Содержание

Поліетилен — Вікіпедія

Поліетиле́н (-СН2–СН2-)n — карбоцепний полімер аліфатичного органічного вуглеводня олефінового ряду етилену. Термопластичний насичений полімерний вуглеводень; твердий, безколірний, жирний на дотик матеріал. Легший за воду, горить повільно синюватим полум'ям без кіптяви. Є одним із найпоширеніших пластиків у світі, загальне річне виробництво станом на 2008 рік становило близько 80 мільйонів тон[1].

Використовується для виробництва матеріалів і виробів для пакування — плівки і пластикових пакетів з неї, ємностей (пляшок, каністр тощо). Також використовується для виробництва труб, як ізолюючий матеріал в електротехнічній та радіоелектронній промисловості, при виробництві кабелів, матеріалів для гідроізоляції (геомембран[en]).

Стійкий до дії води, не реагує з лугами будь-якої концентрації, з розчинами нейтральних, кислих і основних солей, органічними і неорганічними кислотами, навіть концентрованою сірчаною кислотою, але розкладається при дії 50%-ої азотної кислоти при кімнатній температурі і під впливом рідкого чи газоподібного хлору і фтору. При температурі вище 70 °C він набухає та розчиняється у хлорованих і ароматичних вуглеводнях.

При кімнатній температурі не розчиняється і не набухає в жодному з відомих розчинників. При підвищеній температурі (80° C) розчинний в циклогексані і чотирихлористому вуглеці. Під високим тиском може бути розчинений в перегрітій до 180° C воді.

З часом розкладається з утворенням поперечних міжланцюгових зв'язків, що призводить до підвищення крихкості на тлі невеликого збільшення міцності. Нестабілізований поліетилен на повітрі піддається термоокислювальній деструкції (термостарінню). Термостаріння поліетилену проходить за радикальним механізмом, супроводжується виділенням альдегідів, кетонів, перекису водню та ін.

Поліетилен є найдешевшим матеріалом із групи поліолефінів. Його обсяг у загальному виробництві поліолефінів становить 75-78 %.

Поліетилен біологічно нешкідливий, тому він широко застосовується у медицині, у житловому будівництві. Завдяки високій хімічній стійкості поліетилен широко застосовується в хімічній промисловості для виробництва пластикових труб, частин різних апаратів, внутрішньої футеровки місткостей для зберігання кислот тощо. Поліетилен застосовується також в електротехнічній, електрокабельній і радіотехнічній промисловості як високоякісний і високочастотний діелектрик. Значна частина поліетилену йде на виготовлення водопровідних труб, а також різних побутових предметів — поліетиленових плівок, бутелів, пробок тощо.

ПЕНТ володіє більш високими фізико-механічними показниками ніж ПЕВТ. Більша частина ПЕВТ використовується для виготовлення плівки та листів, ПЕНТ — ізоляції проводів і виготовлення виробів шляхом лиття пластмас під тиском. Він експлуатується при температурах від –80 до +60 °C (ПЕВТ) і до 100 °C (ПЕНТ).

Отримання поліетилену[ред. | ред. код]

Об'ємна модель молекули етилену

Структурна модель етилену

Елементарна ланка поліетилену

Якщо етилен нагріти до 150—200°С і піддати високому тиску, його молекули почнуть сполучатися одна з одною у великі молекули. Сполучення молекул відбувається за рахунок розриву в кожній з них подвійних зв'язків з утворенням одинарних й вивільненням двох одиниць валентності. Молекули поліетилену мають лінійну структуру. На кінцях полімерних молекул, зрозуміло, вільними валентності не залишаються, як це показано на схемі. Вони насичуються приєднанням до кінців молекул вільних атомів або радикалів, що утворюються при руйнуванні молекул етилену.

Будову молекул полімеру зображають звичайно скорочено — структурою однієї елементарної ланки. Скорочена структурна формула поліетилену:

[ —CH2—CH2— ]n

Число n показує, скільки молекул мономеру сполучається в молекулу полімеру. Це число називають коефіцієнтом полімеризації.

Різні молекули даного полімеру складаються з різного числа молекул мономеру, тому молекулярні маси різних молекул даного полімеру різні. В галузі полімерних сполук молекулярна маса показує середню величину, а не масу кожної окремої молекули, яка може значно відрізнятися від середньої молекулярної маси.

Середня молекулярна маса полімеру може істотно змінюватися залежно від умов його одержання, а разом з тим змінюються і властивості полімеру.

Поліетилен низької щільності (PE-LD) або поліетилен високого тиску (ПЕВТ) отримують радикальною полімеризацією етилену при високому тиску (150—300 МПа) при температурі 200—260 °C. При цьому утворюється твердий поліетилен з довжиною ланцюжків макромолекул до 5000—6000 елементарних ланок і з середньою молекулярною масою понад 150 000 а.о.м. Густина (щільність) матеріалу складає 0,91—0,93 г/см3.

Поліетилен високої щільності (PE-HD, або HDPE) або поліетилен низького тиску (ПЕНТ) отримують у гетерогенному середовищі полімеризацією етилену при температурі 70-80 °C і тиску 245 МПа. Молекули полімеру містять 1500—2000 елементарних ланок, середня молекулярна маса досягає 56 000 а.о.м. У промисловості поліетилен низького тиску отримують за напівбезперервною та безперервною схемами у присутності AL2(C2H5)6/TiCl4. Густина такого поліетилену — близько 0,95 г/см3.

  • Деркач Ф. А. Хімія.- Л.: 1968.

Теплопроводность материалов для строительства, основные показатели

Ни для кого не секрет, что каждый материал обладает своими исключительными качествами. Одним из таких является теплопроводность.

Давайте рассмотрим пример того какой должна быть толщина стенки из разных материалов в помещении для обеспечения пригодной для жизни температуры в 18 градусов Цельсия, когда на улице мороз -26 градусов.
Если строить из пустотелого кирпича, вам придется возвести стенку толщиной в 51 сантиметр, из керамзитобетона – 30 сантиметров, стенка из древесины может не превышать 15 см, а бетонная с применением утеплителя и вовсе может едва достигать 14 см. Почему это так? Каждый из этих материалов обладает своей теплопроводностью.
Как мы видим, очень важно определиться с проектом на начальных этапах строительства, дабы не попасть впросак. Чем точнее данные – тем выше вероятность качественного расчета и выбора строительных материалов. Чтобы определиться с сырьем и не ошибиться – воспользуйтесь данными ниже. Эквивалентная теплопроводность строительных материалов:
1

1
  • пенополиуретан — 80
  • пенополистирол — 160
  • минвата — 200
  • дерево — 548
  • керамзит — 640
  • газобетон — 800
  • кирпич — 1520
  • гранит — 2500
  • бетон — 3440

Теплопроводность – что это

Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:

  1. Кирпич — 210 см
  2. Керамзитобетон — 90 см
  3. Дерево — 53 см
  4. Газобетон — 44 см
  5. Минеральная вата — 18 см
  6. Пенополистерол — 12 см

Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке. Также на нее стоит обратить внимание при необходимости подобрать дополнительные утепляющие материалы и конструкции.

Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:

алюминий
асбест
асфальтобетон
асбесто-цементные плиты
бетон, желоззобетон
битум
бронза
винипласт
вода при температурі вище 0
войлок шерстяной
гипсокартон
гранит
древесина из дуба, волокна размещены вдоль
древесина из дуба, волокна размещены поперек
древесина из сосны или ели, волокна размещены вдоль
древесина из сосны или ели, волокна размещены поперек
до 221 Вт/м2
0,151 Вт/м2*К
1,05 Вт/м2*К
0,35 Вт/м2*К
до 1,51 Вт/м2*К
0,27 Вт/м2*К
64 Вт/м2
0,163 Вт/м2*К
0,6 Вт/м2*К
0,047 Вт/м2*К
0,15 Вт/м2*К
3,49 Вт/м2*К
0,23 Вт/м2*К
0,1 Вт/м2*К
0,18 Вт/м2*К
до 0,15 Вт/м2*К
плита древесно-стружечная или плита ориентировано-стружечная
железобетон
Картон используемый для облицовки
Керамзит, плотность 200кг / м3
Керамзит, плотность 800кг / м3
Керамзитобетон, плотность 500кг / м3
Керамзитобетон, плотность 1800кг / м3
Кирпич керамический, пустотелый брутто 1000, плотность 1200кг / м3
Кирпич керамический, пустотелый брутто брутто 1400, плотность 1600кг / м3
Кирпич красный глиняный
Кирпич силикатный
Кладка из изоляционного кирпича
Кладка из обыкновенного кирпича
Кладка из огнеупорного кирпича
Краска масляная
0,15 Вт / м2К
1,69 Вт / м2К
0,18 Вт / м2К
0,1 Вт / м2К
0,18 Вт / м2К
0,14 Вт / м2К
0,66 Вт / м2К
0,35 Вт / м2К
0,41 Вт / м2К
0,56 Вт / м2К
0,7 Вт / м2К
до 0,209 Вт / м2К
до 0,814 Вт / м2К
1,05 Вт / м2К
0,233 Вт / м2К

Факторы, влияющие на теплопроводность

На каждую характеристику имеют влияние ряд факторов. Не исключением является и теплопроводность. Какие же факторы оказывают значительное влияние?

  1. Пористость поверхности. Неоднородность структуры, благотворно сказывается на теплопроводности. При прохождении через материалы такого рода большая часть тепловой энергии сохраняется.
  2. Плотность.Этот показатель влияет на пересечение частиц и более тесные контакты между ними. В свою очередь это увеличивает теплообменные процессы.
  3. Влажность.Чем выше данный фактор влияния — тем выше теплопроводность.

Рассмотрим подробнее каждый из популярных материалов для строительства по характеристикам

Дерево
  • Плотность, кг / м3: 500
  • Коэффициент теплопроводности, Вт / М°С: 0,14
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,5
Щелевой кирпич
  • Плотность, кг/м3: 1400-1700
  • Коэффициент теплопроводности, Вт / М°с: 0,5
  • Механопрочность, кгс / см2: 100-200
  • Влагопоглощение, % массы: 12-18
  • Морозоустойчивость, циклы: 100
  • Рекомендуемая толщина стены для средней полосы, м: не менее 1,2
Поризований блок
  • Плотность, кг/м3: 400-1000
  • Коэффициент теплопроводности, Вт/М°с: 0,18-0,28
  • Механопрочность, кгс/см2: 100-150
  • Влагопоглощение, % массы: 10-16
  • Морозоустойчивость, циклы: 100
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
Керамзитобетон
  • Плотность, кг / м3: 850-1800
  • Коэффициент теплопроводности, Вт / М°с: 0,4-0,8
  • Механопрочность, кгс / см2: 35-75
  • Вологопоглинання, % маси: 0
  • Морозоустойчивость, циклы: від 50
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
Пінобетон
  • Плотность, кг / м3: 600-1000
  • Коэффициент теплопроводности, Вт / М°с: 0,14-0,22
  • Механопрочность, кгс / см2: 15-25
  • Влагопоглощение, % массы: 10-16
  • Морозоустойчивость, циклы: від 35
  • Рекомендуемая толщина стены для средней полосы, м: не менее 1
Газобетон
  • Плотность, кг / м3: 300-600
  • Коэффициент теплопроводности, Вт / М°с: 0,08-0,14
  • Механопрочность, кгс / см2: 25-50
  • Влагопоглощение, % массы: 25
  • Морозоустойчивость, циклы: від 50
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,4

Коэффициент теплопроводности и его практическое применение.

Материалы, зачастую, различают по теплоизоляционным и конструкционным характеристикам. Чем выше показатели конструкционных характеристик, тем более пригодны эти материалы для построения стен, ограждений, перекрытий.
Используя данные описанные выше, гораздо проще будет определить возможности теплообмена каждого из материалов. Чем ниже этот показатель – тем тоньше должна быть постройка. Если использования материалов с высоким коэффициентом теплоотдачи не избежать – рекомендуется применять дополнительные утепляющие и изолирующие компоненты.

Утепление построек. Способы утепления. Виды утеплителей. Теплопроводность материалов для строительства, основные показатели

Ни для кого не секрет, что каждый материал обладает своими исключительными качествами. Одним из таких является теплопроводность.
Давайте рассмотрим пример того какой должна быть толщина стенки из разных материалов в помещении для обеспечения пригодной для жизни температуры в 18 градусов Цельсия, когда на улице мороз -26 градусов.
Если строить из пустотелого кирпича, вам придется возвести стенку толщиной в 51 сантиметр, из керамзитобетона – 30 сантиметров, стенка из древесины может не превышать 15 см, а бетонная с применением утеплителя и вовсе может едва достигать 14 см. Почему это так? Каждый из этих материалов обладает своей теплопроводностью.
Как мы видим, очень важно определиться с проектом на начальных этапах строительства, дабы не попасть впросак. Чем точнее данные – тем выше вероятность качественного расчета и выбора строительных материалов. Чтобы определиться с сырьем и не ошибиться – воспользуйтесь данными ниже. Эквивалентная теплопроводность строительных материалов:

  • пенополиуретан — 80
  • пенополистирол — 160
  • минвата — 200
  • дерево — 548
  • керамзит — 640
  • газобетон — 800
  • кирпич — 1520
  • гранит — 2500
  • бетон — 3440

Теплопроводность – что это

Сам термин «теплопроводность» определяет передачу энергии тепловой от предметов с более высокой температурой – предметам с более низкой. Сам теплообмен осуществляется до тех пор, пока температура обоих предметов не станет одинаковой. Чтобы обозначить энергию тепловую был создан коэффициент теплопроводности, применяемый для строительных материалов. Этот параметр дает четкое понимание того, какое количество энергии тепловой проходит в единицу времени через единицу площади. Чем выше этот показатель – тем лучше теплообмен. Чем меньше теплопроводность материал – тем более он пригоден для строительства жилых и отапливаемых помещений. Согласно строительным нормам толщина стен, препятствующая теплопотерям в зданиях должна соответствовать:

  1. Кирпич — 210 см
  2. Керамзитобетон — 90 см
  3. Дерево — 53 см
  4. Газобетон — 44 см
  5. Минеральная вата — 18 см
  6. Пенополистерол — 12 см

Теплопроводный коэффициент характеризуется показателем количества теплоты, проходящего сквозь метр толщины материала в единицу времени, равную 60 минут. При создании лучшей теплоизоляции профессионалы рекомендуют использовать эту характеристику в обязательном порядке. Также на нее стоит обратить внимание при необходимости подобрать дополнительные утепляющие материалы и конструкции.
Рассмотрим соотношение материала и коэффициента теплопроводности, измеренного в Ваттах на метр квадратный Кельвин:

Факторы, влияющие на теплопроводностьНа каждую характеристику имеют влияние ряд факторов. Не исключением является и теплопроводность. Какие же факторы оказывают значительное влияние?

  • Пористость поверхности. Неоднородность структуры, благотворно сказывается на теплопроводности. При прохождении через материалы такого рода большая часть тепловой энергии сохраняется.
  • Плотность. Этот показатель влияет на пересечение частиц и более тесные контакты между ними. В свою очередь это увеличивает теплообменные процессы.
  • Влажность. Чем выше данный фактор влияния — тем выше теплопроводность.

Рассмотрим подробнее каждый из популярных материалов для строительства по характеристикамКоэффициент теплопроводности и его практическое применение. Материалы, зачастую, различают по теплоизоляционным и конструкционным характеристикам. Чем выше показатели конструкционных характеристик, тем более пригодны эти материалы для построения стен, ограждений, перекрытий.
Используя данные описанные выше, гораздо проще будет определить возможности теплообмена каждого из материалов. Чем ниже этот показатель – тем тоньше должна быть постройка. Если использования материалов с высоким коэффициентом теплоотдачи не избежать – рекомендуется применять дополнительные утепляющие и изолирующие компоненты.
Если проект создается впервые гораздо проще предусмотреть все возможные теплопотери. Но если здание уже построено и планируется ремонт – первое на что стоит обратить внимание – утечки тепла через проемы, двери, щели в полу и стенах. Если этому моменту уделить недостаточно внимания – придется довольствоваться отопительными приборами и обогревать улицу.
Обратите внимание, что если при строительстве здания были использованы стандартные материалы, такие как камень, бетон или кирпич – утепление дополнительными элементами является обязательным.
Здания, построенные на основе деревянного каркаса, тоже нуждаются в утеплении и теплоизоляции. Для этого утеплитель следует расположить непосредственно в пространстве между панелями.
Здания, построенные из шлакоблоков или кирпича, обычно утепляются с наружной стороны.
Чтобы четко выбрать качественный утеплитель следует обратить внимание на ряд факторов:

  • Влияние повышенных температур
  • Тип сооружения
  • Уровень влажности

Кроме того, не лишним будет учесть параметры утепляющих конструкций, а именно:

  • Влагопоглощение Важно учитывать для наружных видов утеплений.
  • Горючесть. Если материал высокого качества – горение не должно поддерживаться.
  • Безопасность
  • Теплопроводность. Этот показатель создает общее влияние на весь процесс теплоизоляции.
  • Толщина утеплителя. Особенно важна при использовании его внутри помещения. Чем тоньше утеплитель – тем больше полезной площади сохраняется для использования.
  • Термоустойчивость. Чем выше этот фактор, тем большие перепады температур способен выдержать утеплитель.
  • Звукоизоляция. Дает дополнительную защиту от шума.

Виды утеплителей:

  • Минеральная вата. Материал с низкой теплопроводностью, экологичен, не подвергается горению.
  • Пенопласт. Высокие утеплительные качества, легкий, влагоустойчивый, простой в монтаже. В основном применяют для нежилых и коммерческих помещений.
  • Базальтовая вата. По своим характеристикам схожа с минеральной, но имеет улучшенные показатели устойчивости к влаге.
  • Пеноплэкс. Относительно новый материал с хорошими показателями теплопроводности. Достаточно просто устанавливается, отличается высокой устойчивостью к влаге, повышению температур и огню, служит долгие годы.
  • Пенополиуретан. Приметен высокой пожаробезопасностью и водоотталкивающими качествами.
  • Пенополистирол экструдированный. Имеет хорошую обработку, равномерную структуру.
  • Пенофол. Это полиэтилен вспененный, состоит из большого количества слоев. Отличается высокими теплоизоляционными характеристиками, покрыт фольгой для лучшего отражения.

Иногда теплоизоляцию обеспечивают при помощи сыпучих видов материалов. В основном, это перлит или гранулы бумажные. Отличаются хорошей стойкостью к возгоранию и влаге. Реже применяются покрытие пробковое, древесное волокно и лен.
При выборе теплоизолирующих материалов обязательно обращайте внимание на экологичность, и способность противостоять возгоранию. Совет: При рассмотрении теплоизолирования помещения отдельное внимание следует уделить гидроизоляции. Ее наличие позволит уменьшить теплопотери и не допустить высокую влажность в помещение.Сравнительные характеристики теплопроводностей и других показателей некоторых материалов, применяемых в строительствеРазобраться с некоторыми показателями поможет точное описание для некоторых наиболее применяемых материалов.

  • Железобетон – применяемый в расчетах теплопроводности коэффициент 2,04 Вт/(м°С)
  • Бетон на гравии или щебне из природного камня – применяемый в расчетах теплопроводности коэффициент 1,86 Вт/(м°С)
  • Керамзитобетон – применяемый в расчетах теплопроводности коэффициент 0,92 Вт/(м°С)
  • Кирпичная кладка из сплошного кирпича глиняного обыкновенного (ГОСТ 53080) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,81 Вт/(м°С)
  • Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,64 Вт/(м°С)
  • Кирпичная кладка из керамического пустотного кирпича плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,58 Вт/(м°С)
  • Кирпичная кладка из силикатного кирпича на цементно-песчаном растворе – применяемый в расчетах теплопроводности коэффициент 0,87 Вт/(м°С)
  • Пенополистирол – применяемый в расчетах теплопроводности коэффициент 0,05 Вт/(м°С)
  • Плиты минераловатные – применяемый в расчетах теплопроводности коэффициент 0,055 Вт/(м°С)

Чтобы рассчитать все самостоятельно следует толщину прослойки теплоизолятора разделить на теплопроводности коэффициент. Иногда это значение можно встретить на упаковке изоляции. А для дома материалы следует измерить самостоятельно, это касаемо толщины. Коэффициенты же доступны в таблицах.
Вот так просто выбрать и приобрести качественный материал и быть уверенным в том, что он соответствует всем желаемым требованиям.

алюминий
асбест
асфальтобетон
асбесто-цементные плиты
бетон, железобетон
битум
бронза
винипласт
Вода при температуре више 0
Войлок шерстяной
гипсокартон
гранит
древесина из дуба, волокна размещены вдоль
древесина из дуба, волокна размещены поперек
древесина из сосны или ели, волокна размещены вдоль
древесина из сосны или ели, волокна размещены поперек
до 221 Вт/м2
0,151 Вт/м2К
1,05 Вт/м2К
0,35 Вт/м2К
до 1,51 Вт/м2К
0,27 Вт/м2К
64 Вт/м2
0,163 Вт/м2К
0,6 Вт/м2К
0,047 Вт/м2К
0,15 Вт/м2К
3,49 Вт/м2К
0,23 Вт/м2К
0,1 Вт/м2К
0,18 Вт/м2К
до 0,15 Вт/м2К
плита древесно-стружечная или плита ориентировано-стружечная
железобен
картон используемый для облицовки
керамзит, плотность 200кг/м3
керамзит, плотность 800кг/м3
керамзитобетон, плотность 500кг/м3
керамзитобетон, плотность 1800кг/м3
кирпич керамический, пустотелый брутто 1000, плотность 1200кг/м3
кирпич керамический, пустотелый брутто 1400, плотность 1600кг/м3
кирпич красный глиняный
кирпич силикатный
Кладка из изоляционного кирпича
Кладка из обыкновенного кирпича
Кладка из огнеупорного кирпича
Краска масляная
0,15 Вт/м2К
1,69 Вт/м2К
0,18 Вт/м2К
0,1 Вт/м2К
0,18 Вт/м2К
0,14 Вт/м2К
0,66 Вт/м2К
0,35 Вт/м2К
0,41 Вт/м2К
0,56 Вт/м2К
0,7 Вт/м2К
до 0,209 Вт/м2К
до 0,814 Вт/м2К
1,05 Вт/м2К
0,233 Вт/м2К
Дерево
  • Плотность, кг/м3: 500
  • Коэффициент теплопроводности, Вт/М°с: 0,14
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,5
Щелевой цегла
  • Плотность, кг/м3: 1400-1700
  • Коэффициент теплопроводности, Вт/М°с: 0,5
  • Механопрочность, кгс/см2: 100-200
  • Вологопоглинання,% маси: 12-18
  • Морозоустойчивость, циклы: 100
  • Рекомендуемая толщина стены для средней полосы, м: не менее 1,2
Поризованный блок
  • Плотность, кг / м3: 400-1000
  • Коэффициент теплопроводности, Вт/М°с: 0,18-0,28
  • Механопрочность, кгс / см2: 100-150
  • Влагопоглощение, % масcы: 10-16
  • Морозоустойчивость, циклы: 100
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
Керамзитобетон
  • Плотность, кг/м3: 850-1800
  • Коэффициент теплопроводности, Вт/М°с: 0,4-0,8
  • Механопрочность, кгс/см2: 35-75
  • Влагопоглощение, % масcы: 0
  • Морозоустойчивость, циклы: від 50
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
Пенобетон
  • Плотность, кг/м3: 600-1000
  • Коэффициент теплопроводности, Вт/М°с: 0,14-0,22
  • Механопрочность, кгс/см2: 15-25
  • Влагопоглощение, % масcы: 10-16
  • Морозоустойчивость, циклы: від 35
  • Рекомендуемая толщина стены для средней полосы, м: не менее 1
Газобетон
  • Плотность, кг/м3: 300-600
  • Коэффициент теплопроводности, Вт/М°с: 0,08-0,14
  • Механопрочность, кгс/см2: 25-50
  • Влагопоглощение, % масcы: 25
  • Морозоустойчивость, циклы: від 50
  • Рекомендуемая толщина стены для средней полосы, м: не менее 0,4

Плотность полиэтилена 2020

Структура молекулПлотность полиэтилена – важный тип его технических характеристик.

При увеличении плотности материал приобретает большую жесткость, твердость, соответственно, увеличивается его прочность на разрыв, а также повышается барьер для проникновения химических элементов.

Виды полиэтилена и способы получения

Различают полиэтилен высокого давления, имеющий низкую плотность (Low-Density PE), и полиэтилен низкого давления, имеющий высокую плотность (High-Density PE). То есть это два вида полиэтилена под русскими маркировками ПЭВД и ПЭНД.

Полиэтилен с низкой плотностью производится методом радикальной полимеризации в условиях давления 120-150 МПа при участии кислорода или же пероксидов. ПЭВД характеризуется множеством цепочек из длинных ответвлений в цепи полимеров.

Полиэтилен с высокой плотностью производится по технологии каталитической полимеризации, обладает характеристикой линейных структур с наличием боковых коротких ответвлений.

Плотность полиэтилена измеряется в пропорции единиц кг на м3.

ПЭВД имеет показатели 910 - 925 кг/м3.

ПЭНД имеет показатели 941 - 965 кг/м3.

Технологические процессы позволяют также изготавливать ПЭ среднего давления с показателями 926 - 940 кг/м3.

Характеристики

  • Отличается способностью к быстрой переработке.
  • Материал биологически безопасный.
  • Склонен к растрескиванию при перегрузках.
  • Может отличаться нестабильностью размеров.
  • Обладает высокими диэлектрическими качествами.
  • Стойкость к химическим элементам, радиации.
  • К маслам, жирам, излучению УФ-лучей не стоек.
  • Диапазон использования на отдельные марки от минус 120 градусов до плюс 90 градусов.

Показатели плотности ПЭ и влияние на характеристики

Показатели плотности полиэтилена не имеют существенного влияния на диэлектрику, однако наличие примесей в полиэтилене с высокой плотностью способно увеличить его диэлектрические потери. В связи с этим качеством полиэтилена его используют как электроизоляционный материал и изделия на его основе в широком диапазоне различных частот и температурных режимов.

Плотность ПЭ зависит от степени его кристалличности, что оказывает большое влияние на физико-механические свойства полиэтилена, а также диэлектрические показатели. Плотность ПЭ не влияет на свойства электрического, но примеси, содержащиеся в ПЭНД, увеличивают его диэлектрические потери. С повышением показателей плотности ПЭ увеличивается t◦C плавления.

Полиэтиленовые изделия низкой плотности могут подвергаться эксплуатации до t◦ 60C, а изделия, выполненные из полиэтилена высокой плотности - до t◦ 100C. Судя по описаниям и характеристикам можно сделать заключение, что плотность полиэтилена напрямую зависит от скорости его застывания.

производство и основные свойства 2020

Металлоценовый линейный полиэтилен (ЛПНП) – это полимер низкой плотности, который схож по своим свойствам с полиэтиленом высокой плотности (ПЭВП), но обладает рядом отличительных особенностей, которые позволяют отнести его к другой группе продуктов. В первую очередь, это более высокая температура плавления (размягчения), позволяющая использовать его для упаковки горячих продуктов. ЛПНП может эксплуатироваться как при низких, так и при высоких температурах, он более устойчив к проколам, чем ПЭВП, лучше тянется. Все эти преимущества позволяют металлоценовому полиэтилену вытеснять ПЭВП из некоторых секторов и областей применения.

Особенности материала

Гранулы металлоценового ЛПНППленки из ЛПНП имеют высокую прочность даже при небольшой толщине. Это позволяет существенно экономить сырье при их изготовлении.

Так как состав молекул у металлоценового полиэтилена однородный, такой материал имеет низкую точку плавления. Это ускоряет сварку и обеспечивает прочность горячего шва.

К основным преимуществам металлоценового линейный полиэтилена можно отнести:

  1. высокие показатели удлинения и повышенная прочность при растяжении;
  2. устойчивость к химическому воздействию;
  3. стойкость к повреждениям и проколам;
  4. ударопрочность;
  5. хорошие изоляционные свойства;
  6. меньший коэффициент мутности.

Благодаря прочности материала, из него изготавливают пленки общего назначения, стрейч- и стрейч-худ пленки, материалы для ламинирования, молочные пленки и материалы для использования в сельскохозяйственной сфере. Он часто используется в виде добавки к различным видам полиэтилена, а также в качестве одного из слоев при производстве многослойных пленок. Растягивающийся металлоценовый полиэтилен не требует создания термокамер для усадки пленки, отличается хорошими прочностными и эксплуатационными характеристиками.

Производство

Завод по производству линейного полиэтиленаЛПНП - это полиэтилен, для которого в качестве сополимера используется бутен, гексен или октен. Он производится при помощи катализаторов с одним центром полимеризации, которые называются металлоценовыми. Они помогают регулировать молекулярный вес, свойства полиэтиленов и их структуру.

ЛПНП может производиться 3 способами, которые отличаются тем, в какой среде происходит процесс полимеризации:

  • газофазный;
  • суспензионный;
  • в растворе.

При использовании суспензионного способа используют хромовые катализаторы, температура должна составлять 100 градусов, а показатели давления быть в пределах 689—4826 кН/м2. ЛПНП в данном случае изготавливается в виде порошка.

При растворной полимеризации используют циглеровские катализаторы. Необходимая для процесса температура должна достигать 180-250°С, данные по давлению должны быть в диапазоне 2757-4137 кН/м2. Используя этот способ, непосредственно в реактор можно вводить добавки к материалу.

Газофазный способ имеет большую эффективность (до 25-30% превращения за цикл больше, чем при жидкой полимеризации примерно 2% превращений). Но суспензионная и растворная полимеризация проводится в менее дорогостоящих установок, что зачастую склоняет выбор инвесторов в их сторону.

Производство металлоценового линейного полиэтилена требует больших капиталовложений, а самое главное наличие доступного сырья – этилена и сополимеров. При этом, этилен достаточно сложно доставить до места производства, если оно не находится рядом.

Итак, металлоценовый ЛПНП – это материал с отличными функциональными характеристиками, который используется в различных сферах деятельности, но в первую очередь для создания прочных полиэтиленовых пленок.

Химические и физические свойства полиэтилена, технические характеристики 2020

Заслуженную популярность полиэтилен приобрел благодаря своим физико-химическим свойствам, обусловленным его химическим строением.

Химические

Свойство

Значение

Газопроницаемость

низкая

Паропроницаемость

низкая

Устойчивость к органическим и неорганическим кислотам

высокая (за исключением 50% раствора азотной кислоты)

Устойчивость к растворам солей

высокая

Взаимодействие со щелочами

не взаимодействует

Растворимость в органических растворителях

низкая (слегка разбухает)

Химические вещества, разрушающие полиэтилен

газообразный и жидкий фтор и хлор

Благодаря своим химическим свойствам в полиэтиленовых тарах можно хранить воду, алкоголь, соки, бензин, кислоты, масла, растворители. Если упаковать изделие в полиэтиленовый пакет или пленку, то они в свою очередь надежно защитят его от вышеуказанных жидкостей.

Физические

Физические свойства полиэтилена находятся в сильной зависимости от его вида. Менее плотный полиэтилен высокого давления более мягкий, чем полиэтилен низкого давления. Он более эластичный, меньше страдает от разрывов и проколов, однако имеет более низкую температуру плавления. Полиэтилен низкого давления более твердый и прочный ввиду более высокой плотности.

Свойство

Значение

Цвет

от прозрачного до белого в зависимости от толщины

Запах

не имеет

Эластичность

высокая

Твердость

чем ниже плотность, тем мягче

Плотность, г/см3

полиэтилен высокого давления - 0,900-0,939; полиэтилен низкого давления - 0,931-0,970

Устойчивость к ударам

высокая

Эксплуатационные температуры, 0С

-70 +80

Температура плавления, 0С

полиэтилен высокого давления - +103-110; полиэтилен низкого давления - +125-132

Поглотительная способность

низкая

Проводимость тока

не проводит

Существуют также сверхмолекулярный полиэтилен, который выдерживает сверхнизкие и сверхвысокие температуры (от -260 до +120 0С), более устойчив к растрескиванию и воздействию химических веществ. У данного вида полиэтилена также значительно повышена износостойкость.

Недостатки полиэтилена: Главный недостаток полиэтилена – это низкая устойчивость к старению под воздействием солнечного света и УФ-лучей. Снижения негативного влияния данного свойства достигают путем добавления сажи и производных бензофенонов.

Положительные физико-химические свойства полиэтилена можно улучшить добавлением различных химических веществ во время полимеризации или обработкой готового полиэтилена:

1. Добавлением олефинов и полярных мономеров добиваются усиления прозрачности и эластичности, снижения растрескивания;

2. Добавляя сополимеры и другие полимеры усиливают ударопрочность;

3. Хлорированием, бромированием и фторированием улучшают химическую и тепловую стойкость.

Эксплуатационный свойства изделий, произведенных из полиэтилена, во многом зависят от скорости и равномерности охлаждения и условий эксплуатации: температуры, давления, продолжительности и степени нагрузки, условий хранения.

Температура плавления полиэтилена 2020

Температура плавления различных сортов полиэтилена составляет от 103 до 137°C.

Анализируя этот показатель, можно разделить все разновидности этого полимера на две большие группы. У представителей первой группы температура плавления находится в пределах от 103 до 110°C, а у второй - от 130 до 137°C. Отличия связаны с тем, что существуют две принципиально отличающиеся технологии производства полиэтилена. Поэтому свойства материалов, полученных по разным технологиям, заметно отличаются.

Плавление полиэтиленаПри давлении 100-288 МПа синтезируют полиэтилен c низким удельным весом. В России чаще всего его обозначают аббревиатурой ПВД (высокого давления), а за рубежом - LDPE (полиэтилен с низкой плотностью, Low Density Polyethylene).

В отличие от первого метода, полиэтилен высокой плотности получают синтезом при невысоком давлении (0,1-0,495 МПа). Международное общепринятое обозначение этого материала - HDPE (полиэтилен с высокой плотностью - High Density Polyethylene), а у нас - ПНД (то есть низкого давления).

На большинстве изделий из полиэтилена, изготовленных в России, присутствует интернациональная маркировка - HDPE либо LDPE. Мы также будем придерживаться терминологии, принятой во всём мире.

Свойства ПВД

Полимерные цепочки этого материала короткие и разветвлённые, за счёт этого материал имеет низкую плотность - около 0,92 г/см3. Температура плавления ПВД низкая. Этот полиэтилен пластичен - легко тянется и устойчив к механическим повреждениям. За счёт низкого удельного веса он имеет меньшую теплопроводность и теплоёмкость. Из LD PE также изготавливают вспененный полиэтилен, являющийся хорошим теплоизолятором.

Свойства ПНД

Удельный вес - выше, чем у LDPE - порядка 0,95 г/см3. На изменение свойств влияют более длинные полимерные цепочки с меньшим количеством устойчивых поперечных связей. Температура его плавления - высокая. Как следствие, этот материал более жёсткий и выдерживает повышенные нагрузки.

Как отличить ПВД от ПНД

Если сравнивать плёнки, полученные из LD PE и PE HD, то заметно, что первые имеют большую толщину и легче растягиваются, имеют характерный блеск и кажутся навощёнными. Напротив, плёнки из HD PE очень тонкие, более жёсткие, издают характерное лёгкое шуршание при смятии. Поверхность изделий из такого материала обычно не глянцевая, а матовая.

Золотая середина

Существует интересная разновидность, именуемая смесовым полиэтиленом. Он получается путём смешивания расплавов LD PE и HD PE при производстве готовых изделий. Для корректировки свойств материала в расплав вводят модифицирующие добавки. Меняя пропорции LD PE и HD PE, можно получить более пластичный или более жёсткий материал.

Как мы уже отмечали, при увеличении количества поперечных межмолекулярных связей (ветвлений) полиэтилен приобретает пластичность и прочность. Для того, чтобы существенно увеличить количество таких связей, при синтезе полиэтилена при высоком давлении материал подвергают воздействию жёсткого ионизирующего излучения. Называют полученный полимер сшитым полиэтиленом. Его прочность настолько высока, что он успешно применяется для производства всевозможных труб, работающих при повышенном давлении.

Теплопроводность цветных металлов, теплоемкость и плотность сплавов: таблицы при различных температурах

Теплопроводность цветных металлов и технических сплавов

В таблице представлены значения теплопроводности металлов (цветных), а также химический состав металлов и технических сплавов в интервале температуры от 0 до 600°С.

Цветные металлы и сплавы: никель Ni, монель, нихром; сплавы никеля (по ГОСТ 492-58): мельхиор НМ81, НМ70, константан НММц 58,5-1,54, копель НМ 56,5, монель НМЖМц и К-монель, алюмель, хромель, манганин НММц 85-12, инвар; магниевые сплавы (по ГОСТ 2856-68), электрон, платинородий; мягкие припои (по ГОСТ 1499-70): олово чистое, свинец, ПОС-90, ПОС-40, ПОС-30, сплав Розе, сплав Вуда.

По данным таблицы видно, что высокую теплопроводность (при комнатной температуре) имеют магниевые сплавы и никель. Низкая же теплопроводность свойственна нихрому, инвару и сплаву Вуда.

Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов

Теплопроводность металлов, алюминиевых, медных и никелевых сплавов в таблице дана в интервале температуры от 0 до 600°С в размерности Вт/(м·град).
Металлы и сплавы: алюминий, алюминиевые сплавы, дюралюминий, латунь, медь, монель, нейзильбер, нихром, нихром железистый, сталь мягкая. Алюминиевые сплавы имеют большую теплопроводность, чем латунь и сплавы никеля.

Коэффициенты теплопроводности сплавов

В таблице даны значения теплопроводности сплавов в интервале температуры от 20 до 200ºС.
Сплавы: алюминиевая бронза, бронза, бронза фосфористая, инвар, константан, манганин, магниевые сплавы, медные сплавы, сплав Розе, сплав Вуда, никелевые сплавы, никелевое серебро, платиноиридий, сплав электрон, платинородий.

Удельное сопротивление и температурный коэффициент расширения (КТР) металлической проволоки (при 18ºС)

В таблице указаны значения удельного электрического сопротивления и КТР металлической проволоки, выполненной из различных металлов и сплавов.
Материал проволоки: алюминий, вольфрам, железо, золото, латунь, манганин, медь, никель, константан, нихром, олово, платина, свинец, серебро, цинк.
Как видно из таблицы, нихромовая проволока имеет высокое удельное электрическое сопротивление и успешно применяется в качестве спиралей накаливания нагревательных элементов множества бытовых и промышленных устройств.

Удельная теплоемкость цветных сплавов

В таблице приведены величины удельной (массовой) теплоемкости двухкомпонентных и многокомпонентных цветных сплавов, не содержащих железа, при температуре от 123 до 1000К. Теплоемкость указана в размерности кДж/(кг·град).
Дана теплоемкость следующих сплавов: сплавы, содержащие алюминий, медь, магний, ванадий, цинк, висмут, золото, свинец, олово, кадмий, никель, иридий, платина, калий, натрий, марганец, титан, сплав висмут — свинец — олово, сплав висмут-свинец, висмут — свинец — кадмий, алюмель, сплав липовица, нихром, сплав розе.

Также существует отдельная таблица, где представлена удельная теплоемкость металлов при различных температурах.

Удельная теплоемкость многокомпонентных специальных сплавов

Удельная (массовая) теплоемкость многокомпонентных специальных сплавов приведена в таблице при температуре от 0 до 1300ºС.
Размерность теплоемкости кал/(г·град).
Теплоемкость специальных сплавов: алюмель, белл-металл, сплав Вуда, инвар, липовица сплав, манганин, монель, сплав Розе, фосфористая бронза, хромель, сплав Na-K, сплав Pb — Bi, Pb — Bi — Sn, Zn — Sn — Ni — Fe — Mn.

Плотность сплавов

Представлена таблица значений плотности сплавов при комнатной температуре.
Приведены следующие сплавы: бронза, оловянистая, фосфористая, дюралюминий, инвар, константан, латунь, магналиум, манганин, монель — металл, платино — иридиевый сплав, сплав Вуда, сталь катаная, литая.

ПРИМЕЧАНИЕ: Будьте внимательны! Плотность сплавов в таблице указана в степени 10-3. Не забудьте умножить на 1000!
Например, плотность катанной стали изменяется в пределах от 7850 до 8000 кг/м3.

Источники:

  1. Михеев М. А., Михеева И. М. Основы теплопередачи.
  2. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др.; Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
  3. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
  4. Шелудяк Ю. Е., Кашпоров Л. Я. и др. Теплофизические свойства компонентов горючих систем. М.: 1992. — 184 с.
  5. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.