
    Этот метод испытания иногда называют испытанием на падение, потому что падение уровня воды в открытой стояке, добавленное в систему для создания необходимого давления, является признаком утечки. После того, как система и опускной заполнена водой, уровень опускной измеряются и отметил. После необходимого периода выдержки высота повторно проверяется, и любое снижение уровня и период выдержки записываются. Любое место утечки определяется визуальным осмотром.

    Тестирование утечки галогена и гелия
    В этих методах тестирования используется индикаторный газ для определения места утечки и количества утечки. В случае обнаружения утечки галогена в систему загружается газообразный галоген. Датчик галогенного детектора используется для определения утечки индикаторного газа из любого открытого стыка. Детектор утечек галогена, или анализатор, состоит из трубчатого зонда, который всасывает смесь вытекающего газа галогена и воздуха в прибор, чувствительный к небольшим количествам газообразного галогена.

    В этом приборе используется диод для определения присутствия газообразного галогена. Утечка газообразного галогена проходит через нагретый платиновый элемент (анод). Нагреваемый элемент ионизирует газообразный галоген. Ионы стекают на пластину коллектора (катод). Ток, пропорциональный скорости образования ионов и, следовательно, скорости потока утечки, указывается измерителем. Зонд галогенного детектора калибруется с использованием отверстия, через которое проходит известный поток утечки. Детекторный зонд проходит над отверстием с той же скоростью, которая будет использоваться для проверки системы на утечку.Предпочтительным индикаторным газом является хладагент 12, но можно использовать хладагенты 11, 21, 22, 114 или хлористый метилен. Галогены нельзя использовать с аустенитными нержавеющими сталями.

    Проверка на утечку гелия также может выполняться в режиме сниффера, как описано выше для галогенов. Однако, кроме того, испытание на утечку гелием может быть выполнено с использованием двух других методов, которые более чувствительны при обнаружении утечки. Это режим трассера и режим капота или закрытой системы. В режиме индикатора создается вакуум в системе, и гелий распыляется на наружные поверхности соединений, которые проверяются на утечку.Вакуум системы всасывает гелий через любое негерметичное соединение и подает его на гелиевый масс-спектрометр. В режиме вытяжки тестируемая система окружена концентрированным гелием.

    Испытание на герметичность гелием в вытяжном шкафу является наиболее чувствительным методом обнаружения утечек и единственным методом, признанным Разделом V Кодекса ASME как количественный. Производители компонентов, требующих герметичного уплотнения, будут использовать вытяжной метод обнаружения утечки гелия в качестве производственного испытания на герметичность. В этих случаях компонент может быть окружен гелием в камере.Подключение к компоненту осуществляется с помощью гелиевого течеискателя, который пытается довести внутренние детали компонента до вакуума, близкого к абсолютному нулю.

    Любая утечка гелия из окружающей камеры в компонент будет втягиваться в гелиевый течеискатель под действием создаваемого им вакуума. Детектор утечки гелия содержит масс-спектрометр, сконфигурированный для определения присутствия молекул гелия. Этот метод тестирования в замкнутой системе позволяет обнаруживать утечки величиной от 1X10 -10 куб. См / с (6.1X10 -12 куб. Дюймов / сек), стандартный атмосферный воздух. Метод замкнутой системы не подходит для измерения большой утечки, которая может затопить детектор и сделать его бесполезным для дальнейших измерений до тех пор, пока из детектора не удастся извлечь каждую молекулу гелия.

    Метод закрытой системы не подходит для трубопроводной системы в полевых условиях из-за больших объемов. Также он не показывает место утечки или утечек. Наконец, чувствительность обнаружения утечек с использованием замкнутой системы на много порядков выше, чем обычно требуется.Анализатор гелия является наименее чувствительным методом и может давать ложные показания, если гелий из большой утечки в одном месте системы диффундирует в другие места.

    Большая утечка также может затопить детектор, временно сделав его непригодным, пока весь гелий не будет удален из масс-спектрометра. Давление гелия, используемое во всех этих методах, обычно составляет одну или две атмосферы, что достаточно для обнаружения очень небольших утечек. Низкое давление также служит для уменьшения количества гелия, необходимого для испытания.Испытания на утечку гелия редко, если вообще когда-либо, используются для демонстрации того, что система может безопасно выдерживать расчетное давление.

    Детекторы утечки гелия

    не смогут обнаружить утечки, если компонент или система трубопроводов не станут полностью сухими. Жидкость, содержащаяся в небольшом канале утечки из-за капиллярного действия, может перекрыть утечку из-за низкого давления гелия и поверхностного натяжения жидкости. Поэтому требуется большая осторожность при использовании этого подхода в абсолютно сухих условиях.В противном случае эта система может оказаться даже менее чувствительной при обнаружении утечки, чем гидростатическое испытание под высоким давлением. Кроме того, гелиевый течеискатель легко загрязняется маслами и другими соединениями и становится неточным. В полевых условиях обычно не исключается возможность загрязнения течеискателя.

    Испытательное давление

    Выбранный метод испытания и жидкая испытательная среда вместе с применимыми правилами также устанавливают правила, которым необходимо следовать при расчете требуемого испытательного давления.В большинстве случаев давление, превышающее расчетное, применяется на короткое время, скажем, по крайней мере, 10 минут. Величина этого начального испытательного давления часто по крайней мере в 1,5 раза превышает расчетное давление для гидростатических испытаний. Однако он может быть другим в зависимости от того, какой код применим и от того, будет ли испытание гидростатическим или пневматическим.

    Кроме того, испытательное давление ни в коем случае не должно превышать давление, которое могло бы вызвать податливость, или максимально допустимое испытательное давление какого-либо компонента, подвергаемого испытанию.В случае ASME B31, раздел 137.1.4 и Норм для котлов и сосудов высокого давления, максимальное испытательное давление не должно превышать 90 процентов от выхода для любого компонента, подвергающегося испытанию. Испытательное давление необходимо для демонстрации того, что система может безопасно выдерживать номинальное давление. После этого периода давления, превышающего расчетное, часто допустимо снизить давление до более низкого значения для проверки герметичности. Давление при осмотре поддерживается в течение времени, необходимого для проведения тщательного

    Код Тип испытания
    ASME B31.1 Гидростатическая (1)
    ASME B31.1 Пневматический
    ASME B31.1 Первоначальное обслуживание
    ASME B31.3 Гидростатическая
    ASME B31.3 Пневматический
    ASME B31.3 Первичное обслуживание (3)
    ASME I Гидростатическая
    ASME III
    Раздел 1, подраздел NB
    Гидростатическая
    ASME III
    Раздел 1, подраздел NB
    Пневматический
    ASME III
    Раздел 1 Подраздел NC
    Гидростатическая
    ASME III
    Раздел 1 Подраздел NC
    Пневматический
    ASME III
    Раздел 1, подраздел ND
    Гидростатическая
    ASME III
    Раздел 1, подраздел ND
    Пневматический
    Код Испытательное давление
    минимум
    ASME B31.1 в 1,5 раза больше конструкции
    ASME B31.1 в 1,2 раза больше дизайна
    ASME B31.1 Нормальное рабочее давление
    ASME B31.3 1,5-кратное исполнение (2)
    ASME B31.3 в 1,1 раза больше дизайна
    ASME B31.3 Расчетное давление
    ASME I В 1,5 раза больше максимально допустимого рабочего давления (4)
    ASME III
    Раздел 1, подраздел NB
    1.В 25 раз больше расчетного давления в системе (5)
    ASME III
    Раздел 1, подраздел NB
    Давление в системе в 1,25 раза больше расчетного (6)
    ASME III
    Раздел 1 Подраздел NC
    1,5-кратное расчетное давление в системе
    ASME III
    Раздел 1 Подраздел NC
    Давление в системе в 1,25 раза больше расчетного
    ASME III
    Раздел 1, подраздел ND
    В 1,5 раза больше расчетного давления в системе для завершенных компонентов, в 1,25 раза больше расчетного давления в системе для трубопроводных систем
    ASME III
    Раздел 1, подраздел ND
    1.В 25 раз больше расчетного давления в системе
    Код Испытательное давление
    максимальное
    ASME B31.1 Максимально допустимое испытательное давление для любого компонента или 90% предела текучести
    ASME B31.1 В 1,5 раза больше расчетного или максимально допустимого испытательного давления для любого компонента
    ASME B31.1 Нормальное рабочее давление
    ASME B31.3 Не превышать предел текучести
    ASME B31.3 В 1,1 раза больше расчетного давления плюс меньшее из 50 фунтов на кв. Дюйм или 10 процентов испытательного давления
    ASME B31.3 Расчетное давление
    ASME I Предел текучести не должен превышать 90%
    ASME III
    Раздел 1, подраздел NB
    Не превышать пределы напряжений, указанные в расчетном разделе NB-3226, или максимальное испытательное давление любого компонента системы (5)
    ASME III
    Раздел 1, подраздел NB
    Не превышать пределы напряжения, указанные в расчетном разделе NB-3226, или максимальное испытательное давление любого компонента системы
    ASME III
    Раздел 1 Подраздел NC
    Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента
    ASME III
    Раздел 1 Подраздел NC
    Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента
    ASME III
    Раздел 1, подраздел ND
    Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента
    ASME III
    Раздел 1, подраздел ND
    Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента
    Код Испытательное давление
    время выдержки
    ASME B31.1 10 минут
    ASME B31.1 10 минут
    ASME B31.1 10 минут или время на проверку герметичности
    ASME B31.3 Время до завершения проверки герметичности, но не менее 10 минут
    ASME B31.3 10 минут
    ASME B31.3 Время на проверку на герметичность
    ASME I Не указано, обычно 1 час
    ASME III
    Раздел 1, подраздел NB
    10 минут
    ASME III
    Раздел 1, подраздел NB
    10 минут
    ASME III
    Раздел 1 Подраздел NC
    10 или 15 минут на дюйм проектной минимальной толщины стенки для насосов и клапанов
    ASME III
    Раздел 1 Подраздел NC
    10 минут
    ASME III
    Раздел 1, подраздел ND
    10 минут
    ASME III
    Раздел 1, подраздел ND
    10 минут
    Код Обследование
    давление
    ASME B31.1 Расчетное давление
    ASME B31.1 Ниже 100 фунтов на кв. Дюйм или расчетного давления
    ASME B31.1 Нормальное рабочее давление
    ASME B31.3 в 1,5 раза больше конструкции
    ASME B31.3 Расчетное давление
    ASME B31.3 Расчетное давление
    ASME I Максимально допустимое рабочее давление (4)
    ASME III
    Раздел 1, подраздел NB
    Давление больше расчетного или испытательное давление в 0,75 раза больше
    ASME III
    Раздел 1, подраздел NB
    Давление больше расчетного или испытательное давление в 0,75 раза больше
    ASME III
    Раздел 1 Подраздел NC
    Давление больше расчетного или испытательное давление в 0,75 раза больше
    ASME III
    Раздел 1 Подраздел NC
    Давление больше расчетного или испытательное давление в 0,75 раза больше
    ASME III
    Раздел 1, подраздел ND
    Давление больше расчетного или испытательное давление в 0,75 раза больше
    ASME III
    Раздел 1, подраздел ND
    Давление больше расчетного или испытательное давление в 0,75 раза больше

    Примечания:

    1. Наружные трубопроводы котла должны пройти гидростатические испытания в соответствии с PG-99 ASME Code Section I.
    2. ASME B31.3 гидростатическое давление должно быть выше 1,5-кратного расчетного давления пропорционально пределу текучести при температуре испытания, деленному на прочность при расчетной температуре, но не должно превышать предела текучести при температуре испытания. Если речь идет о сосуде, расчетное давление которого меньше, чем в трубопроводе, и когда сосуд не может быть изолирован, трубопровод и сосуд могут быть испытаны вместе при испытательном давлении сосуда при условии, что испытательное давление сосуда составляет не менее 77 процентов испытательного давления трубопроводов.
    3. ASME B31.3: начальные эксплуатационные испытания разрешены только для трубопроводов категории D.
    4. Кодекс ASME Раздел I. Давление гидростатического испытания при температуре не менее 70 ° F (21 ° C) и испытательное давление при температуре менее 120 ° F (49 ° C). Для парогенератора с принудительным потоком, с частями, работающими под давлением, рассчитанными на разные уровни давления, испытательное давление должно быть не менее 1,5-кратного максимально допустимого рабочего давления на выходе из пароперегревателя, но не менее 1.25-кратное максимально допустимое рабочее давление любой части котла.
    5. Кодекс ASME, раздел III, раздел 1, подраздел NB, пределы испытательного давления определены в разделе NB3226; также компоненты, содержащие паяные соединения, и клапаны, которые перед установкой должны быть испытаны при давлении, в 1,5 раза превышающем расчетное давление системы.
    6. Кодекс ASME Раздел III, Раздел 1, подраздел NB, давление пневматического испытания для компонентов, частично заполненных водой, должно быть не менее 1.25-кратное расчетное давление системы.

    Отказ оборудования, работающего под давлением

    Сосуды высокого давления и трубопроводные системы широко используются в промышленности и содержат очень большую концентрацию энергии. Несмотря на то, что их конструкция и установка соответствуют федеральным, государственным и местным нормам и признанным промышленным стандартам, продолжают происходить серьезные отказы оборудования, работающего под давлением.

    Существует множество причин выхода из строя оборудования, работающего под давлением: разрушение и истончение материалов в процессе эксплуатации, старение, скрытые дефекты во время изготовления и т. Д.. К счастью, периодические испытания, а также внутренние и внешние проверки значительно повышают безопасность сосуда высокого давления или системы трубопроводов. Хорошая программа испытаний и инспекций основана на разработке процедур для конкретных отраслей или типов судов.

    Ряд аварий позволил сосредоточить внимание на опасностях и рисках, связанных с хранением, обращением и перекачкой жидкостей под давлением. Когда сосуды под давлением действительно выходят из строя, это обычно является результатом разрушения корпуса в результате коррозии и эрозии (более 50% разрушения корпуса).


    Судно новой постройки разорвалось во время гидроиспытаний

    Все сосуды под давлением имеют свои собственные специфические опасности, включая большое накопленное потенциальное усилие, точки износа и коррозии, а также возможный отказ предохранительных устройств контроля избыточного давления и температуры.
    Правительство и промышленность отреагировали на потребность в улучшенных испытаниях систем, работающих под давлением, разработав стандарты и правила, определяющие общие требования к безопасности под давлением (Кодекс ASME по котлам и сосудам высокого давления, Руководство по безопасности под давлением DOE и другие).
    Эти правила определяют требования для реализации программы безопасности при испытаниях под давлением. Очень важно, чтобы конструкторский и эксплуатационный персонал использовал эти стандарты в качестве критериев при написании и реализации программы безопасности при испытаниях под давлением.

    Программа испытаний под давлением

    Хорошая программа безопасности при испытаниях под давлением должна выявлять производственные дефекты и износ в результате старения, растрескивания, коррозии и других факторов до того, как они вызовут отказ сосуда, и определять (1) может ли сосуд продолжать работу при том же давлении, (2) какое могут потребоваться меры контроля и ремонта, чтобы система давления могла работать при исходном давлении, и (3) необходимо ли снижать давление для безопасной эксплуатации системы.

    Все компании, работающие с оборудованием под давлением, почти все имеют расширенные технические инструкции по испытаниям сосудов под давлением и трубопроводных систем. Эти руководящие принципы подготовлены в соответствии со стандартами безопасности давления OSHA, DOT, ASME, местными, государственными и другими федеральными кодексами и стандартами.

    Документация включает определение ответственности инженерного, управленческого персонала и персонала по безопасности; общие требования к оборудованию и материалам; процедуры гидростатических и пневматических испытаний для проверки целостности системы и ее компонентов; и руководящие принципы для плана испытаний под давлением, аварийных процедур, документации и мер контроля опасностей.Эти меры включают контроль сброса давления, защиту от воздействия шума, экологический и личный мониторинг, а также защиту от присутствия токсичных или легковоспламеняющихся газов и высокого давления.


    Пуск нового резервуара при испытании на пневматическое давление воздухом

    Определения испытаний под давлением

    • Изменение — Изменение — это физическое изменение любого компонента, которое имеет последствия для конструкции, которые влияют на способность сосуда высокого давления выдерживать давление, выходящее за рамки пунктов, описанных в существующих отчетах с данными.
    • Допуск на коррозию — Дополнительная толщина материала, добавленная конструкцией, чтобы учесть потери материала в результате коррозионного или эрозионного воздействия.
    • Коррозионная обработка — Любая услуга системы давления, которая из-за химического или другого взаимодействия с материалами конструкции контейнера, содержимым или внешней средой приводит к растрескиванию контейнера, его охрупчиванию и потере более 0,01 дюйма. толщину за год эксплуатации, или испортить любым способом.
    • Расчетное давление — давление, используемое при расчете компонента давления вместе с совпадающей расчетной температурой металла с целью определения минимально допустимой толщины или физических характеристик границы давления. Расчетное давление для сосудов показано на производственных чертежах, а для трубопроводов максимальное рабочее давление указано в перечне трубопроводов. Расчетное давление для трубопроводов больше на 110% от максимального рабочего давления или на 25 фунтов на кв. Дюйм от максимального рабочего давления.
    • Инженерная инструкция по безопасности (ESN) — Утвержденный руководством документ с описанием ожидаемых опасностей, связанных с оборудованием, и проектных параметров, которые будут использоваться.
    • Высокое давление — Давление газа выше 20 МПа (3000 фунтов на кв. Дюйм) и давление жидкости выше 35 МПа (5000).
    • Промежуточное давление — Давление газа от 1 до 20 МПа (от 150 до 3000 фунтов на кв. Дюйм) и давление жидкости от 10 до 35 МПа (от 1500 до 5000 фунтов на кв. Дюйм).
    • Испытание на утечку — Испытание давлением или вакуумом для определения наличия, скорости и / или местоположения утечки.
    • Низкое давление -Давление газа менее 1 МПа (150 фунтов на кв. Дюйм) или давление жидкости менее 10 МПа (1500 фунтов на кв. Дюйм).
    • Работа в зоне с персоналом — Операция под давлением, которая может проводиться (в определенных пределах) в присутствии персонала.
    • Максимально допустимое рабочее давление (МДРД) — максимальное допустимое давление в верхней части сосуда в его нормальном рабочем положении при рабочей температуре, указанной для данного давления.Это наименьшее из значений, найденных для максимально допустимого рабочего давления для любой из основных частей сосуда в соответствии с принципами, установленными в разделе VIII ASME. МДРД указано на паспортной табличке емкости. МДРД можно принять таким же, как расчетное давление, но по большей части МДРД основывается на изготовленной толщине за вычетом допуска на коррозию. MAWP относится только к сосудам под давлением.
    • Максимальная расчетная температура — максимальная температура, используемая в конструкции, и не может быть ниже максимальной рабочей температуры.
    • Максимальное рабочее давление (MOP) — Максимальное давление, ожидаемое во время работы. Обычно это на 10-20% ниже МДРД.
    • Минимально допустимая температура металла (MAMT) — Минимальная температура для существующего сосуда, позволяющая выдерживать испытания или рабочие условия с низким риском хрупкого разрушения. MAMT определяется путем оценки сосудов под давлением, построенных до 1987 года. Этот термин используется в API RP 579 для оценки хрупкого разрушения существующего оборудования.Это может быть одна температура или диапазон допустимых рабочих температур в зависимости от давления.
    • Минимальная расчетная температура металла (MDMT) — Минимальная температура металла, используемая при проектировании сосуда высокого давления. MDMT является термином кода ASME и обычно отображается на паспортной табличке сосуда или в форме U-1 для сосудов, спроектированных в соответствии с ASME Section VIII, Division 1, издание 1987 г. или более поздней версии.
    • МПа — Абсолютное давление в единицах СИ. 1 атмосфера (14,7 фунта на кв. Дюйм) равна 0.1 МПа.
    • Процедура эксплуатационной безопасности (OSP) — Документ, используемый для описания средств управления, необходимых для обеспечения того, чтобы риски, связанные с потенциально опасным исследовательским проектом или уникальной деятельностью, находились на приемлемом уровне.
    • Оборудование, работающее под давлением — Любое оборудование, например сосуды, коллекторы, трубопроводы или другие компоненты, которое работает при давлении выше или ниже (в случае вакуумного оборудования) атмосферного давления.
    • Сосуд под давлением — Компонент, работающий под давлением относительно большого объема (например, сферический или цилиндрический контейнер), с поперечным сечением больше, чем соответствующий трубопровод.
    • Контрольное испытание — Испытание, в ходе которого прототипы оборудования подвергаются воздействию давления для определения фактического выхода или давления разрыва (используется для расчета МДРД).
    • Дистанционное управление — Операция под давлением, которую нельзя проводить в присутствии персонала. Оборудование должно быть установлено в испытательных камерах, за сертифицированными заграждениями или работать из безопасного места.
    • Фактор безопасности (SF) — Отношение предельного (т. Е. Разрыва или отказа) давления (измеренного или рассчитанного) к МДРД.Фактор безопасности, связанный с чем-то другим, кроме давления отказа, должен быть обозначен соответствующим нижним индексом.

    Коды, стандарты и ссылки

    Американское общество инженеров-механиков (ASME)

    • Кодекс для котлов и сосудов высокого давления: Раздел VIII Сосуды высокого давления
    • ASME B31.3 Трубопроводы для химических заводов и нефтеперерабатывающих заводов
    • ASME B16.5 Трубные фланцы и фланцевые фитинги

    Американское общество испытаний и материалов (ASTM)

    • ASTM E 1003 Стандартный метод испытаний на гидростатическую герметичность

    Американский институт нефти (API)

    • RP 1110 Испытание давлением стальных трубопроводов для транспортировки газа, нефтяного газа, опасных жидкостей…
    • API 510 Техническое обслуживание, проверка, оценка, ремонт и изменение
    • Обжиговые обогреватели по API 560 для нефтеперерабатывающих заводов общего назначения
    • API 570 Осмотр, ремонт, изменение и повторная оценка эксплуатационных трубопроводных систем
    • API 579 Проект рекомендованной практики API для пригодности к эксплуатации

    Роберт Б. Адамс

    • Президент и главный исполнительный директор EST Group, Inc. Харлейсвилл, Пенсильвания

    Интересные статьи об отказе при опрессовке

    Отказ сосуда под давлением во время пневматического испытания

    Отказ сосуда под давлением во время гидроиспытаний

    Отказ сосуда под давлением во время испытания воздуха

    Замечание (и) автора…

    Испытания под давлением ASME B31.3
    Системы трубопроводов

    обычно проектируются и изготавливаются в соответствии с применимыми нормами. Конечно, использование ASME B31.3 может быть применимо к судам, перевозящим нефть, но вы действительно должны соблюдать код, для которого была разработана система трубопроводов. Поскольку я знаком с B31.3, а не с эквивалентом в Европе (или другой стране), я буду основывать свой ответ на B31.3.

    ASME B31.3 требует «проверки герметичности» системы трубопроводов. Это не структурный тест, это всего лишь проверка, чтобы определить, есть ли в системе точки утечки.* С другой стороны, существуют нормы, которые могут потребовать структурных испытаний, например, по нормам для котлов и сосудов высокого давления. В этом случае проводится гидростатическое испытание, чтобы убедиться, что резервуар и присоединенные к нему трубопроводы являются конструктивными, а не только герметичными.

    ASME B31.3, п. 345.1 гласит:
    До ввода в эксплуатацию и после завершения соответствующих проверок, требуемых п. 341, каждая система трубопроводов должна быть испытана на герметичность. Испытание должно представлять собой гидростатическое испытание на герметичность в соответствии с п.345.4, за исключением случаев, предусмотренных в данном документе.

    Если владелец считает гидростатическое испытание на герметичность нецелесообразным, либо пневматическое испытание в соответствии с п. 345.5 или комбинированное гидростатико-пневматическое испытание в соответствии с п. 345.6 может быть заменен, учитывая опасность энергии, хранящейся в сжатом газе.

    Таким образом, согласно нормативам, испытание на герметичность с использованием воздуха может быть выполнено, если владелец системы считает гидростатическое испытание нецелесообразным.

    Важно понимать, что давление, при котором проводится испытание, является функцией расчетного давления.Расчетное давление является функцией допустимых пределов напряжений в трубопроводе, которая также является функцией рабочей температуры.

    • Для гидростатических испытаний, п. 345.4.2 требует давления, превышающего расчетное давление не менее чем в 1,5 раза.
    • Для пневматического испытания, п. 345.5.4 требует давления не менее 110% от расчетного.

    Следующим шагом для инженера (предпочтительно проектировщика трубопроводной системы или специалиста по анализу напряжений) является создание процедур испытаний под давлением.Эти процедуры испытания под давлением рассматривают возможность хрупкого разрушения при низких температурах, что может быть проблемой при указанных температурах. Процедуры испытания под давлением на самом деле представляют собой набор процедур (обычно), которые включают такие вещи, как метод создания давления в системе, положения клапана, снятие предохранительных устройств, изоляция частей системы трубопроводов и т. Д.

    Относительно низкой температуры, п. 345.4.1 гласит: «Жидкость должна быть водой, если нет возможности повреждения из-за замерзания или неблагоприятного воздействия воды на трубопровод или технологический процесс (см. Параграф.F345.4.1). В этом случае можно использовать другую подходящую нетоксичную жидкость. «Итак, гликоль / вода разрешены.

    Если испытание должно проводиться пневматически, испытательное давление следует повысить до 25 фунтов на кв. Дюйм, после чего должна быть проведена предварительная проверка, включая осмотр всех соединений. Настоятельно рекомендуется использование низкотемпературной пузырьковой жидкости.

    Итак, вывод:

    1. Если вам дали задание провести гидроиспытание при 16 бар, то это должно быть 1.5-кратное расчетное давление 10,67 бар. Следовательно, согласно B31.3, пневматическое испытание следует проводить не при 16 бар, а при 1,1-кратном расчетном давлении или 11,7 бар. Доведите пневматическое давление до 11,7 бар.
    2. Возможность хрупкого разрушения должна быть рассмотрена соответствующим инженером. В случае температуры ниже 0 ° C, используемый материал следует проверить, чтобы убедиться, что он не ниже минимально допустимой температуры для этой стали.
    3. Опытный инженер должен разработать набор процедур испытаний под давлением.В этих процедурах необходимо указать, какие участки трубы проходят испытания, в каких положениях следует размещать клапаны, какие предохранительные устройства необходимо снять (или установить) и т. Д.
    4. Пневматическое испытание необходимо начинать при давлении 25 фунтов на кв. Дюйм, а перед повышением давления необходимо провести предварительную проверку на утечки.
    5. Самое главное, знающий инженер должен также проверить проектную спецификацию трубопровода на предмет всех требований, относящихся к испытаниям на герметичность или давление.

    Хотя B31.3 описывает это как «испытание на герметичность», когда выполняется гидростатическое испытание в 1,5 раза больше расчетного, оно является структурным испытанием.

    Пожалуйста, прочтите статью: Департамент труда США, OSHA

    .