Содержание

Конструкция и принцип работы ротора Дарье

Ротор (или турбина) Дарье — это устройство, широко применяющееся в ветроэнергетике. Разработка принадлежит авиаконструктору Жоржу Дарье. Главное преимущество — способность работать при любых направлениях воздушного потока и при неблагоприятных погодных условиях.

Принцип работы

Ветровая турбина Дарье работает по тому же принципу, что и любое другое устройство этого типа. Работа основана на принципе вращения лопастей вокруг оси. Кинетическая или внутренняя энергия рабочего тела (газа или жидкости) преобразуется в механическую работу. У ротора Дарье ось вращения расположена перпендикулярно потоку источника энергии. Поскольку турбина приспособлена для использования альтернативных источников энергии, в роли рабочего тела выступает ветер.

Принцип работы

Принцип работы конструкции ротора Дарье основан на разности аэродинамических показаний. Благодаря этому обеспечивается вращение лопастей механизма. После того как образовалась циркуляция потоков воздуха, устройство начинает вращаться бесперебойно.

На каждое крыло по отдельности воздействует сила подъема относительно воздушного потока. Показатели этой силы зависят от угла, который образовывается между лопастью и величиной скорости потока ветра. Момент силы, который образуется в момент запуска, носит переменный характер, а не постоянный. Вихреобразование ротора Дарье имеет определенную цикличность, которая связана с движением лопастей. Для создания подъемной силы, которая обеспечивает работу механизма, нужно обеспечить бесперебойное и непрерывное движение крыльев.

Устройство конструкции

Конструкция ротора проста. Трое аэродинамических крыльев закреплены на радиальных балках. Существуют три типа турбины Дарье:

  • Классический. Лопасти имеют форму полумесяца. Их размер достаточно большой — почти сравним с длиной основной оси. Основание имеет прочный устойчивый полукруглый фундамент.
  • Тип Н. Три крыла, имеющие прямую форму и расположенные относительно горизонтальных опор под прямым углом, находятся на верхнем отсеке конструкции. Опоры крепятся к несущей оси. Достоинства этой конструкции — быстроходность, высокая эффективность, полное отсутствие инфразвука. Ротор Н-образного типа прост в сборке и ремонте, надежней классической ветровой турбины Дарье, дешевле — и поэтому распространен в применении.
  • Винтообразный тип. Лопасти изготовлены в виде изогнутых спиралей. Они также расположены на верхнем отсеке несущей оси вращения. Благодаря закрученной форме крыльев, вращение ротора происходит равномернее. Благодаря этому нагрузка на несущие узлы снижается, а срок службы механизма увеличивается.

Принцип работы

Для обеспечения работы бытовых электростанций чаще всего используется ротор Савониуса Дарье. Такое название носит ветровая турбина, совмещенная с ротором Савониуса, который выступает в роли стартёра (устройства запуска). Комбинированная конструкция отличается большей мощностью и производительностью по сравнению с «чистыми» типами. Область применения механизма не ограничивается только электростанциями — он может быть совмещен с теплогенератором и быть использован в системе теплоснабжения. А еще такой гибрид соединяют с насосами и применяют для закачки и откачки воды.

Каждый из трех типов имеет свои недостатки. Классическая ветровая установка обладает меньшей эффективностью. Установке с ротором Дарье необходимы генераторы. Самостоятельно она запускаться и раскручиваться не может. При сильных, ураганных порывах ветра механизм может начать функционировать самостоятельно, при этом процесс трудно поддается контролю.

Устройство Н-образного типа легкое в эксплуатации, но быстро изнашивается из-за больших аэродинамических нагрузок. Спиральный ветрогенератор за счет своей конструкции надежней, но технология его изготовления сложна, поэтому он стоит дорого.

Неоспоримое достоинство ротора всех видов — отсутствие зависимости от силы и направления ветрового потока. Допустимо расположение на прилегающей территории иных сооружений, что облегчает проведение ремонтных работ.

Ротор Дарье своими руками

Для работы понадобятся:

  • генератор;
  • лопасти;
  • болты для крепления;
  • шкурка для обработки;
  • металлические опоры;
  • мачта или иная деталь, подходящая на роль оси вращения;
  • инструменты (сверло, молоток и т.п.).

Принцип работы

Лопасти можно приобрести в магазине или сделать из подручных материалов. Например, подойдут обрезки труб из поливинилхлорида.

Сначала выполняется чертеж. Затем подготавливается каждая деталь — лопасти нужно ошкурить, в опорах просверлить отверстия для крепежа. Проводится соединение опор с аэродинамическими крыльями.

На заранее приготовленное основание устанавливается ось. Основанием может служить бетонная заливка, металлическая конструкция. К оси крепятся лопасти.

Для подключения генератора необходимо владеть базовыми познаниями в электротехнике. В противном случае лучше доверить это дело профессионалу. После подключения генератора проводятся предварительные испытания. Устраняются неполадки и недостатки (если они обнаружены). Самодельный ротор будет служить дополнительным источником энергии.

Различные виды и типы ветрогенераторов

Для начала давайте договоримся, что говоря о ветродвигателях мы имеем в виду ту часть ветро-силовой установки (ВСУ), которая преобразует энергию ветра в энергию вращательного движения. Ветродвигатель приводится в движение ветром, он напрямую или посредством какого-то передающего механизма связан с валом, вращение которого приводит в действие оборудование, выполняющее полезную работу (например, генератор или водяной насос). Часто ветродвигатель называют ротором или ветроколесом.

В этой заметке мы расскажем об основных типах ветродвигателей. Дилетанту, впервые столкнувшемуся с ветроэнергетикой не просто сделать правильный выбор из множества типов таких установок.

Компас выбора

В первую очередь, надо чётко знать, что тебе надо, какую желаемую мощность ожидаешь получить от своей установки, какие погодные условия местности и после всего переходить к детальному знакомству с тем или иным типом ветряка. А различные виды ветрогенераторов выдают совершенно разные результаты своей работы. В данной публикации вы узнаете, какие типы ветрогенераторов существуют на сегодняшний день, и вам нетрудно после знакомства с ними сделать правильный выбор.

Для скромных аппетитов подходящим выбором будет так называемый ортогональный ветрогенератор, который может подойти к применению в той местности, где бывают очень слабые дуновения ветерка. Он имеет несколько параллельных к оси лопастей, расположенных на некотором расстоянии от неё. (см. фото).

Итак, ветрогенераторы по своему виду различаются по:

  • количеству лопастей,
  • материалам, из которых изготовлены лопасти,
  • расположению оси вращения к поверхности земли,
  • шаговому признаку винта.

По числу лопастей они бывают одно-двух-трёх и многолопастные. Последние начинают своё вращение при малейшем движении воздуха, но применимы лишь для таких целей, где сам факт вращения важен, а не вырабатываемая электроэнергия. То есть, они незаменимы, скажем, при перекачке воды из глубоких колодцев.

По материалам, из чего сделаны лопасти, различают жёсткие и парусные ветрогенераторы. Парусные намного дешевле жёстких, сделанных из стеклопластика, или из металла, но в ходе эксплуатации можно замучиться ремонтировать их.

По расположению оси вращения к поверхности почвы различают горизонтальные ветрогенераторы и вертикальные. Их отличия настолько деликатны, что при разных условиях они меняются местами в своём превосходстве. С вертикальной осью ветряки сразу схватывают малейшие дуновения ветерка, не требуют флюгера, но они менее мощные, чем горизонтальные.

По шаговому признаку винта ветрогенераторы бывают с изменяемым и фиксированным шагом. Изменяемый шаг, бесспорно, даёт возможность увеличить скорость вращения, но какова конструкция! Она сложна, увеличивает вес ветряка, то есть, потребует неисчислимых лишних затрат. Куда более прост и надёжен фиксированный шаг.
Таков, вкратце, ваш компас, чтобы не заблудиться в выборе.

Нужно еще привести список некоторых терминов и сокращений, которые будут использованы в дальнейшемю

  • КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
  • КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
  • Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
  • Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
  • Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
  • Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
  • Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
  • Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
  • Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
  • Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
  • Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
  • Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.

Два вида, два соперника

Как уже было отмечено, в продаже пока существуют ветрогенераторы двух видов (по расположению вала вращения к поверхности земли) – горизонтальные и вертикальные. Поговорим вначале о вертикальных.

Ветросиловые установки (ВСУ) с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок.

Ротор Савониуса

Ротор СавониусаНа первой позиции – самый простейший, чаще всего называемый ротором Савониуса.

В начале октября 1924 года русские изобретатели братья Я. А. и А. А. Воронины получили советский патент на поперечную роторную турбину, в следующем году финский промышленник Сигурд Савониус организовал массовое производство подобных турбин. За нам и осталась слава изобретателя этой новинки.

Ротор Ворониных-Савониуса, или для краткости, ВС, это, как минимум, два полуцилиндра на вертикальной оси вращения (см. фото). И какое бы направление ветра не было, как бы резко он не изменял свои порывы, такой ветряк будет спокойно вращаться вокруг своей оси, вырабатывая энергию. Это единственное и главное преимущество вертикального ветряка перед горизонтальным.

А главный его недостаток – низкое использование ветровой энергии. Объясняется это тем, что лопасти-полуцилиндры работают только в четверть оборота, а остальную часть окружности вращения они как бы тормозят своим движением скорость вращения. Расчёты показали, что при этом используется лишь третья часть ветровой энергии.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Вертикальные ветрогенераторы с ротором Дарье

В 1931 году французский конструктор Жорж Дарье (George Darrieus) предложил свой вариант ротора, который имеет от двух и более плоских лопастей. Он еще проще, чем ВС: лопасти – из простой упругой ленты безо всякого профиля. Прост в изготовлении и монтаже, но с малой эффективностью — КИЭВ – до 20%.

Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию. Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре. Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Геликоидный ротор

Геликоидный ветрогенераторЕщё один вид ветрогенератора с вертикальной осью вращения – с геликоидным ротором. Он способен равномерно вращаться благодаря закрутке лопастей. Достоинство: уменьшает нагрузку на подшипник и увеличивает срок службы. Но из-за сложной технологии слишком дорогой. (См. рисунок).

Вертикальный многолопастной ветрогенераторИ, наконец, существуют ветрогенераторы с многолопастным ротором. Это один из самых эффективных типов из разряда вертикальных ветрогенераторов. (См. рисунок).

Ветрогенераторы с горизонтальной осью

Переходим к описанию горизонтальных ветрогенераторов. По количеству лопастей их разделяют на одно-двух-трёх и многолопастные. Достоинства горизонтальных – более высокий КПД по сравнению со своими вертикальными соперниками. Недостаток: необходимость устройства флюгера для постоянного поиска направления ветра. Кроме того, при повороте к ветру скорость вращения снижается, что уменьшает его КПД.

Однолопастной ветрогенераторГлавное достоинство однолопастных – высокие обороты вращения. У них вместо второй лопасти установлен противовес, мало влияющий на сопротивляемость движению воздуха, что даёт возможность использовать их для генераторов с высокими оборотами вращения. А это позволяет уменьшить массу и габариты всей установки. (См. рисунок однолопастной ВЭУ).

Двухлопастные ВЭУ мало чем отличаются по мощности с однолопастными и рассматривать их более подробно не имеет смысла.

Трёхлопастные горизонтальные ветряки – самые распространённые на рынках сбыта. Их мощность на выходе может достигать семи мегаватт.

Горизонтальный многолопастной ветрогенераторМноголопастные установки с числом лопастей до пяти десятков обладают большой инерцией, за счёт чего при небольших оборотах вращения развивают большой крутящий момент. Такое преимущество позволяет использовать установки для работы водяных насосов, где они и занимают лидирующее положение.

Как курицу превратили в страуса

Кто не в курсе, что ветровые установки используют в качестве дополнительного источника? Все в курсе. Но как всегда, человечеству этого показалось мало, курицу пытаются превратить в страуса и, представьте себе, фигурально выражаясь, такое удаётся. В результате неустанных поисков появились совершенно новые типы ветрогенераторов, которые способны производить электричество…без лопастей. А есть и такие, которые обходятся даже без воздуха и ветра! Сейчас более подробно.

Ветрогенератор без лопастейУже выпущен довольно результативный ветрогенератор, который ловит ветер без лопастей. Такой ветрогенератор действует по принципу парусника (см. фото). «Парус», который скорее смахивает на тарелку, ловит напор воздуха, за счёт чего начинают двигаться поршни, которые находятся сразу за тарелкой, в верхней части установки.

Поршни приводят в действие гидросистему, которая и вырабатывает электричество. Такое сооружение не имеет ни шестерёнок, ни передатчиков и почти не шумит. КПД намного выше, чем у классического ветрогенератора. Кроме всего прочего, расходы при эксплуатации наполовину ниже, чем у привычных установок. Страна рождения такого проекта – Тунис.

Но и этого оказалось мало! В Португалии решили не прибегать к ветровым услугам, а использовать морскую воду. Ведь море постоянно движется, волнуется, иногда штормит, но никогда не останавливается. Налицо кинетическая энергия пропадает даром.

И пять лет тому назад, в нескольких километрах от берега, на воды Атлантического океана была спущена установка, которая даёт более 2 мегаватт электроэнергии, что вполне хватает для освещения более полутора тысяч домов.

Схематическое устройство таково. Сооружение состоит из трёх секций, между которыми находятся поршни. Внутри секций вмонтированы гидродвигатели и генераторы. Принцип работы простой до безобразия. Секции качаются на волнах, которые их изгибают, что приводит в движение гидропоршни. Те давят на масло, оно поступает в гидравлические двигатели и далее движение передаётся на генераторы. Всё, электроэнергия пошла на берег.

Сейчас работает три секции, к ним планируют подсоединить ещё 25 таких конверторов и тогда проектная мощность морской установки увеличится до 20 мегаватт, что даст возможность снабдить током около 15000 домов.

Теперь вы верите в то, что из курицы можно сотворить настоящего страуса!

В.Ильин

Поплавковые электростанции конструируют во всем мире, в том числе и в России:

Создаем ветрогенератор Савониуса своими руками

Применение ветрогенераторов становится все более распространенным способом производства электроэнергии. Они довольно просты, не требуют слишком значительного ухода и частых ремонтов, позволяют обеспечить электроэнергией частный дом или служат источником дополнительного питания для освещения и т.д. Стоимость готового комплекта слишком высока, что служит поводом проявить свои конструкторские способности и заняться изготовлением ветряка своими руками. Рассмотрим одну из наиболее известных и распространенных конструкций ветрогенераторов.

Что представляет собой ротор Савониуса

Ветрогенератор или, точнее, ротор Савониуса — это конструкция с вертикальной осью вращения. Лопасти такого ротора представляют собой изогнутые плоскости, объединенные обычно по 2 шт. Это вызвано тем, что большая площадь лопастей вызывает сильные противодействующие нагрузки, когда потоком ветра создается давление на тыльные стороны. Создается компенсирующее давление, уравновешивающее воздействие на обе стороны лопаток, что создает трудности при запуске.

Существуют и конструкции с большим количеством лопастей, но они немного изменены — разнесены в стороны и имеют относительно небольшую площадь. Такой вариант применяется при использовании тяжелых роторов, нуждающихся в сильном крутящем моменте для работы, и разнос лопастей относительно оси создает рычаг, увеличивающий усилие вращения.

На первый взгляд, ротор Савониуса неработоспособен, поскольку задняя сторона лопастей создает сильное сопротивление вращению оси. Но это не так. Потоки ветра, попадающие на заднюю часть лопатки, благодаря ее закругленной форме мягко омывают ее и делятся на две части. Одна уходит в сторону, а другая соскальзывает на рабочую сторону второй лопасти и способствует усилению ее вращения.

Этот эффект хорошо проявляется только при 2 лопастях, расположенных диаметрально, поэтому для увеличения крутящего момента используют пары лопастей, установленных друг под другом с поворотом относительно вертикальной оси на 90°.

Создаем ветрогенератор Савониуса своими руками

Создаем ветрогенератор Савониуса своими руками

Особенности вертикально-осевых роторов

Вертикальные конструкции имеют меньшую эффективность по сравнению с горизонтальными. Это их основной и общепризнанный недостаток. При этом, вертикальные конструкции намного удобнее в самостоятельном изготовлении. Они не нуждаются в системе наведения на ветер, что является обязательным для горизонтальных роторов. Кроме того, независимость от угла атаки ветра позволяет существенно снизить вес вращающейся части, что облегчает запуск при относительно слабых ветрах.

Помимо уже известного нам ротора Савониуса распространены другие типы вертикально-осевых конструкций:

  • ротор Дарье
  • ротор Ленца ортогональный
  • геликоидный

Обилие конструкций позволяет выбрать наиболее доступную для самостоятельного изготовления. Основная задача мастера — понять специфику избранной для повторения системы, усвоить принцип ее действия. Все допущенные ошибки обычно выражаются трудностями при запуске вращения и большим весом ротора, который создает чрезмерную нагрузку на опорные конструкции и обладает большой инерцией покоя. В сети имеется множество роликов с описаниями самодельных ветрогенераторов. Вот, например, репортаж о создании ротора Ленца:

Особенностью конструкции является сочетание подъемной силы лопастей, имеющих в сечении форму крыла самолета, с дополнительными уступами на внешней части лопастей, увеличивающими ветровое давление на них и усиливающими крутящий момент.

Подобных конструкций имеется немало, что подтверждает возможность создания своими руками ветрогенератора без крупных денежных вложений.

Использование автомобильного генератора

Создаем ветрогенератор Савониуса своими руками

Создаем ветрогенератор Савониуса своими руками

Одним из необходимых элементов ветрогенератора является собственно генератор, устройство, преобразующее энергию вращения в электрический ток.

Существуют разные пути решения вопроса, от самодельных конструкций, до использования мотор-колеса или иных готовых устройств. Одним из эффективных вариантов является автомобильный генератор. Это готовая конструкция, не нуждающаяся в каких-либо существенных изменениях или переделках.

Применение автомобильных генераторов сокращает время изготовления ветрогенератора, снимает заботу о создании генератора своими руками (часто с неясным результатом).

Приведенный видеоролик достаточно подробно и наглядно демонстрирует процесс доработки, установки и прочих действий с автомобильным генератором при создании ветряка.

Изготовление ротора Савониуса

Конструкция Савониуса, при всех своих недостатках, наиболее удобна для создания своими руками. Она не требует создания лопастей со сложными криволинейными поверхностями или сечением, способствующим созданию подъемной силы. Для изготовления лопастей Савониуса подойдут любые криволинейные элементы из продольно разрезанных пластиковых труб, металлических бочек, загнутых самостоятельно металлических листов.

Для изготовления ротора достаточной величины прежде всего потребуется ось вращения, установленная на подшипники. Наиболее распространена конструкция, когда часть вала, на которой будут закреплены лопасти, выходит из проходной ступицы с подшипником и остается свободной, чтобы не создавать препятствий для движения лопаток. Нижняя часть вала проходит через второй подшипник и оснащается шкивом для передачи вращения на мультипликатор (устройство, увеличивающее скорость вращения) или непосредственно на генератор.

Изготовление лопаток требует наличия материала. Как уже говорилось, используются изначально загнутые элементы, или применяются стальные листы (например, из оцинкованной стали), профиль которым придается самостоятельно. Выбор того или иного варианта — вопрос доступности или возможностей мастера, но если лопатки делаются полностью самостоятельно, то не возникает зависимости от размеров труб, бочек или иных цилиндров.

Установка лопаток производится на прямой линии, проходящей через ось вращения. При монтаже большого количества лопаток может получиться ситуация, когда ротор находит устойчивое положение и не запускается даже при относительно большой скорости ветра, что требует приложения к нему стартового импульса. Необходимо также следить за весом конструкции и стремиться всячески снизить его, но не в ущерб прочности. Легкая вращающаяся часть начинает движение при меньших скоростях ветра, поэтому чрезмерно увеличивать массу ротора нецелесообразно.

Рекомендуемые товары

виды ветряков, обслуживание, выбор лопастей и генератора, мощные модели и парусники

Возрастание потребностей населения в электроэнергии вынуждает изыскивать дополнительные возможности. Действующие электростанции обеспечивают потребителей только в пределах доступности, жители отдаленных и труднодоступных регионов зачастую лишены возможности подключения к сетевым ресурсам.

Решением проблемы становятся местные генераторы, действующие на бензине или дизельном топливе. Они требуют постоянных расходов, запаса топлива, запчастей. Альтернативой становятся ветрогенераторы, имеющие массу преимуществ перед традиционными источниками энергии.

Законность установки ветрогенератора

Частные ветрогенераторы мощностью до 1 кВт приравниваются к бытовым электроустановкам, поэтому каких-либо разрешений или документов на право использования не требуется. Однако, возможны сложности другого порядка. Например, установка, создающая шум, способна доставлять неприятные ощущения для соседей.

Возможны различные местные нормативы на использование ветроустановок, о которых следует узнать заранее, чтобы не оказаться в неприятной ситуации. Например, существуют ограничения по высоте мачты (до 15 м) или иные требования.

Какой нужен генератор?

Генератор — основное устройство комплекса, непосредственно вырабатывающее электроток. Его мощность определяет параметры всей установки. Выбор генератора производится путем подсчета мощности всех потребителей в доме или на участке. Суммарная мощность увеличивается на 15-20 %, а иногда и больше. Это необходимо на случай возникновения непредвиденных обстоятельств, появления в доме новых устройств.

Выбор по ветру

Ветер — источник энергии. Он достается бесплатно, но не всегда имеется в наличии. Прежде, чем приобретать или строить ветряк, следует подробно ознакомиться с метеорологической ситуацией в регионе. Важно выяснить направления, преобладающие скорости ветра, частоту и силу шквальных порывов, ураганных проявлений. Эти знания позволят определиться с типом ветряка, условиями работы оборудования и потребностями в защите.

Россия имеет преимущественно слабые и средние ветра в большинстве регионов, но для отдаленных или труднодоступных районов нередки более мощные атмосферные проявления, требующие от пользователя обладания полной информацией по силе и направлению потоков.

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

О безопасности

Вопрос безопасности использования ветрогенератора непрост. Лопасти ветряка при высоких скоростях и больших размерах способны причинить серьезные травмы, вплоть до летального исхода. Кроме того, высокие мачты опасны при возникновении сильного ветра, поскольку могут опрокинуться на жилые дома, людей, оказавшихся поблизости, причинить вред имуществу или постройкам.

При этом, большинство противников ветроэнергетики находят проблемы не там, где они есть. Существует масса утверждений о вреде устройств:

  • наличие шума
  • вибрация
  • мерцающая тень, способствующая нервно-психическим расстройствам
  • магнитный фон
  • помехи радио- и телевизионным приемникам
  • непереносимость установок животными, опасность для птиц

Большинство из этих утверждений — следствие надуманных противниками автономных источников питания аргументов. Они имеют место, но величина проблем настолько не соответствует действительности, что эти проблемы попросту не заслуживают времени на обсуждение. Если ветрогенераторы и представляют опасность, то лишь для представителей ресурсоснабжающих компаний, не желающих терять клиентов.

Тем не менее, мощные промышленные установки, использующиеся в составе крупных электростанций, способны создавать неудобства для жителей, что доказано в американском суде. Ветряки продуцировали инфразвук, вызывавший расстройства здоровья у индейцев, живших в резервации на расстоянии 200 км. Однако, учитывая размеры и мощность частного ветряка, говорить о вреде от него незачем.

Вертикалки

Ветряки с вертикальной осью вращения являются наиболее подходящей для самостоятельного изготовления группой устройств. Они имеют простую, понятную конструкцию. Не нуждаются в большом количестве узлов вращения, нетребовательны к направлению ветра. Возможности этой группы породили большое количество вариантов конструкции, некоторые из которых следует рассмотреть подробнее.

ВС

Ветрогенератор Савониуса — одна из наиболее старых разработок, увидевших свет в 20-х годах прошлого столетия. Устройство состоит из двух лопастей достаточно большой площади, изогнутых в продольном направлении. В поперечном сечении они напоминают латинскую букву S. При этом, они слегка сдвинуты друг к другу, несколько перекрывая рабочие стороны.

При воздействии потока ветра одна из лопастей получает усилие на рабочую часть, а вторая — на обратную сторону. Форма лопасти способствует рассечению потока, часть которого уходит в сторону, а другая часть соскальзывает на рабочую поверхность второй лопасти, увеличивая вращающий момент.

На основе конструкции Савониуса разработано множество моделей ветряков с увеличенным количеством лопастей, большей эффективностью и чувствительностью к слабым ветрам.

Дарье

Конструкция Дарье была предложена почти одновременно с ротором Савониуса. Ее основа — лопасти, имеющие форму крыла самолета и расположенные вертикально по касательной к окружности вращения. Требуется нечетное число лопастей, иначе возникнет чрезмерно высокое уравновешивающее усилие. Подъемная сила лопастей способствует возникновению высокой скорости вращения, превышающей этот показатель в 3-4 раза по сравнению с ротором Савониуса.

Математического описания работы устройства до сих пор не имеется, но разработки, выполненные на основе конструкции, существуют и постоянно пополняются. Существует большое количество моделей частных ветрогенераторов с мощностью, достаточной для обеспечения небольшого дома.

Ортогонал

Ортогональные конструкции являются наиболее эффективными из всех базовых моделей вертикальных ветряков. Они обладают высокими скоростями, чувствительностью, производительностью. Конструкция состоит из нескольких лопастей (обычно три и больше), расположенных на некотором расстоянии от оси параллельно ей. Рассмотренный выше ротор Дарье — один из представителей ортогональных устройств. К недостаткам можно отнести высокие нагрузки на узел вращения, способствующие быстрому выходу из строя движущихся деталей.

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Геликоид

Геликоидные конструкции созданы на основе базовой модели ортогонального типа, но со значительными изменениями геометрии лопастей. Они изогнуты по окружности вращения, получив форму, приближенную к спиральной. В результате достигается значительная стабилизация вращения, снижается износ движущихся элементов, конструкция в целом приобретает долговечность, прочность и надежность.

Более плавный режим вращения обеспечивает равномерную выработку электрического тока, что позволяет использовать устройства для прямого питания некоторых потребителей (осветительных устройств, насосов и т.д.). Для самостоятельного изготовления конструкция представляет достаточно трудную задачу из-за сложной геометрической формы лопастей.

Бочка-загребушка

Это — «народное» название многолопастного карусельного (вертикального) ветрогенератора. Устройство имеет хороший баланс, эффективно захватывает поток ветра, низкий уровень шума. Для желающих попробовать силы в изготовлении ветряк своими руками этот вариант конструкции рекомендуется как один из базовых типов конструкции. Лопасти делаются из листовой оцинкованной стали, разрезанных вдоль бочек или иного подручного материала.

Каркас — сваривается из металлического профиля — уголка, трубы и т.п. Особенность устройства в его неуязвимости для сильных порывов ветра — вокруг крыльчатки при усилении потока образуется вихревой кокон, препятствующий проникновению ветра внутрь крыльчатки. Поток просто обтекает устройство, как трубу.

Ветрогенератор Ленца

Особенность конструкции Ленца состоит в использовании вместо подшипников сильных неодимовых магнитов. Они удерживают узел вращения в «подвешенном» состоянии, что обеспечивает легкость вращения. Отсутствие трения способствует высокой долговечности оборудования. Показатели весьма впечатляющие — старт вращения происходит при скорости ветра от 0,17 м/с, а на номинальную производительность ветряк выходит уже при 3,4 м/с.

Ротор Бирюкова

Изобретение Бирюкова появилось в 60-х годах прошлого века. Особенностью конструкции является устройство ротора, имеющего два «этажа» с разным строение лопастей. КПД ветряка, заявленный изобретателем, составляет 46 %, что для подобных устройств вертикального типа весьма привлекательно.

Ротор стартует как обычное устройство Савониуса, но при наборе скорости образуется воздушная подушка из завихрений, изменяющая профиль крыльчатки на более выгодный при данном режиме вращения. Усиление ветра способствует образованию вихревого кокона, который заставляет поток обтекать его словно монолитную преграду.

Лопастники

Ветряки с горизонтальной осью вращения имеют большую эффективность, так как энергия потока ветра используется только на рабочих поверхностях, не контактируя с обратными сторонами лопастей. При этом, критически важно наличие устройства, автоматически устанавливающего для ветряка направление по ветру. Обычный вариант — свободно вращающийся вокруг вертикальной оси ветряк и хвостовой стабилизатор как у самолета.

Лопасти

Лопасти горизонтального ветряка являются основным элементом крыльчатки, принимающим поток и преобразующим его во вращательное движение. Эффективность работы обусловлена конструкцией и размерами.

Аэродинамика лопастей зависит от угла наклона, конфигурации, площади соприкосновения с потоком. Чем выше площадь контакта, тем большую энергию принимает поверхность, что имеет положительные и отрицательные стороны. Возрастание получаемой энергии способствует повышению фронтального давления на ветряк, способствующего разрушению конструкции.

Генератор

Генератор — устройство, преобразующее энергию вращения в электрический ток. Наряду с ротором, генератор для ветряка является основным узлом, который обслуживается всеми остальными элементами установки. Используются готовые конструкции, входящие в состав комплекта поставки или приобретенные отдельно, а также самодельные образцы, зачастую работающие лучше заводских.

Аварийный флюгер

Так среди специалистов принято называть устройство увода крыльчатки от чрезмерно сильного ветрового потока. Вращение, имеющее скорость, превышающую расчетную, создает ток большей силы и напряжения, чем это рассчитано и не нужен для оборудования.

Для исключения таких ситуаций существуют устройства торможения, одно из которых работает на принципе авторегулирования. Перпендикулярно направлению оси устанавливается специальная лопатка, жестко соединенная с ротором.

Хвостовой стабилизатор крепится к ротору через шарнир с пружиной. Когда ветер достигает слишком высокой скорости, усилие на тормозной лопатке превышает силу пружины, ротор отворачивается от ветра и прекращает вращаться со слишком высокой скоростью.

Токосъемник

Устройство подвода или, в нашем случае, съема электроэнергии — коллектор — достаточно капризный узел, требующий регулярного ухода, смазки, замены щеток и т.д. Процедура не самая простая, так как ветряк расположен на мачте, до аппаратуры надо еще добраться, что непросто. Необходимо иметь достаточно надежный и безопасный механизм опускания мачты, иначе аппаратура долго не продержится.

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Идея совмещать солнечные батареи с ветрогенераторами возникла практически с первых дней появления этих конструкций. Привлекают абсолютно дармовая энергия ветра и солнца, которые нуждаются только в оборудовании для захвата и преобразования. Оба комплекса вполне могут работать в связке, дополняя друг друга.

Нет ветра — используются солнечные батареи, зашло солнце — энергию дает ветряк. Для дачного домика, загородного коттеджа подобные комплексы способны обеспечить если не полноценное, то весьма обильное дополнительное электропитание, помогающее сэкономить на электроэнергии немалые суммы.

Своими руками

Приобретение готового ветрогенератора не по карману большинству пользователей. Кроме того, стремление мастерить разные механизмы и приспособления неискоренимы в народе, а если появляется еще и насущная необходимость — решение вопроса однозначно. Рассмотрим, как сделать ветрогенератор своими руками.

Простейший ветрогенератор для освещения дачи

Самые простые конструкции используются для освещения участка или питания насоса, подающего воду. В процессе участвуют, как правило приборы потребления, не боящиеся скачков напряжения. Ветряк вращает генератор, напрямую подключенный к потребителям, без промежуточного комплекта, стабилизирующего напряжение.

Ветряк своими руками из автомобильного генератора

Генератор от автомобиля является оптимальным вариантом при создании самодельного ветряка. Он нуждается в минимальной реконструкции, в основном — перемотке катушки более тонким проводом с большим числом витков. Модификация минимальна, а полученный эффект позволяет использовать ветряк для обеспечения дома. Понадобится достаточно скоростной и мощный ротор, способный вращать устройства с большим сопротивлением.

Ветрогенератор из стиральной машины

Электродвигатель от стиральной машины часто используют для создания генератора. Оптимальным вариантом является установка на ротор сильных неодимовых магнитов, обеспечивающих возбуждение обмоток. Для этого необходимо просверлить в роторе углубления, диаметром равные размеру магнитов.

Затем они устанавливаются в гнезда с чередованием полярности и заливаются эпоксидкой. Готовый генератор устанавливается на вращающуюся вокруг вертикальной оси площадку, на вал насаживается крыльчатка с обтекателем. Сзади к площадке крепится хвостовой стабилизатор, обеспечивающий наведение устройства.

Мощные модели

Самостоятельное изготовление мощных моделей ветрогенераторов требует больших усилий и теоретической подготовки. Прежде всего, требуется создание мощного генератора, требующего расчетов, правильной сборки, использования качественных материалов. Кроме того, надо сделать ротор, действующий при слабых ветрах, но способный создавать достаточное усилие для генератора. Также потребуются соответствующие устройства обработки электротока, каркас, мачта и прочие элементы конструкции и электроники.

Ветрогенератор мощностью более 1 киловатта

Ветряки подобной мощности имеются в продаже. Покупка установки позволяет получить готовое устройство с заранее известными параметрами, изготовленное из соответствующих материалов. Цены на такое оборудование начинаются от 30000 руб, что доступно не каждому пользователю.

Кроме того, потребуется сопутствующая электроника, аккумуляторы и прочая аппаратура, что увеличит расходы примерно вдвое. Дороговизна установок является основной причиной распространения моделей ветряков, сделанных своими руками.

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Вертикальный ветряк своими руками (5 квт)

Существует несколько вариантов изготовления устройство такой мощности:

  • роторная конструкция
  • цепочка парусных крыльчаток, установленных последовательно
  • использование аксиального генератора на неодимовых магнитах

Выбор наиболее удобного варианта зависит от степени подготовки и технической базы пользователя.  Рекомендуются вертикальные конструкции, независимые от направления ветра и не нуждающиеся в установке на высокие мачты.

Наиболее удачно отвечают требованиям карусельные многолопастные конструкции на основе ротора Савониуса. Существуют и промышленные установки такого класса, приобретение которых ускорит решение вопроса и позволит получить профессионально изготовленный комплекс с гарантированными параметрами.

Парусники

Парусные ветряки существуют с незапамятных времен. Они представляют собой устройства с большой площадью контакта лопастей и потока ветра, но с малой массой крыльчатки. Это дает существенное уменьшение инерции покоя, позволяющие стартовать при слабых ветрах.

Промышленные ветряки, качающие воду, известны уже более 100 лет. Они имели парусные лопасти с жестким заполнением, обладавшие низким КПД. Со временем были разработаны конструкции с мягким парусом, представляющие собой жесткую рамку с натянутой плотной тканью, одна сторона которой свободна и образует естественным образом специфический профиль. В результате получается крыльчатка с большой площадью, малым весом, простая в изготовлении и удобная в эксплуатации. Парусные конструкции успешно используются в разных условиях и обеспечивают энергией различные типы потребителей.

Самодельный генератор

Изготовление самодельного генератора — часто встречающаяся задача, возникающая при сборке ветряка. При создании используются разные методы:

  • использование готового генератора или магнето с внесением некоторых конструктивных изменений
  • создание генератора «с нуля» из подручных материалов

Оба варианта имеют свои плюсы и минусы, выбор делается на основе своих возможностей или предпочтений.

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Собираем ветрогенератор своими руками: законность установки, безопасность и выбор оборудования по ветру

Мотор для ветряка своими руками

Создание генератора с нуля требует обладания определенными познаниями, навыками работы со слесарными инструментами и опыта изготовления электротехнических устройств. Процесс создания генератора состоит из двух этапов:

  • изготовление ротора. На пластину из фанеры или иного листового материала наклеиваются неодимовые магниты в одинаковом удалении от центра. Полярность магнитов чередуется
  • изготовление статора. Наматываются обмотки числом, кратным 3 (три фазы). Они располагаются на фанерной пластине подобно магнитам ротора и соединяются определенным образом, образуя равномерный сдвиг фазы. Готовый статор заливают эпоксидкой для защиты от влаги, пыли и т.д.
  • производится сборка устройства. На оси укрепляется ротор, ось устанавливается на статор, вся конструкция закрепляется и накрывается защитным кожухом.

Расчеты мощности генератора производятся заранее. Проверка работоспособности проходит обычно сразу после сборки, вращение обеспечивается при помощи подручного устройства (чаще всего, электродрель).

Обслуживание ветрогенератора

Ветряки — довольно надежные устройства, не требующие ежедневного ухода и обслуживания. Многие пользователи свидетельствуют, что их комплекты работают практически без вмешательства человека по 2-3 года. Тем не менее, вращающиеся части изнашиваются, требуют смазки, замены подшипников.

Лопасти крыльчатки выходят из строя и требуют замены. Эти действия выполняются по мере необходимости, владелец учитывает пробег деталей и меняет их по достижении определенного срока наработки. Для промышленных моделей существуют свои режимы обслуживания, указанные в паспорте комплекта.

Рекомендуемые товары

Ротор Дарье — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июля 2016; проверки требуют 3 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июля 2016; проверки требуют 3 правки. У этого термина существуют и другие значения, см. Ротор.

Ротор Дарье, турбина Дарье (англ. Darrieus rotor) — тип турбины низкого давления, ось вращения которой перпендикулярна потоку жидкой или газовой среды. Предложена в 1931 году французским авиаконструктором Жоржем Дарье (George Darrieus)[1]. Ротор Дарье нашёл широкое применение в ветроэнергетике[2].

H-ротор Дарье — дальнейшее Н-образное развитие ротора Дарье

Ротор Дарье представляет собой конструкцию, состоящую из одного, двух и более аэродинамических крыльев, закреплённых на радиальных балках. Хотя общий принцип работы ротора Дарье в целом известен, но полного описания физических процессов и адекватной математической модели до сих пор нет. Это обусловлено сложным, сильно нестационарном характером обтекания лопастей (число Струхаля) и большим числом Рейнольдса. Главным отличием ротора Дарье от ротора Савониуса является его быстроходность. Так, если скорость лопастей ротора Савониуса близка к скорости набегающего потока, то у ротора Дарье она в 3-4 раза выше. В работе [3] показано, что характеристика ветрогенератора Дарье не является автомодельной по критерию Рейнольдса, а также существует режим начальной авторотации, в которой ротор Дарье работает в режиме ротора Савониуса.

На практике для ротора Дарье используют три лопасти, так как при их меньшем количестве нет самозапуска и возникают проблемы балансировки. При увеличении числа лопастей быстроходность ротора Дарье падает, как и в случае горизонтально-осевых ветрогенераторов.

Преимущества
  • Работа ротора Дарье, как и прочих роторов, не зависит от направления потока, следовательно турбина на его основе не требует устройства ориентации;
  • Ротор Дарье характеризуется высоким коэффициентом быстроходности при малых скоростях потока, поскольку не требует ориентации на ветер;
  • Высокий коэффициент использования энергии ветра. Роторы Дарье не уступают, и в отдельных случаях даже превосходят горизонтально-осевые конструкции ветрогенераторов [4];
  • Пониженный шум, создаваемый при работе, в отличие от горизонтально-осевых ветрогенераторов. Это связано с практически равномерным, в силу быстроходности ротора Дарье, обтеканием лопастей;
  • Относительная простота изготовления (пропеллерный профиль по длине постоянно меняется) — для профилей крыльев с прямой кромкой;
  • Ось вращения ветрогенератора совпадает с осью опорной мачты.
Недостатки
  • Значительные нагрузки на мачту, связанные с эффектом Магнуса;
  • Большая часть массы вращающегося механизма на периферии в отличие от горизонтально-осевых ветрогенераторов.
  • Отсутствие адекватной математической модели, что затрудняет конструирование ротора Дарье;
  • Большой срок окупаемости ветрогенераторов, что не позволяет производителям перейти на использование ротора Дарье с горизонтально-осевых ветрогенераторов.
  • Твайделл Дж., Уэйр А. Ветроэнергетика // Возобновляемые источники энергии = Renewable energy resources. — М.: Энергоатомиздат, 1990. — 393 с. — ISBN 5-283-02469-5.

Изготовление ветрогенератора своими руками

Для изготовления ветрогенератора своими руками нужно хорошо знать устройство этого оборудования. Сначала подбирается электрогенератор и турбина. Установка их ведется на специальной мачте, зафиксированной растяжками. Раскручивание турбины идет лопастями, на которые направляется поток ветра. Полученная энергия накапливается в аккумуляторах, а потом передается на электросети.

Принцип работы

Принцип работы ветрогенератора основан на преобразовании механической энергии в электрическую. Приводимые в движение ветром лопасти передают вращение маховику. Благодаря ротору начинается процесс формирования магнитного поля. В результате образуется электрический ток.

В бытовых условиях применяются маломощные ветряки. Их мощность находится в пределах 4 кВт с напряжением 220 Вт. Работают они в автономном режиме, не зависимо от городских сетей. Имеют стандартный набор конструктивных элементов.

Виды конструкций

В зависимости от плоскости вращения ротора, ветрогенераторы делятся на:

  • Вертикальные. Вращение турбины происходит под прямым углом к поверхности земли. Для работы достаточно незначительного ветра.
    ­
  • Горизонтальные. Ось вращается параллельно плоскости земли.

Вертикальные

Благодаря своей простоте обслуживания, используются в бытовых условиях. Все основные узлы конструкции располагаются внизу и не имеют ограничения доступа. Агрегаты не зависят от направления ветра, поскольку вращение происходит в любом направлении.

Ниже представлены разновидности вертикальных ветрогенераторов, в зависимости от встроенного механизма.

  • С ортогональным ротором. В состав конструкции входит несколько лопастей, которые располагаются параллельно оси вращения. При работе агрегат испытывает большие динамические нагрузки, что сказывается на сроке его службы. Движение лопастей сопровождается шумом, но  прибор имеет высокую эффективность и функциональность.
  • С ротором Дарье. Обладает высокой мощностью и быстроходностью. Невысокая стоимость формируется благодаря низкой себестоимости прибора. К недостаткам относится малая эффективность и сложность при самостоятельном запуске.
  • С ротором Савониуса. На оси располагается ветроколесо, состоящее из  полуцилиндров. Вращается оно в одну сторону и не зависит от смены направления ветра. Применяется для обслуживания электростанций. К недостатку относится низкий коэффициент использования силы ветрового потока.
  • С многолопастным ротором. Принцип заключается в том, что поток  ветра ловится одним рядом лопастей и передается на другой. Этим увеличивается производительность оборудования, повышается его мощность.
  • С геликоидным ротором. Имеет сложную конструкцию, но благодаря равномерному движению, узлы конструкции работают в спокойном режиме. Это сказывается на долговечности агрегата

К преимуществам вертикальных ветрогенераторов относится:
­

  • работа обеспечивается даже при слабом ветре;
    ­
  • нет зависимости от ветряного потока;
    ­
  • доступность в обслуживании благодаря невысокой мачте.

К недостатку относится низкоэффективное использование силы ветра из-за малой частоты оборотов.

Горизонтальные

Такие ветрогенераторы зависят от направления ветра. В зависимости от количества лопастей, разделяются:

  • С 1 или 2 лопастями. Имеют высокую скорость вращения. Небольшая масса облегчает установку;
    ­
  • 3-х лопастные. Находят широкое применение в бытовых условиях;
    ­
  • До 50 лопастей. В процессе работы обладают высокой инерционностью.

Разновидность горизонтальных типов ветрогенераторов представлена ниже:

  1. Оборудование парусник. Принцип работы основан на приведении в движение поршней гидросистемы с дальнейшим получением электрической энергии. Установка бесшумна в работе, обладает высокой мощностью.
  2. Летающий ветрогенератор – крыло. Работает на высоте 550 м.

Изготовление своими руками вертогенератора на 220 В

Для изготовления такого прибора необходимо сделать чертеж. Согласно его спецификации, подготавливаются основные узлы:

  • генератор;
    ­
  • лопасти;
    ­
  • мачта.

Генератор

Мощность генератора подбирается до 3,5 кВт. Изготовить его можно своими руками. Он состоит из:
­

  1. Статора. Берется листовой металл, вырезаются 2 окружности диаметром 500 мм. На один из листов, отступив немного от края, по окружности наклеиваются неодимовые магниты. Их диаметр – 50 мм, количество – 12 штук. Расположение полюсов чередуется. Та же процедура проводится и со второй пластиной, но магниты наклеиваются со смещением.
    ­
  2. Ротор. Подготавливается основание. Оно берется из немагнитного материала. На него крепится 9 катушек, на которые намотан медный провод, толщиной 3 мм, покрытый лаковой изоляцией. Количество витков формируется от 70 до 90.
    ­
  3. Ось. Важным моментом является ее точное расположение по центру ротора. Если она будет плохо отцентрирована, то в результате биения конструкция быстро разболтается.

Помещается ротор между 2 статорами с зазором 2 мм. Соединяя обмотки, формируется однофазный источник переменного тока.

Лопасти

Материал для изготовления лопастей берется:

  • Дерево. В процессе работы трескается;
    ­
  • Полипропилен. Используется только для генераторов низкой мощности;
    ­
  • Металл. Лучше дюраль. Прочный и надежный материал для изготовления лопастей любого размера.

Изготовленные лопасти устанавливаются на ось. После этого их нужно сбалансировать. Достигается это путем изменения их длины.

Установка мачты и запуск

Установка мачты ведется в местах, где рядом нет высотных зданий или лесопосадок. Они создают барьеры на пути воздушных потоков.

Располагается мачта вертикально. Лопасти поднимаются на максимальную высоту, где наиболее сильный ветер. После запуска установки ведется проверка наличия напряжения.

Дополнительное оборудование

На последнем этапе подключается дополнительное оборудование. Оно состоит из следующих агрегатов:
­

  • Аккумуляторы. Они необходимы для накопления излишков электроэнергии. Ее использование ведется в безветренную погоду.
    ­
  • Контроллер заряда. Требуется для контроля зарядного тока.
    ­
  • Преобразователь. Преобразует образующийся постоянный ток в переменный.

Сборка ветрогенератора из стиральной машины


При изготовлении ветрогненератора из стиральной машины, можно получить изделие разной мощности:
­
  • 0,15 – 0,2 кВт. Осветятся 2 комнаты и заработает телевизор;
    ­
  • 1 – 5 кВт. Достаточная мощность для работы бытовых приборов;
    ­
  • 20 кВт. Недостатка в электроэнергии не будет.

Подготовка к работе

В качестве генератора используется мотор от стиральной машины. Это может быть «Вятка» или другая советская модель. В двигателе потребуется поводить полную переделку ротора, поэтому, как вариант, можно приобрести новый.

Кроме того, необходимо подготовить:
­

  • неодимовые магниты;
    ­
  • вал;
    ­
  • редуктор;
    ­
  • мачту;
    ­
  • крыльчатку, шестерни;
    ­
  • фланец.

Пошаговое изготовление

Пошаговое изготовление ветрогенераторов из стиральной машины представлено ниже:

  1. Приобретаются магниты. Ротор мотора обрезается на токарном станке и в нем изготавливаются пазы. В них точно устанавливаются магниты. Отклонения не должно быть,  иначе произойдет их залипание, а это скажется на производительности агрегата.
  2. Фиксация магнитов проходит на суперклей. Затем они накрываются бумагой. Эпоксидной смолой заливается свободное пространство.
  3. Изготавливается на токарном станке ось. Внутри протачивается свободное пространство для электропроводки. Формируется держатель.
  4. Изготовление лопастей ведется из канализационной трубы. Ее диаметр – 16 см. Выпиливаются они при помощи лобзика.
  5. Проводится монтаж ветрогенератора. Сначала крепится генератор, который закрывается кожухом, потом устанавливаются лопасти, ротор и хвост.
  6. Мачта при помощи 4 болтов крепится на основание из бетона. Для установки силовой части применяется шарнирный механизм.
  7. После сбора установки протягивается провод к распределительному щитку.
  8. Как только все элементы будут подключены, проводится тестирование оборудования.

Сборка ветрогенератора из автомобильного генератора

Стоимость покупного генератора высокая, поэтому в качестве более экономичного варианта хорошо использовать машинный генератор. Это уже готовый прибор, на который требуется установить пропеллер и расположить его на мачте.

Подготовка к работе

Перед началом работы нужно подготовить следующие вещи:
­

  • автомобильный генератор на 12 В;
    ­
  • аккумулятор;
    ­
  • преобразователь, чтобы переходить с 12 В на 220. Его мощность – 1,2 кВт.
    ­
  • для изготовления лопастей потребуется ведро или стальная бочка;
    ­
  • лампочка от автомобиля;
    ­
  • вольтметр;
    ­
  • выключатель;
    ­
  • медный провод, сечением от 2 мм;
    ­
  • несколько хомутов.

Кроме того, инструменты: болгарка, рулетка, карандаш, набор ключей.

Порядок монтажа

Основные шаги монтажа:

  1. Стальные бочки или ведра разрезаются не до конца на 4 части. Симметрично сверлятся для болтов отверстия.
  2. Не до конца отрезанные металлические части отгибаются. Так происходит формирование лопастей. Предварительно решается вопрос, в какую сторону будет проходить вращение.
  3. Изготовленные лопасти крепятся на шкив. С помощью хомутов генератор монтируется на мачте. На основании схемы собирается проводка.
  4. Ведется проверка собранной электрической части.

Обслуживание

Чтобы система работала длительное время, ей необходимо качественной обслуживание:

  1. Вести наблюдение за щетками генератора. Не реже 1-2 раз в месяц проверять их регулировку и очищать от грязи.
    ­
  2. Проверять балансировку лопастей.
    ­
  3. Все металлические части должны быть покрыты антикоррозийным составом.
    ­
  4. Проверять натяжение тросиков мачты.

Для изготовления ветрогенераторов своими руками важно найти подходящий генератор. Оптимальным вариантом является автомобильный или мотор стиральной машины. Остальные части конструкции можно приобрести без особых затрат. Сборка конструкции ведется по существующей схеме.

Ветрогенераторы с вертикальной осью вращения

Ветрогенератор с вертикальной осью вращения

В современной жизни прекрасно функционируют высококачественные модели роторных генераторов. В их исполнении присутствуют оригинальные быстровозводимые мачты.

Роторные конструкции различаются по расположению оси вращения по отношению к поверхности земли.

Общая характеристика

Данные механизмы наделены рядом существенных особенностей перед ветряками с горизонтальной осью. У них нет как таковых узлов под ориентирование на ветровой поток. Это заметно уменьшает все гидроскопические нагрузки. Из-за своего строения, при абсолютно любом направлении ветра, конструкция располагается в абсолютно произвольном положении.

Ввиду чего, она более проста в своём исполнении. В подобных механизмах возникновение вращения создаёт подъемная сила лопастей, а также силы сопротивления.

Виды механизмов с вертикальной осью вращения:

  1. Ортогональная конструкция.
  2. Механизм Дарье.
  3. Механизм Савониуса.
  4. Конструкция на многолопастном роторе с направляющим аппаратом.
  5. Генератор с геликоидной конструкцией.

Ортогональные ветрогенераторы

Ортогональный ветрогенератор

Подобный генератор имеет в своём составе не одну лопасть. Лопасти расположены параллельно оси и находятся от нее на определенном расстоянии.

Рассматриваемый механизм считается наиболее эффективным и функциональным. Если же говорить о некоторых недостатках такого генератора, то при его работе создается определённый шумовой эффект. Кроме того, на поддержку его функционирования затрачивается немало усилий. При этом у конструкции, как правило, небольшой срок действия опорных узлов ввиду больших динамических нагрузок.

Генераторы с ротором Дарье

Ветрогенератор с ротором Дарье

Следует отдать должное данному механизму – ему присуща большая мощность и быстроходность. Кроме того, у ротора довольно низкая себестоимость. К недостаткам можно отнести невысокую эффективность. При этом данная конструкция не в состоянии запускаться самостоятельно при равномерном набегающем потоке.

Генераторы с ротором Савониуса

Ветрогенератор с ротором Савониуса

Этот вид генератора имеет довольно широкое использование для качественного функционирования бытовых электростанций. По своей конструкции подобный ротор является ветроколесом с несколькими полуцилиндрами, которые непрерывно вращаются вокруг своей оси.

Основное преимущество ротора состоит в следующем: ветроколесо постоянно вращается в одну и ту же сторону и абсолютно не зависит от направления ветрового потока. Недостаток же подобного ветрогенератора в низком коэффициенте использования энергии ветрового потока.

Генераторы на многолопастном роторе с направляющим аппаратом

Генераторы на многолопастном роторе с направляющим аппаратом

Этот вид генератора считается самым функциональным из вертикальных роторов. Подобная производительность достигается путём использования дополнительного ряда лопастей. Один из рядов забирает на себя ветровой поток и затем подает его на второй ряд лопастей. При этом сжимается сам поток.

Данное преобразование приводит к показательному увеличению скорости потока, а также мощности ротора в целом. За счет этого повышается производительность системы. Происходит это ввиду использования значительно большего количества лопастей конструкции.

Генераторы с геликоидным ротором

Генераторы с геликоидным ротором

Конструкция с подобной системой наделена гораздо более спокойным роторным вращением. Подобное характерное преимущество уменьшает нагрузку на опорные узлы. В результате значительно увеличивается срок действия механизма. При этом стоимость ротора довольно немалая ввиду непростой технологии его производства.

Преимущества и недостатки механизмов с вертикальной осью

Ветрогенераторы с вертикальной осьюК преимуществам относится:

  1. Отсутствие, как таковой, дополнительной необходимости в затратах на специальное оборудование, действие которого было бы направлено на определение направления дуновения ветра и направляло генератор навстречу потоку воздуха;
  2. Малое количество подвижных деталей, вследствие чего затраты на производство и последующий ремонт довольно незначительны;
  3. Конструкция подобного ротора ниже и при обслуживании его не возникает необходимость в наличие специальных подъемников для размещения обслуживающего персонала на высоте;
  4. На высокую эффективность ротора не оказывает абсолютно никакого влияния ни угол, ни скорость направления потока ветра.

Тем не менее, необходимо уточнить тот факт, что постоянно проводятся дальнейшие всевозможные исследования, направленные на увеличение функциональности подобного вида ветряков. Происходит это ввиду того, что роторы с вертикальной осью имеют и свои определённые недостатки.

К ним относится:

  1. Довольно большой объем лопастей системы;
  2. КПД подобного ветряка приблизительно в три раза меньше, чем КПД механизма с горизонтальной осью.

Что следует учесть при выборе?

До того момента,как возникает решение приобрести данного вида механизм, следует всё же учесть ряд определённых условий. Например, если сильные ветровые потоки не наблюдаются на территории вашего домашнего региона, то использования подобной роторной конструкции не будет себя, в общем, окупать.

Для данной местности лучше подойдёт генератор с относительно небольшой мощностью.Как верно и обратное – в природе нередко встречаются участки местности, где воздушные массы меняют своё направление несколько раз в 24 часа. В этом конкретном варианте, наоборот, допустимым и возможным является привлечение ротора с вертикальной осью.

Изготовление своими руками

Конструкция лопастей

Конструкция лопастей

Для начала следует изготовить, так называемую, турбину.

Для этого нам понадобится:

  1. Изготовление верхней и нижней опор. Разметку лучше производить с помощью лобзика. Необходимо вырезать из пластика две окружности одного диаметра. В центре первой окружности следует сделать отверстие 30 см. Это станет верхней опорой.
  2. Возьмём самую обыкновенную автомобильную ступицу. Сделаем четыре отверстия одного размера на нижней опоре. Это позволит нам укрепить хаб.
  3. Изготовим подробный эскиз для наглядности месторасположения лопастей системы и пометим на нашей опоре, расположенной внизу, те участки, где будут потом крепиться заготовленные уголки. Они предназначены для соединения лопасти и опоры.
  4. Теперь складываем лопасти в стопочку, связываем их и обрезаем до необходимого размера. От длины лопастей напрямую зависит, сколько ветровой энергии они способны получать. Тем не менее имеет место быть и нестабильность при сильном ветровом потоке.
  5. Пометим лопасти для крепления уголков. Далее сверлим в этих лопастях специальные отверстия.
  6. Скрепляем опору и лопасти с помощью заготовленных уголков.

Мастерим ротор своими руками:

  1. Кладём два роторных основания один на другой, при этом как бы совмещаем два отверстия и чертим боковую пометку. Впоследствии данный шаг позволит нам их верно расположить.
  2. Теперь изготовим два небольших картонных шаблона и аккуратно приклеим их на основания наших магнитов.
  3. Промаркируем магнит. Для определения верной полярности, как правило, используется магнитик с изолентой.
  4. Далее нам понадобится эпоксидная смола с отвердителем. Наносим ее с нижней стороны магнита.
  5. Довольно аккуратно подносим магнит к краю основания ротора.
  6. Теперь можно приклеивать наши магниты собственно к ротору.
  7. Для изготовления второго ротора, магниты следует расположить в иной полярности напротив первого ротора.
Расположение магнитов на роторе

Расположение магнитов на роторе

Изготавливаем статор:

Статор – агрегат, состоящий из 9 катушек. Они разделены на 3 группы. В каждой группе по три катушки. Сами катушки с проводом 24 AWG на 320 витков. Непосредственно параметры катушек разрешается менять.

Это зависит от напряжения, требуемого на выходе:

  1. Если наматывать катушки ручным методом, то это довольно трудно. Для облегчения самого процесса изготовим несложное приспособление – станок для намотки. Витки катушек наматываются в одном и том же направлении. Начало и конец катушек следует замотать изолентой и смазать эпоксидкой.
  2. Когда катушки уже будут намотаны, необходимо проверить идентичность. Для этого можно использовать обычные весы. Затем измеряем сопротивления наших катушек.
  3. Изготовленные катушки размещаются на вощеную бумагу с размеченной на ней схемой. Стеклоткань располагается вокруг самих катушек. Далее просверливаем отверстия в статоре для кронштейна.
  4. Труба для крепления оси хаба заведомо обрезается. В созданные отверстия будут вкручиваться болты для удержания непосредственно оси.
Расположение магнитов на роторе

Сборка статора

Заключительная сборка:

  1. В плите верхнего ротора просверливаем 4 отверстия.
  2. Упрём четыре шпильки в пластинки и установим ротор на них. Роторы испытывают притяжение, потому и необходимо изготовить данное устройство.
  3. Выравниваем роторы по отношению их друг к другу.
  4. Аккуратно и равномерно опускаем генератор. После этого следует выкрутить шпильки и убрать все пластины. Устанавливаем хаб и прикручиваем. Колпачковые шайбы и гайки, как правило, необходимы для крепления к генератору опоры лопастей.
  5. Теперь генератор можно считать собранным. Раскручиваем ветряк и измеряем параметры.
Расположение магнитов на роторе

Сборка генератора

Подобный ротор может быть реализован не только для обеспечения электричеством жилых и служебных помещений. Например, статор способен вырабатывать большое электрическое напряжение, которое вполне можно использовать для качественного нагрева бытовых приборов. При этом следует уточнить, что переменный ток преобразуется в постоянный ток. Это вполне можно использовать для зарядки аккумулятора, нагрева емкостей с холодной проточной водой, электропитания фонарей и осветительных приборов.

Рассматриваемая конструкция устанавливается на 4-х метровой высоте на краю горной кручи. Фланец, который по своему обыкновению располагается внизу, обеспечивает быструю установку ротора – необходимо прикрутить всего лишь четыре болта. Но для надежности их целесообразнее будет все же приварить.

Вертикальные ветряки могут поворачиваться за счёт флюгера. Для них не важно, по сути, направление ветрового потока.

Фактором, который обязательно следует учитывать при выборе места установки ротора, является непосредственно сила ветра. Данные по силе ветра для исследуемой и интересующей местности можно без затруднения найти в Интернете. Также поможет анемометр – специальный прибор для измерения силы ветрового потока.

Системы мировых и российских производителей

Ветрогенератор с вертикальной осью вращенияВ наши дни около 75 государств мирового сообщества довольно широко используют ветряные электростанции. Ветроэнергетика по сей день остаётся очень популярной и неотъемлемой частью нашей современной жизни. Производители Южной Америки и Азии быстрыми темпами продвигают развитие данной популярной отрасли.

Китай является одним из крупнейших поставщиком ветроэнергетической отрасли на мировом рынке. В Индии насчитывается довольно большое количество производств ветряков общей мощностью, превышающей 3000 МВт.

В нашей стране ветроэнергетическая промышленность развита во многих городах и регионах.Производство ветряных роторов есть в таких городах, как: Москва, Ташкент, Астрахань, Узбекистан, Саратов, Омск, Самара, Екатеринбург, Ульяновск, Анапа и Краснодар.

К мировым производителям относятся столь известные компании, как: Vestas, GEEnergy, Goldwind, Enercon, DongfangElectric, SiemensWind, UnitedPower.

Обзор цен

Вертикальный ветрогенератор

Стоимость роторных систем преимущественно зависит от мощности ветроэлектростанции. Иными словами, конструкцию на 2 КВт возможно купить за 6200$. Для 10 КВт ценовая политика, на подобный ветряк, составляет 40000$. С целью подзарядить автомобильный аккумулятор или мобильный телефон можно стать владельцем относительно небольшой станции на 0,6 КВт.

Стоить такая станция будет не более 3000$. Роторы естественно имеют свои различия в цене, и зависит это, как правило, от их разновидностей и фирмы производителя. Стоимость роторов российских моделей, как правило, на 1/3 дешевле своих западных собратьев.

При этом, качественные показатели станций, в целом, не имеют, как правило, существенных и ощутимых различий. Приобрести ветрогенератор целесообразно только лишь в том случае, если есть средства для вложения большой суммы денег в долговременную инвестицию при наличии подобающих погодных условий в регионе проживания.

Статья была полезна?

0,00 (оценок: 0)