Содержание

Заземление и зануление электроустановок: виды, достоинства и недостатки

Пример HTML-страницы

Любая электроустановка состоит не только из проводников электрического тока. Они помещаются в корпуса и оболочки, закрыты кожухами. Между токоведущими частями корпусами, в которых они находятся или на которых расположены, размещаются изоляционные материалы.

Все изоляторы подвержены способности повреждаться. При этом они теряют свои свойства и начинают проводить электрический ток. Потенциал рабочих частей электроустановки, находящихся под напряжением, проникает через место повреждения на токопроводящие корпуса и оболочки. При прикосновении к ним человека последний получает опасный для жизни удар электрическим током.

Содержание

  1. Способы защиты от опасных потенциалов
  2. Система заземления TN-C
  3. Система заземления TN-S
  4. Система заземления TN-C-S.
  5. Суть в разделении проводника PEN на два: рабочий и защитный.
  6. Почему к РЕ?
  7. Система заземления ТТ
  8. Система заземления IT

Способы защиты от опасных потенциалов

Ситуацию с повреждением междуфазной изоляции электрооборудования мгновенно пресекают защитные устройства: автоматические выключатели или предохранители. Но она лишь косвенно представляет опасность для человека.

Опаснее для людей как раз однофазное замыкание, в результате которого корпуса электродвигателей, электрошкафов, кабельных конструкций оказываются под напряжением.

Чтобы исключить риск поражения электротоком, нужно, чтобы при попадании напряжения на корпус произошло гарантированное короткое замыкание и потенциал на корпусе был максимально снижен.

Первое защитное действие достигается созданием цепи между корпусом и заземленной нейтралью электроустановки. При замыкании возникает ток, достаточно большой для срабатывания тех же защитных аппаратов, работающих при междуфазных замыканиях. Это называется защитным отключением.

Для реализации второго метода всем потенциально опасным металлическим частям электрооборудования придают потенциал земли. Делается это преднамеренным их соединением с заземляющим устройством. Мероприятие носит название – защитное заземление.

Системы заземления электроустановок до 1000 В получили в 7-м издании ПУЭ классификацию. Рассмотрим эти системы по очереди.

Система заземления TN-C

В этой конструкции нет ничего нового. Она была такой долгие годы.

Для питания потребителей в ней используется 4 провода. Три из них – фазные, один – нулевой. По последнему протекает рабочий ток нагрузки. Но он же используется и для реализации защитных целей, соединяясь с контуром заземления нейтрали силового трансформатора, питающего электроустановки. К нему же присоединяются и корпуса электрооборудования. Называется он проводником PEN. Из-за того, что в нем сочетаются функции защиты и транспортировки рабочего тока к месту назначения, он получил название «совмещенный проводник».

В итоге реализуются обе задачи: ток замыкания на землю высок – отключение поврежденного участка происходит достаточно быстро. К тому же при повреждении малое сопротивление PEN-проводника шунтирует тело прикоснувшегося к корпусу человека, имеющее сопротивление порядка килоома. Большая часть тока стекает в землю.

Но по PEN-проводнику протекает рабочий ток нагрузки. Контактные соединения от этого могут нарушиться, соединение – стать ненадежными или прерваться вовсе.

Так исчезает столь необходимая связь с заземляющим устройством.

Даже, если имеется повторное заземление PEN-проводника на вводе в здание.

Мало того, наличие тока в этом проводнике приводит к возникновению потенциала, увеличивающегося по мере удаления от точки связи с контуром заземления.

А при обрыве проводника PEN картина и вовсе ужасающая. Потенциал на корпусах за местом обрыва может теоретически достигнуть и 220 В.

Добавим ко всему этому технологически трудную реализацию соединения корпусов некоторых электроприемников с PEN. Как заземлить корпус электроплитки, подключаемой к сети через розетку?

Развитие бытовых электроприборов, требующих применения защитных мер по электробезопасности, привело к усовершенствованию системы TN-C. Подробнее о системе TN-C можно почитать в отдельной статье.

Система заземления TN-S

Отличие от предыдущей рассмотренной системы заземления в том, что функции рабочего-нулевого и защитного проводника разделены в разных физических проводниках. Нулевой рабочий (N) – проводит ток нагрузки, нулевой защитный (РЕ) – подключается к контуру заземления.

В результате происходит полное избавление от потенциала на корпусах, появляющихся в «особо отдаленных районах» электрической сети, а также – при обрывах проводников. Максимум, что грозит при отсутствии целостности проводника РЕ – отсутствие защиты. Но оборваться у него шансов немного – ток-то по нему не протекает, с чего бы вдруг потеряться выполненным по всем электрическим правилам контактным соединениям?

Поскольку сечение РЕ-проводников в составе кабельных линий обычно оказывается равным сечению фазных, упростилась задача присоединить их к корпусам любого электрооборудования.

Даже к заземляющему контакту розетки. Что позволило распространить защитные меры безопасности на все бытовые электроприборы: на ту же электроплитку, в частности.

Правда, в силовые кабельные линии добавилась лишняя жила. Ну что же – за безопасность надо платить.

Все вновь монтируемые электроустановки теперь, как правило, выполняются по этой системе заземления.

Подробнеео системе TN-S можно почитать в отдельной статье.

Система заземления TN-C-S.

Существенной проблемой при реализации системы TN-S является то, что реконструкция электроустановок и строительство новых происходит зачастую без реконструкции самой трансформаторной подстанции. Обычно переделывается какая-то ее часть, начиная от распределительного щита на вводе до последнего потребителя. До этого щитка система заземления неизбежно сохраняет старую конструкцию.

Эта проблема заранее решена тем же самым пунктом ПУЭ, описывающим переходной вариант системы заземления, обозначенный, как TN-C-S. В нем нетронутая реконструкцией часть электроустановки вполне себе официально не меняет своей структуры, оставаясь то же TN-C. А вот с некоторой точки распределительная сеть выполняется по новым правилам.

Суть в разделении проводника PEN на два: рабочий и защитный.

Выполняется это во вводном распределительном устройстве. В нем устанавливается две распределительных шинки: N и РЕ. Проводник PEN в обязательном порядке присоединяется к РЕ, а между самими шинками монтируется перемычка.

Подробнее о системе TN-C-S можно почитать в отдельной статье.

Почему к РЕ?

Если перемычка между шинами оборвется (этого нельзя исключать ни в коем случае), то при таком способе соединения нулевая рабочая шина потеряет связь с нейтралью электроустановки. При этом возможны тяжелые последствия для электрооборудования – но соединение с защитной шиной не пострадает, люди останутся в безопасности.

К тому же не заметить сей факт обрыва невозможно. Его сразу побегут искать.

При обратной же схеме коммутации обрыв перемычки заметят разве что при плановых измерениях целостности защитной цепи. А за это время люди останутся без защиты – корпуса «повиснут в воздухе». Хорошо бы, если так.

Предоставленная сама себе сеть из соединенных между собой защитных проводников таит не меньшую опасность, чем при обрыве PEN-проводника система TN-C.

Блоки питания бытовой аппаратуры (компьютеров или стиральных машин, к примеру) и полупроводниковые ПРА люминесцентных ламп при отсутствии соединения их корпусов с заземляющим устройством выдают на них потенциал порядка 110 В через конденсаторы входного помехоподавляющего фильтра блока питания. Он распространяется по всей сети, появляясь на прочих металлических частях, соединенных с РЕ-проводником.

Не стоит забывать о том, что эта система унаследовала от TN-C ее главные недостатки: потенциал на PEN-проводнике и опасные напряжения на нем при его обрыве. Главный метод борьбы с ними – собственный контур повторного заземления, вывод от которого присоединяется к шине РЕ вводного щитка.

Но есть и другие системы заземления, использующиеся в частных случаях для защиты людей.

Система заземления ТТ

В предыдущих системах все заземляющие устройства соединяются в единую цепь проводниками PEN или (и) РЕ. В системе ТТ потребитель имеет свой собственный контур заземления, не связанной с проводником PEN питающей линии. Все его электрооборудование связано с этим контуром проводниками РЕ.

Таким образом, исчезают проблемы с возможным обрывом питающего потребителя PEN- проводника. Он используется как нулевой рабочий и никак не связан с корпусами.

Защита с помощью предохранителей и автоматических выключателей у потребителя работает только на устранение междуфазных замыканий, а также – между фазой и нулевым проводником.

Мерой же для защитного отключения служит обязательная установка УЗО у потребителя.

Внедрение этого метода заземления имеет показания к применению и при большой протяженности питающих линий, когда повышенное сопротивление петли фаза-нуль не позволяет произвести защитное отключение в нормируемое время.

Подробнеео системе TT можно почитать в отдельной статье.

Система заземления IT

А здесь нулевой проводник отсутствует вовсе, так как эта система – с изолированной нейтралью. Подключение нагрузки возможно только на линейные напряжения сети.

Ничего опасного для потребителя при возникновении повреждения одной фазы на корпус не происходит. Ток замыкания на землю ничтожен и не принесет организму особого вреда.

А для ликвидации опасных по величине токов все линии защищают УЗО в обязательном порядке.

Но для фиксации замыканий на землю в таких сетях устанавливаются специальные элементы – реле утечки. При его срабатывании повреждение требуется активно поискать. А при возникновении второго замыкания участок сети с повреждением подлежит немедленному отключению.

определение, в чем разница, видео

Любая действующая система энергоснабжения должна гарантировать высокий уровень безопасности при работе с подключённым к ней оборудованием. Для чего в её составе предусматривается специальная конструкция (она называется заземляющим устройством или ЗУ). Благодаря этому, высокий потенциал в аварийной ситуации снижается до безопасного уровня. В отсутствии условий получения эффекта от заземлителя допускается применение защитного зануления, которое может рассматриваться как заземление на ноль.

Содержание

Понятие зануления

Схема подсоединения потребителя к типовой трёхфазной сети

Согласно ПУЭ оно рассматривается как преднамеренное соединение металлического корпуса электроприбора с нейтралью питающей сети для предупреждения поражения человека опасным напряжением. Чтобы лучше понять, что это такое зануление – сначала нужно разобраться со схемой подсоединения потребителя к типовой трёхфазной сети или подключения 380 вольт (фото справа). Из неё следует, что каждая фаза подключается к нагрузке через защитное устройство (автомат А1 или предохранитель).

Принцип действия такой схемы состоит в следующем:

  • При замыкании фазы «В» на корпус К1 электроустановки (из-за износа изоляции, например) за счёт соединения с рабочим нулём PEN ток Iкз короткого замыкания в цепи возрастает.
  • В результате срабатывает автомат А1, отключающий эту фазу от нагрузки.

Таким образом, идея зануления с помощью провода ЗП1 состоит в том, чтобы превратить попадание одной фазы на корпус электроприбора в простейшее короткое замыкание на шину PEN или N.

Чем отличается заземление от зануления

Для того чтобы понять, чем же отличается заземление от зануления – потребуется вспомнить, что представляет собой первое из сравниваемых понятий. Известно, что

защита заземлением – это преднамеренное соединение корпуса оборудования, которое вследствие пробоя изоляции может оказаться под высоким напряжением, с простой металлической конструкцией, погруженной в землю (фото слева).

Такое сооружение называется заземляющим контуром (ЗК), наличие которого на любом объекте обеспечивает высокий уровень необходимой защиты.

При рассмотрении, в чем разница заземления и зануления необходимо учитывать следующие их особенности:

  • Для того чтобы заземлить от нуля корпус оборудования потребуется специальный контур, в то время как для обустройства зануляющей цепи в нём нет необходимости.
  • В системе заземления предусматривается отдельный провод, соединяющий защищаемую конструкцию с ЗУ (при этом проводник зануления пробрасывается из той же точки, но только до входной шины).
  • При замыкании через ноль безопасность обеспечивается отключением данной фазы от питающей сети, тогда как при заземлении опасное напряжение снижается до минимального уровня.

В многоквартирных домах условия для обустройства надёжной «земли», как правило, отсутствуют. Именно поэтому в городских квартирах зануление – единственно возможный вариант защиты от опасного потенциала (наряду с нередко используемым УЗО).

Обратите внимание: Все эти способы защиты обеспечивают гарантированное отключение питающей цепи от нагрузки или снижения потенциала на ней.

Разница между заземлением и занулением проявляется в том, что в первом случае отключение питающей цепи происходит за счет стекания опасного тока в землю, а во втором – в результате превышения токовой уставки в автомате. В УЗО, по определению, защита срабатывает из-за появления утечек через тело человека, прикоснувшегося к корпусу неисправного оборудования.

Схема заземления и зануления

Что надёжнее

Сравнивая заземление и зануление по надежности и ответить на вопрос что лучше, необходимо исходить из их назначения, а также из следующих соображений:

  1. Эффективность каждого из этих видов защиты зависит от конкретных условий их применения.
  2. В соответствии с требованиями ПУЭ зануление применяется лишь в тех случаях, когда нет возможности сделать качественное заземление (этим они и отличаются, по сути).
  3. Поскольку скорость срабатывания включенного в фазную цепь автомата или предохранителя не очень высока – зануление считается менее надежным, чем мгновенно срабатывающее УЗО или работающее постоянно заземление.

Еще одним существенным отличием заземления от зануления, заметно снижающим надежность последнего, является зависимость аварийного тока от точки пробоя изоляции на корпус устройства. Если это случается, например в самом начале обмотки электродвигателя, то ток в цепи будет максимальным и защита сработает чётко.

Схема работы системы зануления при пробое изоляции (рисунок слева). Схема поражения человека электрическим током без системы зануления и заземления (рисунок справа)

В случае, когда пробой изоляции окажется ближе к нулевому рабочему проводнику – разность напряжений между точкой замыкания и проводом PEN окажется равной нулю. Вследствие этого оно может не сработать совсем. Именно поэтому защитное зануление используется чаще всего как вынужденная мера, к которой прибегают в отсутствии возможности обустроить надежное заземление (в многоквартирных домах старой застройки, например).

При рассмотрении вопроса о том, как сделать защиту в частном доме, последний решается намного проще. В данном случае все условия для обустройства полноценного заземления электроустановок и электроприборов налицо, защитный контур можно сделать под окном в огороде, например. Последующие действия сводятся к простому соединению ЗК посредством толстого медного проводника с главной заземляющей шиной вводного щитка.

В заключение отметим, что заземление и зануление – это различные подходы к одному и тому же техническому решению, обеспечивающему надежную защиту человека от поражения электрическим током. Выбор того, что лучше, зависит от целого ряда причин, определяемых условиями эксплуатации защищаемого оборудования, а также от преследуемых целей.

Предлагаем Вам ознакомиться с видео о том, чем отличается заземление от зануления.

Типы систем и методов электрического заземления

Последнее обновление 20 января 2023 г., Джош Махан

При работе с мощным электрическим оборудованием и приборами важно убедиться, что они правильно настроены и подключены, чтобы избежать потенциальных угроз безопасности. и другие осложнения, которые могут повредить указанное оборудование или находящихся поблизости людей. Системы электрического заземления являются широко используемым инструментом, специально разработанным для защиты от опасностей внезапных высоковольтных разрядов путем удаления избыточного тока. Заземление необходимо во многих отраслях промышленности, где используется мощное электрическое оборудование.

Центры обработки данных, в частности, используют огромное количество очень мощных технологических инструментов и машин, которые требуют значительного количества энергии для правильной работы. Из-за этого центры обработки данных должны убедиться, что они эффективно используют системы электрического заземления для защиты жизни своих сотрудников, а также их машин. Пожалуйста, продолжайте узнавать все, что вам нужно знать о различных методах и типах систем электрического заземления.

Связанный: Как легко рассчитать трехфазную мощность

Содержание

Что такое электрическое заземление?

Проще говоря, «заземление» относится к цепочке с низким сопротивлением, предназначенной для передачи электрического потока в землю, а «заземление» относится к соединению между электрическим оборудованием и землей через провод . При правильном подключении приборы и устройства обеспечивают безопасное место для безопасного отвода избыточных электрических токов, не создавая повреждений или угроз безопасности для оборудования или находящихся поблизости людей. В соответствии с Национальным электротехническим кодексом (NEC) «земля» определяется как тип проводящего соединения — случайного или преднамеренного — между оборудованием или электрической цепью и землей или каким-либо проводящим телом, используемым вместо земли.

Целью NEC является помощь в ограничении потенциала напряжения от скачков напряжения в сети, молнии и контакта между другими линиями более высокого напряжения за счет использования проводников заземления оборудования. Эта тактика по своей сути делает всю электрическую систему более безопасной и обеспечивает защиту от значительных колебаний в электроснабжении. Если вы хотите обеспечить безопасность оборудования и персонала вашего центра обработки данных, вы должны использовать идеально заземленную и безопасную сеть. В противном случае вы рискуете нанести значительный ущерб своему оборудованию, а также жизни людей.

NEC предлагает список подробных требований, касающихся настройки и функционирования заземленных систем. Краткое изложение других основных требований можно найти здесь, на веб-сайте OSHAcademy по обучению безопасности и гигиене труда.

Зачем нужны системы электрического заземления?

Как указано выше, заземленные электрические системы необходимы для безопасной и надежной работы центра обработки данных. Однако они также необходимы для масштабных жилых и коммерческих проектов. Поскольку установка и обслуживание систем заземления являются сложным и трудоемким процессом, важно предотвратить опасные ситуации, которые могут привести к проблемам в случае короткого замыкания внутренней проводки устройства. Существует несколько рисков использования незаземленных электрических систем, таких как пожар и поражение электрическим током, которые могут привести к несчастным случаям со смертельным исходом. Некоторые из существенных преимуществ использования надлежащим образом заземленной системы включают:

Защита от перегрузки

Избыточная мощность может по многим причинам скапливаться на электрическом рабочем месте, создавая большие электрические напряжения в системах и вызывая пожары и удары током, которые могут травмировать, если не прямое убийство, люди. Заземленные системы обеспечивают защиту от перегрузок, направляя избыточную энергию в землю, защищая людей и электроприборы, а также важные данные, которые они могут содержать.

Защита от поражения электрическим током

В худшем случае незаземленные системы могут привести к ударам и пожарам, которые повреждают и уничтожают оборудование, что приводит к значительной потере данных, а также к травмам и смерти находящихся поблизости людей. Заземленные системы устраняют эти опасности, связанные с электричеством и защищать оборудование от внезапных скачков напряжения , предотвращая возгорание электричества и снижая вероятность повреждения оборудования.

Стабилизация напряжения

Заземленные системы предназначены для защиты цепей от перегрузки и правильного распределения мощности между конкретными источниками данных. Это заземление обеспечивает общую точку отсчета для стабилизации критического напряжения.

Какие существуют три типа систем заземления?

В целом, существует три типа систем заземления , которые важно понять людям, наряду с их различными преимуществами и недостатками. Эти три системы включают:

  1. Незаземленные системы
  2. Системы с заземлением через сопротивление
  3. Системы с глухим заземлением

Связанный: Что такое тестирование HIPOT? Объяснение испытания на электрическую прочность диэлектрика

Незаземленные системы

Этот раздел может ввести некоторых читателей в заблуждение, поскольку мы только что рассмотрели несколько абзацев, подробно описывающих важность отсутствия незаземленных электрических систем. Хотя это правда и 9Незаземленные системы 0005 по своей сути более опасны, они существуют и служат определенным целям , хотя они были гораздо более распространены в 40-х и 50-х годах. Таким образом, нам нужно потратить время, чтобы объяснить, как они работают, а также различные преимущества и недостатки, которые они предоставляют.

Первое, что нужно понять о незаземленных системах, это то, что они на самом деле не являются незаземленными. С точки зрения электричества ваша система соединена с землей через емкость между линиями и землей. То есть правильнее называть ее емкостно-заземленной системой. Это просто называется незаземленной системой из-за условности и отсутствия предполагаемой физической связи между задействованными линиями электропередач и землей.

Проще говоря, , в незаземленной системе ток замыкания на землю незначителен и может быть использован для снижения риска поражения людей электрическим током. При возникновении неисправности необходимы два провода для передачи некоторых токов, чтобы избежать избыточного напряжения, которое может привести к чрезмерному нагреву и повреждению задействованного оборудования. Поскольку замыкание на землю незначительно, поиск неисправностей может быть очень трудным и трудоемким, что делает стоимость незаземленных систем чрезвычайно высокой.

Преимущества незаземленных систем

Существует несколько особых преимуществ , связанных с использованием незаземленных систем. Некоторые из наиболее важных преимуществ незаземленных систем:

  • У вас незначительный ток замыкания на землю.
  • Они обеспечивают относительно низкое значение тока при замыканиях на землю между линиями.
  • Существует низкая вероятность того, что замыкания, действующие между линией и землей, перерастут в межфазное или трехфазное замыкание.
  • Они обеспечивают непрерывную работу процессов при первом возникновении короткого замыкания на землю.
  • Они не представляют опасности для персонала в случае случайного замыкания линии на землю.
  • Они сводят к минимуму риск поражения людей электрическим током.

Недостатки незаземленных систем

Некоторые из неотъемлемых недостатков незаземленных систем :

  • Они используют два провода для передачи количества тока, предназначенного для трех проводов, в случае неисправности, повышения температуры и возможности повреждения оборудования и инсоляции.
  • Они усложняют и отнимают много времени для обнаружения неисправностей.
  • Все линии должны быть протестированы индивидуально.
  • Они несут очень высокие эксплуатационные расходы и расходы на техническое обслуживание.
  • Они не контролируют кратковременные перенапряжения.
  • Второе замыкание на землю на другой фазе вызовет междуфазное короткое замыкание в системе.

Несмотря на то, что они обладают некоторыми заметными преимуществами, недостатки гораздо более заметны для незаземленных систем , поэтому сегодня используется относительно мало по сравнению с несколькими десятилетиями назад.

Вам нужен эффективный и экономичный способ создания надежного центра обработки данных и решения различных проблем с инфраструктурой при эксплуатации сложной ИТ-среды? Пожалуйста, свяжитесь с нашей командой опытных дизайнеров, менеджеров и специалистов по закупкам здесь, в C&C, чтобы узнать больше.

Системы с заземлением через сопротивление

Заземление через сопротивление, если коротко, это когда системы электроснабжения имеют соединения между нейтральной линией и землей через резистор. Указанный резистор используется для ограничения тока короткого замыкания в естественной линии. Если ваше напряжение не изменится, ваш электрический ток будет зависеть от размера задействованного резистора в соответствии с законом Ома (V = IR).

Существует два различных типа систем заземления сопротивления; заземление с высоким сопротивлением и заземление с низким сопротивлением.

Заземление с высоким сопротивлением

Системы заземления с высоким сопротивлением (HRG) активно ограничивают токи замыкания на землю до <10 ампер и обычно используются на фабриках и заводах, где текущая работа процессов прерывается в случае конкретной неисправности.

Заземление с низким сопротивлением

Система заземления с низким сопротивлением (LRG) активно ограничивает ток замыкания на землю в пределах 100-1000 ампер. Эти системы обычно используются в системах среднего напряжения до 15 кВ и предназначены для срабатывания защитных устройств при возникновении неисправности.

Преимущества заземления сопротивлением

Системы с заземлением через сопротивление (как с высоким, так и с низким сопротивлением) имеют ряд преимуществ, особенно по сравнению с незаземленными системами.

Например, поскольку ток в нейтрали для этих систем контролируется, а не пренебрежимо мал, контролируются потенциальные перенапряжения в системе. Пониженный ток соответствует уменьшению тепла, что сводит к минимуму общий износ электрической системы в целом, что особенно важно для обеспечения безопасности и функционирования основного оборудования в центрах обработки данных. Некоторые дополнительные преимущества этих систем также включают тот факт, что;

  • Уменьшенные токи также снижают риск поражения электрическим током и взрыва/дуговой вспышки.
  • Системы ограничивают ток замыкания на землю до низкого уровня.
  • Они контролируют переходные перенапряжения.
  • Они снижают опасность поражения электрическим током.
  • Они обеспечивают непрерывность обслуживания.
  • Снижают механические напряжения в оборудовании и его цепях.
  • Уменьшают падение напряжения в сети, вызванное очисткой и возникновением замыкания на землю.

Недостатки заземления сопротивления

Некоторые из основных недостатков систем заземления сопротивления :

  • Высокие частоты могут быть неприятным сигналом тревоги.
  • Замыкание на землю может сохраняться в системе в течение длительного времени.

Связанные: Однофазное и трехфазное питание [Полное руководство]

Системы с глухим заземлением в схему не включена преднамеренная независимость.

Системы с глухозаземленным заземлением могут потреблять большие токи замыкания на землю и, таким образом, значительно упрощают обнаружение неисправностей по сравнению с незаземленными системами. Эти системы чаще всего используются в промышленных или коммерческих энергосистемах, а резервные генераторы обычно находятся в режиме ожидания, если сбой отключает определенные методы производства.

Подобно резистивному заземлению, жесткое заземление может значительно снизить вероятность перенапряжения в электрической системе. Однако эти системы могут иметь большие токи замыкания на землю. Из-за этого системы с глухим заземлением не могут работать при замыкании на землю, поскольку все токи в системе текут от замыкания на землю.

Преимущества систем с глухим заземлением

Некоторые из основных преимуществ систем с глухозаземленным заземлением включают:

  • Обеспечивают разумный контроль переходных перенапряжений от нейтрали к земле.
  • Они позволяют пользователям быстро и легко обнаруживать неисправности.
  • Они могут питать нейтральные нагрузки.

Вы ищете качественный и экономичный способ создания высококлассного центра обработки данных с нуля? Наши специалисты из C&C, обладающие более чем 100-летним опытом проектирования центров обработки данных, всегда готовы помочь, начиная от планирования инфраструктуры и электропитания и заканчивая технологиями охлаждения и даже специализированными услугами по уборке.

Недостатки систем с глухозаземленным заземлением

Системы с глухозаземленным заземлением имеют несколько явных недостатков, которых значительно больше, чем преимуществ, которые они приносят. Например;

  • Надежно заземленные системы представляют серьезную опасность вспышки дуги.
  • Они могут создавать проблемы в основной системе.
  • Требуют покупки, установки и обслуживания дорогого и сложного главного выключателя.
  • Обеспечивают высокие значения тока короткого замыкания.
  • Они могут вызвать незапланированные перерывы в производственных процессах.
  • В случае неисправности они потенциально могут привести к серьезному повреждению оборудования.

Заключительные мысли и соображения

Теперь, когда у вас есть адекватное представление о различных типах систем электрического заземления и их различных преимуществах и недостатках, вы должны иметь возможность выбрать наиболее оптимальный тип системы заземления для защиты используемого оборудования. в вашем дата-центре. Если вы хотите узнать больше об управлении центрами обработки данных, питании, инфраструктуре, очистке и многом другом, рассмотрите возможность связаться с нами в C&C Technology Group сегодня, чтобы узнать о нашем широком спектре экспертных услуг. И не забудьте также изучить наш широкий выбор качественных образовательных статей.

Заземление: понимание основ создания фундамента электрической системы сооружения | NFPA

NFPA Сегодня — 27 сентября 2021 г.

Вернуться на целевую страницу блогов

Термин «заземление» хорошо знаком и часто используется электриками, инженерами-электриками или руководителями объектов, но что он означает? Первоначальная мысль заключается в том, что это просто подключение заземляющего проводника к земле. Проще говоря, это правильно, но это нечто большее. Во-первых, мы должны понять, что такое заземление, чтобы можно было установить правильную систему заземления.

Заземлен или заземлен, как определено в редакции NFPA 70® 2020 г. , Национальный электротехнический кодекс ® (NEC®), арт. 100, соединяется с землей или с проводящим телом, которое расширяет соединение с землей. Итак, я уверен, что многие из вас думают, просто воткните провод в землю и назовите это хорошим, верно? Не совсем. Сначала должен быть создан эффективный путь тока замыкания на землю, чтобы обеспечить безопасную электрическую систему. В основном, это создание низкоимпедансного электропроводящего тракта, облегчающего работу устройства защиты от перегрузки по току. Этот путь должен быть способен безопасно проводить максимальный ток замыкания на землю, который может быть наложен на него из любой точки системы электропроводки, где может произойти замыкание на землю. Земля сама по себе не считается эффективным путем тока замыкания на землю, поэтому недостаточно воткнуть провод в землю.

Заземление является основой электрической системы здания или сооружения. Согласно 250.20 (B) NEC 2020, системы переменного тока (AC) от 50 до 1000 вольт должны быть заземлены, что означает заземление.

Это достигается за счет правильно установленной системы заземляющих электродов. Наличие надежной системы заземляющих электродов стабилизирует напряжение и помогает устранять замыкания на землю. В разделе 250.50 NEC 2020 года дается описание системы заземляющих электродов, а в разделе 250.52 перечислены утвержденные заземляющие электроды. Некоторые из наиболее эффективных заземляющих электродов для зданий и сооружений:

  • Металлическая подземная водопроводная труба
  • Металлические заглубленные опорные конструкции
  • Электрод в бетонном корпусе (также известный как «заземление нижнего колонтитула» или «заземление Ufer»).
  • Кольцо заземления

Система заземляющих электродов представляет собой соединение с землей посредством требуемых заземляющих электродов. Затем заземляющие электроды снова подключаются к электросети здания через проводник заземляющего электрода (GEC). GEC при обслуживании здания или сооружения подключается к нулевой шине внутри электротехнического оборудования рядом с заземленным (нейтральным) проводником.

Нейтральная шина соединяется (подключается) к корпусу сервисного оборудования через главную соединительную перемычку, которая, в свою очередь, создает эффективный путь тока замыкания на землю для электрической системы.

Но как только будет установлен эффективный путь тока замыкания на землю на землю, что тогда? Как будет производиться заземление электрооборудования, находящегося в зданиях и сооружениях? Это через заземляющий проводник оборудования ответвленной цепи (EGC). EGC бывают разных размеров, типов и материалов, как указано в NEC 2020, раздел 250.118. Вот некоторые из них:

  • Медные, алюминиевые или покрытые медью алюминиевые проводники
  • Жесткий металлический рукав (RMC)
  • Промежуточный металлический рукав (IMC)
  • Электрические металлические трубки (EMT)

Часто EGC представляют собой систему каналов, RMC, IMC или EMT. Эти типы EGC соединяются друг с другом и с корпусом оборудования с помощью ряда перечисленных установочных винтов или компрессионных муфт и соединителей. В большинстве соединителей используются стопорные гайки или соединительные втулки для соединения с электрическим оборудованием или корпусами. Там, где используются соединительные втулки, требуется дополнительный проводник, называемый перемычкой для соединения оборудования, который необходим для завершения соединения с корпусом, нейтральной шиной или шиной EGC. Это помогает завершить эффективный путь тока замыкания на землю. Использование проходного изолятора с соединительными перемычками оборудования может быть более подвержено человеческим ошибкам или механическим повреждениям, поэтому путь эффективного тока замыкания на землю может быть не таким надежным. EGC, которые представляют собой электрические проводники, такие как медные, алюминиевые или покрытые медью алюминиевые проводники, могут быть более эффективными благодаря прямому подключению к электрическому оборудованию, корпусу, нулевой шине или шине EGC. Вероятность отказа этого типа EGC меньше из-за меньшего количества точек соединения.

Как правило, при установке EGC утвержденный EGC должен располагаться в пределах того же кабельного канала, траншеи, кабеля или шнура от электросети или вспомогательной панели, что и проводники питающей или ответвленной цепи, обеспечивающие питание электрооборудования. С точки зрения электробезопасности и с учетом стандарта NFPA 70E® по электробезопасности на рабочем месте ® , раздел 120.5(8), там, где существует вероятность наведенного напряжения, все проводники и части цепей должны быть заземлены перед касаясь их. Это один из возможных шагов для создания электробезопасных условий труда (ESWC), поэтому слабый или нефункционирующий EGC затруднит или сделает невозможным создание ESWC при возникновении необходимости замены или обслуживания электрооборудования.

Чтобы узнать больше о правильном склеивании, внимательно изучите ст. 250 НЭК 2020 года. Наш новейший информационный бюллетень по заземлению и соединению также будет полезным ресурсом. Загрузите его здесь.

Неспособность установить эффективный путь тока замыкания на землю через надлежащее заземление может помешать правильной работе устройств защиты от перегрузки по току и, следовательно, неэффективному устранению замыкания на землю, что может привести к поражению электрическим током, поражению электрическим током или дуговому разряду. Создавая эффективную цепь тока замыкания на землю, вы не только правильно выполняете работу, но и защищаете себя и других.

NFPA 70 Национальный электротехнический кодекс® (NEC®) теперь доступен в NFPA LiNK™ , платформе для предоставления информации ассоциации с кодами и стандартами NFPA, дополнительным контентом и наглядными пособиями по строительству, электротехнике и быту. специалистов по безопасности и практиков. Узнайте больше по телефону nfpa.org/LiNK .

Важное примечание: Любое мнение, выраженное в этой колонке (блог, статья), является мнением автора и не обязательно отражает официальную позицию NFPA или ее технических комитетов. Кроме того, эта статья не предназначена и не должна использоваться для предоставления профессиональных консультаций или услуг.

ТЕМЫ:

  • Электрический

Загрузите наш информационный бюллетень по заземлению и соединению

Скачать сейчас

Дин Остин

Старший специалист по электрике

Подробнее Дин Остин

Связанные статьи

09 МАЯ 2023

NFPA LiNK предоставляет ранний доступ к выпускам 2024 года более чем 20 кодексов и стандартов, включая NFPA 70E

08 МАЯ 2023

Лучшее понимание NFPA 70E: Часть I – Сравнение четырех десятилетий электрических травм и смертельных случаев

01 мая 2023 г.