Содержание

Что такое солнечный коллектор?

Солнечный коллектор - это устройство, которое поглощает световую энергию солнца и преобразует ее в тепло. Тепло накапливается под стеклянной панелью в абсорбере и нагревает жидкость-теплоноситель, которая, в свою очередь, нагревает воду для водоснабжения или отопления.

Солнечная энергия улавливается поверхностью коллектора, поэтому чем больше площадь поверхности коллектора, тем больше тепла может накопить система. Конструкция коллектора имеет хорошую теплоизоляцию, предотвращая потери тепла, а правильная установка позволяют коллектору улавливать максимум солнечного света.

Солнечные коллекторы могут применяться практически для любых хозяйственных нужд, где требуется тепло:

- для автономного горячего водоснабжения;

- в качестве основного или дополнительного отопления жилых помещений;

- для подогрева открытых и закрытых бассейнов;

- для обогрева теплиц, производственных помещений.

Главный компонент солнечной установки — коллектор. Он преобразует солнечную радиацию в тепло и затем передает его воде, которая находится в теплоаккумулирующем баке-накопителе (бойлере). Тепло из солнечного коллектора передается воде в аккумулирующем тепло баке с помощью теплообменника. Теплообменником в этом процессе может служить змеевик в баке. Бойлеры могут быть различного объема. Вертикальная конструкция обладает наибольшим КПД. Температура воды в разных частях такого бака разная — это технологическое решение предотвращает смешивание в верхней части бака уже горячей воды с входящей холодной. Горизонтальный бак снижает производительность системы на 10–20%.

Бойлер обязательно должен быть хорошо теплоизолирован, чтобы нагретая за день вода ночью оставалась горячей. Потери тепла зависят от множества факторов (температура воздуха, ветер, время года) и ночью составляют около 0,5-1С в час. В идеале бак должен сохранять температуру воды до 2 суток.

Между коллектором и баком-накопителем размещается насос. Он обеспечивает циркуляцию воды, включаясь, когда температура солнечного коллектора превышает температуру бака. 

Трубки из нержавеющих материалов соединяют бак-накопитель с коллектором. При проектировании системы желательно расположить их внутри дома. Важно иметь несколько отдельных труб между коллектором и кранами, чтобы снизить потери тепла (трубы малого диаметра) и обеспечить быструю доставку воды к потребителю, с задержкой максимум в 10–20 секунд.

Преимущества солнечных коллекторов

На сегодняшний день солнечные коллекторы являются самыми эффективными устройствами, работающими на солнечной энергии. Их эффективность достигает 90–95%.

Солнечные коллекторы безопасны для здоровья людей и окружающей среды, так как не производят вредных выбросов. 

Но основное их преимущество — экономичность. Установив солнечный коллектор, вы снизите на 90% годовые затраты на горячее водоснабжение. Экономия на отоплении может достигать 30% в зависимости от региона.

Дополнительная экономия достигается за счет снижения нагрузки на имеющийся бойлер или газовый котел. Это увеличивает срок службы имеющейся системы отопления в 2 раза. Не последним фактором является и автономность от центральных систем отопления и водоснабжения, что позволит вам не зависеть от перебоев с водоснабжением.

 

Солнечный коллектор - это... Что такое Солнечный коллектор?

Солнечный коллектор — устройство для сбора тепловой энергии Солнца (гелиоустановка), переносимой видимым светом и ближним инфракрасным излучением. В отличие от солнечных батарей, производящих непосредственно электричество, солнечный коллектор производит нагрев материала-теплоносителя.

Обычно применяются для нужд горячего водоснабжения и отопления помещений.[1]

Типы солнечных коллекторов

Плоские

Solar panels, Santorini.jpg Плоский солнечный коллектор

Плоский коллектор состоит из элемента, поглощающего солнечное излучение (абсорбер), прозрачного покрытия и термоизолирующего слоя. Поглощающий элемент называется абсорбером; он связан с теплопроводящей системой. Он покрывается чёрным цветом либо спецраствором, для повышения эффективности. Прозрачный элемент обычно выполняется из закалённого стекла с пониженным содержанием металлов, либо особого рифлёного поликарбоната. Задняя часть панели покрыта теплоизоляционным материалом (например, полиизоцианурит). Трубки, по которым распространяется вода, изготавливаются из сшитого полиэтилена (PEX) либо меди. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметиком.[2]

При отсутствии разбора тепла (застое) плоские коллекторы способны нагреть воду до 190—200 °C.

Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре. Стандартным решением повышения эффективности коллектора стало применение абсорбера из листовой меди из-за её высокой теплопроводности, поскольку применение меди против алюминия даёт выигрыш 4% (хотя теплопроводность алюминия вдвое меньше, что означает значительное превышение "запаса мощности" по теплопередаче), что незначительно в сравнении с ценой)[источник не указан 51 день] Используется также аллюминиевый экран.[2]

Вакуумные

Solar panels, Santorini.jpg Вакуумный солнечный коллектор

Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.

Фактически солнечная тепловая труба имеет устройство схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие улавливающее солнечную энергию. между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка даёт возможность сохранить около 95% улавливаемой тепловой энергии.

Кроме того, в вакуумных солнечных коллекторах нашли применение тепловые трубки, выполняющие роль проводника тепла. При облучении установки солнечным светом, жидкость, находящаяся в нижней части трубки, нагреваясь превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору. Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.

Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.

Устройство бытового коллектора

Теплоноситель (вода, воздух или антифриз) нагревается, циркулируя через коллектор, а затем передает тепловую энергию в бак-аккумулятор, накапливающий горячую воду для потребителя.

В простом варианте циркуляция воды происходит естественно из-за разности температур в коллекторе и баке-аккумуляторе, который располагается выше.

В более сложном варианте коллектор имеет свой контур, заполненный водой или антифризом. В контур включается насос для циркуляции теплоносителя. Бак может располагаться как непосредственно рядом с коллектором, так и внутри здания.

В тех случаях, когда солнечной энергии недостаточно, температуру воды на нужном уровне поддерживает дополнительный электрический нагревательный элемент, который устанавливают за баком-аккумулятором. Такое решение позволяет повысить эффективность солнечной установки, поскольку КПД солнечного коллектора снижается с ростом температуры теплоносителя.

Бывают и солнечные водонагревательные установки аккумуляционного типа, в которых отсутствует отдельный бак-аккумулятор, а нагретая вода сохраняется непосредственно в солнечном коллекторе. В этом случае установка представляет собой близкий к прямоугольной форме бак.[1]

Преимущества и недостатки плоских и вакуумных коллекторов

Вакуумные трубчатые
Плоские высокоселлективные
+ +
Низкие теплопотери Способность очищаться от снега и инея
Работоспособность в холодное время года до -30С Высокая производительность летом
Способность генерировать высокие температуры Отличное соотношение цена/производительность для южных широт и тёплого климата
Длительный период работы в течение суток Возможность установки под любым углом
Удобство монтажа Меньшая начальная стоимость
Низкая парусность
Отличное соотношение цена/производительность для умеренных широт и холодного климата
- -
Неспособность к самоочистке от снега Высокие тепло потери
Относительно высокая начальная стоимость проекта Низкая работоспособность в холодное время года
Рабочий угол наклона не менее 20° Сложность монтажа связанная с необходимостью доставки на крышу собранного коллектора
Высокая парусность

Солнечные коллекторы-концентраторы

Повышение эксплуатационных температур до 120—250 °C возможно путём введения в солнечные коллекторы концентраторов с помощью параболоцилиндрических отражателей, проложенных под поглощающими элементами. Для получения более высоких эксплуатационных температур требуются устройства слежения за солнцем.

Солнечные воздушные коллекторы

Солнечные воздушные коллекторы - это приборы, работающие на энергии Солнца и нагревающие воздух. Солнечные воздушные коллекторы представляют собой чаще всего простые плоские коллекторы и используются в основном для отопления помещений, сушки сельскохозяйственной продукции. Воздух проходит через поглотитель благодаря естественной конвекции или под воздействием вентилятора. Поскольку воздух хуже проводит тепло, чем жидкость, он передает поглотителю меньше тепла, чем жидкий теплоноситель. В некоторых солнечных воздухонагревателях к поглощающей пластине присоединены вентиляторы, которые увеличивают турбулентность воздуха и улучшают теплопередачу. Недостаток этой конструкции в том, что она расходует энергию на работу вентиляторов, таким образом увеличивая затраты на эксплуатацию системы. В холодном климате воздух направляется в промежуток между пластиной-поглотителем и утеплённой задней стенкой коллектора: таким образом, избегают потерь тепла сквозь остекление. Однако, если воздух нагревается не более, чем на 17 °С выше температуры наружного воздуха, теплоноситель может циркулировать по обе стороны от пластины-поглотителя без больших потерь эффективности. Основными достоинствами воздушных коллекторов являются их простота и надёжность. Такие коллекторы имеют простое устройство. При надлежащем уходе качественный коллектор может прослужить 10-20 лет, а управление им весьма несложно. Теплообменник не требуется, так как воздух не замерзает. Потенциальным способом снижения стоимости коллекторов является их интеграция в стены или крыши зданий, а также создание коллекторов, которые можно будет собирать из готовых сборных компонентов. Коллекторы предназначены для обогрева помещений в условиях достаточной солнечной освещенности и при отсутствии (или параллельно с ними) других источников энергии (таких как газ, электричество, жидкое и твёрдое топливо). Коллекторы не могут быть основной системой отопления, так как не обеспечивают постоянных характеристик, как в течение суток, так и при смене сезонов года. Однако система может быть интегрирована в любую существующую систему отопления и вентиляции.

Применение

Солнечный водонагреватель на жилом доме. Мальта.

Солнечные коллекторы применяются для отапливания промышленных и бытовых помещений, для горячего водоснабжения производственных процессов и бытовых нужд. Наибольшее количество производственных процессов, в которых используется тёплая и горячая вода (30—90 °C), проходят в пищевой и текстильной промышленности, которые таким образом имеют самый высокий потенциал для использования солнечных коллекторов.

В Европе в 2000 году общая площадь солнечных коллекторов составляла 14,89 млн м², а во всём мире — 71,341 млн м².

Солнечные коллекторы — концентраторы могут производить электроэнергию с помощью фотоэлектрических элементов или двигателя Стирлинга.

Солнечные коллекторы могут использоваться в установках для опреснения морской воды. По оценкам Германского аэрокосмического центра (DLR) к 2030 году себестоимость опреснённой воды снизится до 40 евроцентов за кубический метр воды[3]

В России

По исследованиям ОИВТ РАН в тёплый период (с марта—апреля по сентябрь) на большей части территории России средняя дневная сумма солнечного излучения составляет 4,0-5,0 кВтч/м² (на юге Испании — 5,5-6,0 кВтч/м², на юге Германии – до 5 кВтч/м²). Это позволяет нагревать для бытовых целей около 100 л воды с помощью солнечного коллектора площадью 2 м² с вероятностью до 80%, то есть практически ежедневно. По среднегодовому поступлению солнечной радиации лидерами являются Забайкалье, Приморье и Юг Сибири. За ними идут юг европейской части (приблизительно до 50º с.ш.) и значительная часть Сибири.

Использование солнечных коллекторов в России составляет 0,2 м²/1000 чел. На Кипре эксплуатируется около 800 м²/1000 чел., в Австрии 450 м²/1000 чел., в Германии 140 м²/1000 чел.

В летнем периоде, большинство районов России вплоть до 65º с.ш. характеризуются высокими значениями среднедневной радиации. В зимнее время количество поступающей солнечной энергии снижается в зависимости от широтного расположения установки в разы.

Для всесезонного применения установки должны иметь большую поверхность, два контура с антифризом, дополнительные теплообменники. В таком случае применяется вакуумированные коллекторы, поскольку больше разность температур между нагреваемым теплоносителем и наружным воздухом. Однако такая конструкция выше по стоимости.[1]

Сооружение коллекторов в настоящее время осуществляет­ся, в основном, в Красно­дарском крае, Бурятии, в Приморском и Хабаровском краях.[4]

Солнечные башни

Solar panels, Santorini.jpg Солнечная башня, Севилья, Испания. Построена в 2007 г.

Впервые идея создания солнечной электростанции промышленного типа была выдвинута советским инженером Н. В. Линицким в 1930-х гг. Тогда же им была предложена схема солнечной станции с центральным приёмником на башне. В ней система улавливания солнечных лучей состояла из поля гелиостатов — плоских отражателей, управляемых по двум координатам. Каждый гелиостат отражает лучи солнца на поверхность центрального приёмника, который для устранения влияния взаимного затенения поднят над полем гелиостатов. По своим размерам и параметрам приёмник аналогичен паровому котлу обычного типа.

Экономические оценки показали целесообразность использования на таких станциях крупных турбогенераторов мощностью 100 МВт. Для них типичными параметрами являются температура 500 °C и давление 15 МПа. С учётом потерь для обеспечения таких параметров требовалась концентрация порядка 1000. Такая концентрация достигалась с помощью управления гелиостатами по двум координатам. Станции должны были иметь тепловые аккумуляторы для обеспечения работы тепловой машины при отсутствии солнечного излучения.

В США с 1982 г. было построено несколько станций башенного типа мощностью от 10 до 100 МВт. Подробный экономический анализ систем этого типа показал, что с учётом всех затрат на сооружение 1 кВт установленной мощности стоит примерно $1150. Один кВт·ч электроэнергии стоил около $0,15.

Параболоцилиндрические концентраторы

Параболоцилиндрические концентраторы имеют форму параболы, протянутую вдоль прямой.

В 1913 году Франк Шуман (Frank Shuman) построил в Египте водоперекачивающую станцию из параболоцилиндрических концентраторов. Станция состояла из пяти концентраторов каждый 62 метра в длину. Отражающие поверхности были изготовлены из обычных зеркал. Станция вырабатывала водяной пар, с помощью которого перекачивала около 22 500 литров воды в минуту[5].

Параболоцилиндрический зеркальный концентратор фокусирует солнечное излучение в линию и может обеспечить его стократную концентрацию. В фокусе параболы размещается трубка с теплоносителем (масло), или фотоэлектрический элемент. Масло нагревается в трубке до температуры 300—390 °C. В августе 2010 года специалисты NREL испытали установку компании SkyFuel. Во время испытаний была продемонстрирована термальная эффективность параболоцилиндрических концентраторов 73 % при температуре нагрева теплоносителя 350 °C[6].

Параболоцилиндрические зеркала изготовляют длиной до 50 метров. Зеркала ориентируют по оси север—юг, и располагают рядами через несколько метров. Теплоноситель поступает в тепловой аккумулятор для дальнейшей выработки электроэнергии паротурбинным генератором.

С 1984 года по 1991 год в Калифорнии было построено девять электростанций из параболоцилиндрических концентраторов общей мощностью 354 МВт. Стоимость электроэнергии составляла около $0,12 за кВт·ч.

Германская компания Solar Millennium AG строит во Внутренней Монголии (Китай) солнечную электростанцию. Общая мощность электростанции увеличится до 1000 МВт к 2020 году. Мощность первой очереди составит 50 МВт.

В июне 2006 года в Испании была построена первая термальная солнечная электростанция мощностью 50 МВт. В Испании к 2010 году может быть построено 500 МВт электростанций с параболоцилиндрическими концентраторами.

Всемирный банк финансирует строительство подобных электростанций в Мексике, Марокко, Алжире, Египте и Иране.

Концентрация солнечного излучения позволяет сократить размеры фотоэлектрического элемента. Но при этом снижается его КПД, и требуется некая система охлаждения.

Параболические концентраторы

Solar panels, Santorini.jpg Экспериментальный коллектор НПО «Астрофизика»

Параболические концентраторы имеют форму параболоида вращения. Параболический отражатель управляется по двум координатам при слежении за солнцем. Энергия солнца фокусируется на небольшой площади. Зеркала отражают около 92 % падающего на них солнечного излучения. В фокусе отражателя на кронштейне закреплён двигатель Стирлинга, или фотоэлектрические элементы. Двигатель Стирлинга располагается таким образом, чтобы область нагрева находилась в фокусе отражателя. В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

В феврале 2008 года Национальная лаборатория Sandia достигла эффективности 31,25 % в установке, состоящей из параболического концентратора и двигателя Стирлинга [7].

В настоящее время строятся установки с параболическими концентраторами мощностью 9—25 кВт. Разрабатываются бытовые установки мощностью 3 кВт. КПД подобных систем около 22—24 %, что выше, чем у фотоэлектрических элементов. Коллекторы производятся из обычных материалов: сталь, медь, алюминий, и т. д. без использования кремния «солнечной чистоты». В металлургии используется так называемый «металлургический кремний» чистотой 98 %. Для производства фотоэлектрических элементов используется кремний «солнечной чистоты», или «солнечной градации» с чистотой 99,9999 % [8].

В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09—0,12 за кВт·ч. Департамент энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04—0,05 к 2015 — 2020 году.

Компания Stirling Solar Energy разрабатывает солнечные коллекторы крупных размеров — до 150 кВт с двигателями Стирлинга. Компания строит в южной Калифорнии крупнейшую в мире солнечную электростанцию. До 2010 года будет 20 тысяч параболических коллекторов диаметром 11 метров. Суммарная мощность электростанции может быть увеличена до 850 МВт.

Линзы Френеля

Линзы Френеля используются для концентрации солнечного излучения на поверхности фотоэлектрического элемента или на трубке с теплоносителем. Применяются как кольцевые, так и поясные линзы. В английском языке употребляется термин LFR — linear Fresnel reflector.

Распространение

В 2010 году во всём мире работало 1170 МВт солнечных термальных электростанций. Из них в Испании 582 МВт и в США 507 МВт. Планируется строительство 17,54 ГВт солнечных термальных электростанций. Из них в США 8670 МВт, в Испании 4460 МВт, в Китае 2500 МВт[9]. В 2011 году насчитывалось 23 производителя и поставщика плоских коллекторов из 12 стран; 88 производителей и поставщиков вакуумных коллекторов из 21 страны.[10]

Примечания

См. также

Ссылки

Литература

  • А. И. Капралов Рекомендации по применению жидкостных солнечных коллекторов. ВИНИТИ, 1988
  • Гелиотехника. Академия Наук Узбекской АССР, 1966
  • Солнечный душ\\Наука и жизнь, издательство Правда. 1986 №1, стр 131
  • Г. В. Казаков Принципы совершенствования гелиоархитектуры. Свит, 1990

принцип работы и способы применения. Солнечные коллекторы для дома :: SYL.ru

Ежедневно от нашей ближайшей звезды на землю поступает столько энергии, сколько все человечество тратит в течение года в пересчете на ее ископаемые виды. Тепловая энергия переносится видимым светом и инфракрасным излучением.

Одной из попыток приручить неиссякаемый поток тепла и света из космоса является гелиосистема теплообмена. Медленно, но уверенно солнечные коллекторы для отопления дома приобретают популярность у потребителей и вытесняют традиционные источники отопления. А для набирающей обороты концепции умного дома это и вовсе неотъемлемая часть инженерного оборудования. В его широкой доступности играет роль повышение технологичности производства и, как следствие, снижение стоимости. Около 70 % мирового рынка использования гелиосистем приходится на Китай. В южных регионах этой страны едва ли не на каждой крыше можно увидеть солнечный коллектор. Цена изделий нашего восточного соседа гораздо ниже европейских, качество довольно приемлемое.

солнечный коллектор

Сомнения прочь

В странах Средиземноморья, где количество солнечных дней - более 300 в году, солнечный коллектор для отопления и нагрева воды можно встретить практически на каждой крыше. Не вызывает сомнения эффективность использования этого источника тепла в южных регионах России. Климат средней полосы считается неблагоприятным для таких энергетических установок. Однако исследования и эксперименты доказывают целесообразность применения гелиосистем. Специальная работа была проведена в институте высоких температур Российской академии наук. Средние показатели интенсивности солнечного потока в зависимости от климатической зоны составляют 150-300 Вт/кв. м. Пиковые показатели достигают 1000 Вт/кв. м.

Исходными данными для расчета эффективности гелиосистемы было выбрано отношение поверхности в 2 кв. м коллектора к 100-литровому объему бака-накопителя. Вероятность ежедневного нагрева воды в системе оценивается следующими показателями:

  • до температуры +37 °С - 50-90 %;
  • до температуры +45 °С - 30-70 %;
  • до температуры +55 °С - 20-60 %.

Эти сухие цифры говорят о том, что в холодный период года солнечный коллектор даже при наименьшем количестве солнечных дней позволяет экономить до 60 % энергии для отопления дома.

солнечный коллектор для отопления

Виды преобразователей солнечной энергии

Солнечный коллектор предназначен для преобразования энергии дневного светила в тепловую энергию. Применяемые материалы и конструктивные решения направлены на максимальное поглощение энергии солнца, преобразование ее в тепловую и эффективную передачу для дальнейшего использования. В качестве теплоносителя используется как специальная незамерзающая жидкость, так и атмосферный воздух. Циркуляция теплоносителя бывает принудительной и естественной. В том случае если применяется естественная, конвекционная, система теплообмена, солнечный коллектор должен располагаться ниже бака-аккумулятора, например на прилегающем земельном участке. Такая схема применяется при необходимости отопления небольших или временных помещений. Объемные системы требуют использования насоса для циркуляции жидкости. Такую схему можно использовать и для устройства системы горячего водоснабжения.

Схема гелиоустановки

Система отопления состоит из следующих компонентов:

  • Солнечный коллектор преобразует энергию солнца в тепловую.
  • Подающая магистраль доставляет теплоноситель в бак-накопитель.
  • Электронасос осуществляет циркуляцию жидкости-теплоносителя.

В баке-накопителе происходит передача тепла от контура гелиоустановки контуру паровой системы отопления дома. В этой емкости может быть размещен дублирующий нагревательный элемент, который автоматически включается, если погодные условия не способствуют нагреву теплоносителя до заданных параметров. Жидкость гелиоустановки соответствует противоречивым требованиям. Она должна быть морозоустойчивой, но в то же время не испаряться при высокой температуре и не быть токсичной. В большинстве установок используется теплоноситель, состоящий из 60 % дистиллированной воды и 40 % гликоля. Автоматика позволяет без участия человека поддерживать нужную температуру внутри помещения и не допускать перегрева теплоносителя.

Вакуумный солнечный коллектор

Вакуумные системы имеют довольно сложное устройство. Основным рабочим элементом является дорогостоящая светопоглащающая трубка особой конструкции. В основу положен принцип термоса. Поверхность вакуумной трубки прозрачная. Она пропускает солнечный свет на внутреннюю трубку. Из пространства между ними откачан воздух, отсутствие газа позволяет сохранять до 97 % тепла.

В нижней части внутренней трубки находится теплоноситель – жидкость, которая при нагревании быстро переходит в газообразное состояние. В верхней части трубки происходит передача тепла коллектору, при этом теплоноситель охлаждается и, конденсируясь, возвращается в изначальное состояние. Системы с использованием вакуумных трубок обладают довольно высоким КПД при температуре ниже -37 °С и плохой освещенности. Это оборудование требует своевременной очистки от снега и монтажа строго под определенным углом. Также периодически прозрачные сегменты следует очищать от загрязнения. Вакуумный солнечный коллектор специально разрабатывался для северных широт. Он эффективно работает при отсутствии прямых солнечных лучей.

солнечный коллектор цена

Плоский гелиопреобразователь

Плоский солнечный коллектор представляет собой автономную панель, состоит из трех компонентов:

  • Поглотитель солнечного излучения. Его красят черной краской или наносят специальное покрытие.
  • Верхнее прозрачное покрытие. Изготавливается из закаленного стекла или поликарбоната.
  • Система трубок, посредством которой прогревается циркулирующий в ней теплоноситель. Как правило, делается из меди.

Задняя сторона панели имеет эффективное теплоизоляционное покрытие. Одна или несколько таких панелей подключаются к подающей линии бака-аккумулятора. Этот вид системы имеет сравнительно низкую стоимость и хорошую производительность в теплые сезоны. Минусом является низкая эффективность при отрицательных температурах и ощутимые теплопотери.

солнечный коллектор своими руками

Коллектор-концентратор

В южных широтах, где наибольшее количество ясных дней, получил распространение так называемый концентратор. Он представляет собой систему параболических отражателей, расположенных на одной криволинейной поверхности и концентрирующих солнечный свет в определенной точке. Для наибольшей эффективности требуется изменение положения в двух плоскостях вслед за движением солнца по небосводу в течение дня. Солнечные коллекторы для отопления дома такой конструкции не применяются.

вакуумный солнечный коллектор

В быту и на работе

Применение гелиоустановок решает проблемы с отоплением при ограниченном доступе к газу или электричеству, при недостаточной мощности центрального электроснабжения; в качестве вспомогательной системы отопления, горячего водоснабжения дома, коттеджа, дачи, бассейна позволяет сэкономить значительные средства владельцам. Область применения самая различная:

  • отопление производственных помещений;
  • отопление и горячее водоснабжение жилых зданий, предназначенных для постоянного и временного проживания.
  • отопление учреждений здравоохранения, туристических баз, спортивных комплексов, небольших автономных магазинов.
  • обогрев открытых и закрытых бассейнов;
  • отопление и горячее водоснабжение временных жилых и рабочих помещений.

Воздушная гелиосистема

Отопительная система может в качестве теплоносителя использовать не только жидкость, но и атмосферный воздух. Воздушный солнечный коллектор применяется для обогрева всех типов помещений и в зависимости от конструкции бывает трех типов:

  • Плоский имеет схожие принципы с подобной жидкостной конструкцией.
  • Пирамидальный использует сложную систему отражающих поверхностей.
  • Венецианские жалюзи располагаются между переплетами стекла и направляют теплый воздух в помещение. Применяется при ленточном остеклении зданий.

В отличие от жидкостных устройств воздушный солнечный коллектор может быть изготовлен из неметаллических материалов.

Солнечная система для горячего водоснабжения

Систему горячего водоснабжения можно подключить к баку-аккумулятору. Бак, таким образом, будет играть роль бойлера, в котором, в свою очередь, роль электрического тэна будет играть теплообменная спираль, включенная в контур системы обогрева. Посредством спирали теплоноситель начнет нагревать воду в баке. Таким образом, схема водоснабжения будет накопительной или проточно-накопительной.

Солнечный коллектор своими руками

Простейший солнечный преобразователь предусматривает непосредственную передачу тепла солнечного света циркулирующий внутри системы труб воде. Подобную продукцию производила отечественная промышленность в начале этого века. Солнечные коллекторы для дома изготавливались из медной трубки диаметром до 20 мм. Для удобства монтажа и использования она закручивалась в плоскую спираль, имеющую на обоих концах штуцер для подсоединения магистрального трубопровода либо просто садового шланга. Такую спираль можно было разместить на скате крыши дачного домика. Объема горячей воды вполне хватало, чтобы принять душ в конце дня и помыть посуду. Подобный солнечный коллектор своими руками можно сделать из черной пластиковой трубы. Плоский гелиопреобразователь изготавливается с помощью теплообменника от старого холодильника.

солнечные коллекторы для отопления дома

Установка коллектора

Сложность эксплуатации солнечной системы в том, что эффективность зависит от высоты солнца над горизонтом, времени года и суток, наличия облачности, влажности и температуры окружающего воздуха. Солнечный коллектор для отопления помещения в горизонтальной плоскости должен быть ориентирован строго на юг. Отклонения в сторону запада или востока допускаются в пределах 40°. При этом эффективность установки снизится примерно до 20 %. Важную роль играет угол наклона, который должен составлять от 35 до 45°.

воздушный солнечный коллектор

Самым разумным вариантом является на стадии проектирования нового жилища предусмотреть, что на крышу будет установлен солнечный коллектор. Цена на подобное оборудование значительно выше, чем на привычное паровое отопление. Но затраты с лихвой оправдаются последующей эксплуатацией. Срок окупаемости, если дом утеплен в соответствии со всеми нормами и правилами, в среднем составляет пять лет.

Солнечный коллектор своими руками для отопления дома

Различные солнечные коллекторы появились на рынке достаточно давно. Это устройства, использующие энергию солнца для нагрева воды на домашние нужды. Но приобрести популярность среди пользователей им мешает высокая стоимость, это беда всех альтернативных источников энергии. Например, общие затраты на приобретение и монтаж установки, что обеспечит нужды средней семьи, составят 5000$. Но выход есть: можно сделать солнечный коллектор своими руками из доступных по цене материалов. Какими способами это реализовать, будет рассказано в данном материале.

Как работает солнечный коллектор?

Принцип действия коллектора основан на поглощении (абсорбции) тепловой энергии солнца специальным приемным устройством и передачей его с минимальными потерями теплоносителю. В качестве приемника используются медные или стеклянные трубки, окрашенные в черный цвет.

Ведь известно, что лучше всего абсорбируют тепло предметы, имеющие темную или черную окраску. Теплоносителем чаще всего выступает вода, иногда – воздух. По конструкции солнечные коллекторы для отопления дома и горячего водоснабжения бывают таких видов:

  • воздушные;
  • водяные плоские;
  • водяные вакуумные.

Среди прочих воздушный солнечный коллектор отличается простотой конструкции и, соответственно, самой низкой ценой. Он представляет собой панель – приемник солнечной радиации из металла, заключенный в герметичный корпус. Стальной лист для лучшей теплоотдачи снабжен с задней стороны ребрами и уложен на дно с тепловой изоляцией. Спереди установлено прозрачное стекло, а по бокам корпуса имеются проемы с фланцами для подключения воздуховодов или других панелей, как показано на схеме:

Воздух, поступающий через проем с одной стороны, проходит между стальными ребрами и, получив от них тепло, выходит с другой.

Надо сказать, что установка солнечных коллекторов с нагревом воздуха имеет свои особенности. Из-за их невысокой эффективности для обогрева помещений нужно применять несколько подобных панелей, объединенных в батарею. Кроме того, обязательно понадобится вентилятор, поскольку нагретый воздух из коллекторов, находящихся на кровле, самостоятельно вниз не пойдет. Принципиальная схема воздушной системы показана ниже на рисунке:

Простое устройство и принцип работы позволяют выполнять изготовление коллекторов воздушного типа своими руками. Но потребуется много материала для нескольких коллекторов, а подогреть воду с их помощью все равно не получится. По этим причинам домашние умельцы предпочитают заниматься водяными нагревателями.

Конструкция плоского коллектора

Для самостоятельного изготовления наибольший интерес представляют плоские солнечные коллекторы, предназначенные для нагрева воды. В корпусе из металла или алюминиевого сплава прямоугольной формы размещен тепловой приемник — пластина с запрессованным в ней змеевиком из медной трубки. Приемник выполняется из алюминия или меди, покрытой абсорбционным слоем черного цвета. Как и в предыдущем варианте, снизу пластина отделена от дна слоем теплоизоляционного материала, а роль крышки играет прочное стекло или поликарбонат. Ниже на рисунке изображено устройство солнечного коллектора:

Пластина черного цвета поглощает тепло и передает его теплоносителю, движущемуся по трубкам (вода или антифриз). Стекло выполняет 2 функции: пропускает к теплообменнику солнечную радиацию и служит защитой от осадков и ветра, снижающих производительность нагревателя. Все соединения выполнены герметично, чтобы внутрь не попадала пыль и стекло не теряло прозрачности. Опять же, тепло солнечных лучей не должно выветриваться наружным воздухом через щели, от этого зависит эффективная работа солнечного коллектора.

Данный вид – самый популярный среди покупателей из-за оптимального соотношения цена — качество, а среди домашних мастеров — по причине относительно несложной конструкции. Но применять такой коллектор для отопления можно лишь в южных регионах, с понижением температуры наружного воздуха его производительность значительно падает из-за высоких тепловых потерь через корпус.

Устройство вакуумного коллектора

Еще один вид водяных солнечных нагревателей изготавливается с применением современных технологий и передовых технических решений, а потому относится к высокой ценовой категории. Таких решений в коллекторе реализовано два:

  • тепловая изоляция с помощью вакуума;
  • использование энергии парообразования и конденсации вещества, кипящего при низкой температуре.

Идеальный вариант защитить абсорбер для коллектора от тепловых потерь – это заключить его в вакуум. Медная трубка, наполненная хладагентом и покрытая абсорбирующим слоем, помещена внутрь колбы из прочного стекла, воздух из пространства между ними откачан. Концы медной трубки входят в трубу, через которую протекает теплоноситель. Что происходит: хладагент под воздействием солнечных лучей закипает и обращается в пар, он поднимается по трубке вверх и от соприкосновения с теплоносителем сквозь тонкую стенку снова переходит в жидкость. Ниже показана рабочая схема коллектора:

Фокус в том, что в процессе превращения в пар вещество поглощает гораздо больше тепловой энергии, чем при обычном нагреве. Удельная теплота парообразования любой жидкости выше, нежели ее удельная теплоемкость, а потому вакуумные солнечные коллекторы весьма эффективны. Конденсируясь в трубе с проточным теплоносителем, хладагент передает ему всю теплоту, а сам стекает вниз за новой порцией энергии солнца.

Благодаря своему устройству вакуумные нагреватели не боятся низких температур и сохраняют свою работоспособность даже на морозе, а потому могут применяться в северных регионах. Интенсивность нагрева воды в этом случае ниже, чем летом, так как зимой на землю поступает меньше тепла от солнца, часто мешает облачность. Понятно, что изготовить стеклянную колбу с откачанным воздухом в домашних условиях просто нереально.

Примечание. Существуют вакуумные трубки для коллектора, заполняемые напрямую теплоносителем. Их недостаток – последовательное подключение, при выходе из строя одной колбы придется менять весь водонагреватель.

Как изготовить солнечный коллектор?

Прежде чем приступить к работе, следует определиться с габаритами будущего водогрейного аппарата. Произвести точный расчет площади теплообмена непросто, многое зависит от интенсивности солнечного излучения в данном регионе, расположения дома, материала нагревательного контура и так далее. Правильным будет сказать, что чем больше тепловой коллектор, тем лучше. Однако, его размеры наверняка ограничиваются местом, где планируется его устанавливать. Значит, надо исходить из площади этого места.

Корпус проще всего изготовить из древесины, проложив на дно слой пенопласта или минеральной ваты. Также для этой цели удобно использовать створки старых деревянных окон, где сохранилось хотя бы одно стекло. Выбор материала для приемника тепла неожиданно широк, чего только не используют мастера-умельцы, чтобы собрать коллектор. Вот перечень популярных вариантов:

  • тонкостенные  медные трубки;
  • различные полимерные трубы с тонкими стенками, желательно черного цвета. Хорошо подойдет полиэтиленовая РЕХ труба для водопровода;
  • наружный теплообменник старого холодильника;
  • трубки из алюминия. Правда, соединять их сложнее, чем медные;
  • стальные панельные радиаторы;
  • черный садовый шланг.

Примечание. Кроме перечисленных, существует масса экзотических версий. Например,воздушный солнечный коллектор из пивных банок или пластиковых бутылок. Подобные прототипы отличаются оригинальностью, но требуют значительного вложения труда при сомнительной отдаче.

В собранный деревянный корпус или старую оконную створку с приделанным дном и уложенным утеплителем надо поместить металлический лист, накрывающий всю площадь будущего нагревателя. Хорошо, если найдется лист алюминия, но подойдет и тонкая сталь. Ее необходимо окрасить в черный цвет, а затем уложить трубы в виде змеевика.

Без сомнения, коллектор для нагрева воды лучше всего получится из медных труб, они отлично передают тепло и прослужат долгие годы.Змеевик плотно прикрепляется к металлическому экрану скобами или любым другим доступным способом, наружу выводятся 2 штуцера для подачи воды.

Поскольку это плоский, а не вакуумный коллектор, то поглотитель тепла нужно закрыть сверху светопрозрачной конструкцией – стеклом или поликарбонатом. Последний легче обрабатывается и надежнее в эксплуатации, не разобьется от ударов града.

 

После сборки солнечный коллектор надо установить на место и подключить к накопительному баку для воды. Когда позволяют условия монтажа, то можно организовать естественную циркуляцию воды между баком и нагревателем, в противном случае в систему включается циркуляционный насос.

Заключение

Осуществлять отопление дома солнечными коллекторами, сделанными своими руками, – привлекательная перспектива для многих домовладельцев. Жителям южных районов этот вариант более доступен, только придется заполнить систему антифризом и как следует утеплить корпус. На севере самодельный коллектор поможет нагреть воду на хозяйственные нужды, но для обогрева дома его не хватит. Сказывается холод и короткий световой день.

Солнечный воздушный коллектор своими руками

Использовать неисчерпаемую и бесплатную солнечную энергию человечество начало давно. Для ее сбора существуют специальные устройства – солнечные коллекторы. С каждым годом их конструкция становится все более совершенной, но высокие цены на них пока не позволяют использовать их широко и повсюду. Поэтому люди, обладающие пытливым умом и умелыми руками, пытаются сделать солнечные коллекторы самостоятельно. И своими знаниями они готовы поделиться. В данной статье предлагается узнать, как сделать солнечный воздушный коллектор своими руками.

Солнечный воздушный коллектор своими руками

Что такое солнечный коллектор

Задача солнечного коллектора – собрать тепловую энергию солнечного излучения и передать ее какому-либо веществу, которое далее передаст ее «адресату». Это вещество называется теплоносителем и в качестве которых могут выступать либо жидкости (чаще всего это вода), либо газы (почти всегда это воздух).

Вода является более эффективным теплоносителем, так как ее теплоемкость гораздо выше, чем воздуха, но ее применение связано с определенными трудностями: сброс излишнего тепла летом или защита от замерзания зимой. Воздух не сможет передать такое количество энергии, зато конструкция воздушных коллекторов гораздо проще, они гораздо надежнее и безопасней. Да и сделать солнечный воздушный коллектор своими руками гораздо проще, чем водяной. Кстати, именно воздух является первым теплоносителем, который стал применять человек. Какие преимущества есть у воздуха, как у теплоносителя:

  • Воздух не подвержен замерзанию и закипанию.
  • Воздух не обладает токсичностью.
  • Воздух не надо наделять какими-то особыми качествами (в водных системах добавляют антифризы), он всегда доступен.

Воздушные солнечные коллекторы широко применяются в системах воздушного отопления как жилых зданий, так и подвалов, гаражей, хранилищ. В каких именно странах воздушные гелиоустановки применяются наиболее широко, очень красноречиво свидетельствует диаграмма.

Использование воздушных солнечных коллекторов в различных странах мира

Видно, что наиболее экономически развитые страны нисколько не пренебрегают возможностями Солнца по нагреву воздуха. А мы, увы, пока входим в число многих 4,3% прочих.

Устройство и принцип работы воздушного солнечного коллектора

Солнечный воздушный коллектор состоит из нескольких основных частей:

Схема работы воздушного солнечного коллектора
  • Вся конструкция коллектора помещена в прочный и герметичный корпус, который обязательно снабжен тепловым изолятором. Тепло, попавшее внутрь коллектора не должно «утекать» наружу.
  • Главная деталь любого коллектора – это солнцеприемная панель, которую еще называют поглотителем или абсорбером. Задача этой панели принять солнечную энергию, а затем передать ее воздуху, поэтому она должна быть изготовлена из материала с наибольшей теплопроводностью. Такими свойствами из доступных в быту являются медь и алюминий, реже сталь. Для лучшей теплоотдачи нижнюю часть абсорбера делают как можно большей площади, поэтому могут применяться ребра, волнистая поверхность, перфорация и другие способы. Для лучшего поглощения солнечной энергии приемная часть абсорбера окрашивается в темный матовый цвет.
  • Верхняя часть коллектора герметично закрывается прозрачной изоляцией в качестве которой может применяться закаленное стекло или оргстекло, или поликарбонатное стекло.

Солнечный коллектор ориентируют на юг и придают поверхности такой наклон, чтобы максимальное количество солнечной энергии попадало на поверхность. Как говорят специалисты – для максимальной инсоляции. Холодный наружный воздух естественно или принудительно попадает в приемную часть, проходит через ребра абсорбера и выходит с другой части, снабженную фланцем для стыковки с воздуховодом, ведущим внутрь отапливаемого помещения. Стоит отметить, что вариантов конструкций солнечных коллекторов существует масса и вышеописанная  показана только для примера.

Воздушное отопление при помощи солнечных коллекторов не может в нашей климатической зоне полностью заменить основное отопление, но оно будет очень хорошим подспорьем даже в морозные зимние солнечные дни.

Цены на популярные модели солнечных коллекторов

Солнечные коллекторы

Солнечный воздушный коллектор своими руками

Определение места установки и доступной площади

Прежде всего, надо определиться с местом установки солнечного воздушного коллектора, так как это сильно может повлиять на его производительность. При этом следует учесть несколько факторов:

  • Воздушный солнечный коллектор следует располагать как можно ближе к тому месту, куда будет поступать подогретый воздух, так как потери в воздуховодах могут стать такими, что применение коллектора окажется нецелесообразным.
  • Коллектор следует располагать на южной стороне дома или другого строения и по возможности под определенным наклоном, обеспечивающим максимальную инсоляцию. Если это недоступно, то надо стараться установить как можно ближе к южной стороне. Зависимость инсоляции от азимута и угла установки показана на диаграмме.
Как влияет ориентация солнечного коллектора на инсоляцию
  • Окружающие предметы, здания строения и растения не должны мешать естественному освещению поверхности коллектора.

В выбранном месте, отвечающим всем условиям, следует посмотреть какой площади солнечный коллектор можно разместить. Очевидно, что чем больше будет площадь коллектора – тем он будет производительней.

Выбор конструкции абсорбера коллектора

Абсорбер (поглотитель) – важнейшая часть любого солнечного коллектора и от его конструкции во многом будет зависеть производительность. У заводских моделей применяются детали из специальных сплавов, имеющих особое высокоселективное покрытие, но это в основном и определяет высокую цену. Наша же задача – найти такой материал, который доступен и, тем не менее, будет хорошо справляться со своей функцией – улавливать солнечное тепло и передавать его воздуху.

И таким доступным материалом является обычная алюминиевая банка из-под Кока-Колы, пива или других напитков. Как собрать нужное количество пустой тары мы описывать не будем, а лучше сосредоточимся на тех замечательных свойствах, которые позволяют использовать алюминиевые банки в качестве абсорбера:

Алюминиевая банка для напитков — идеальный материал для абсорбера коллектора
  • Во-первых, банки изготовлены из алюминия (очень редко встречаются стальные), а он имеет очень высокую теплопроводность.
  • Во-вторых, все банки из-под любых напитков имеют одинаковые размеры: нижний диаметр 66 мм, верхний диаметр 59 мм, высота у банки 0,5 л – 168 мм.
  • В-третьих, банки сделаны таким образом, чтобы в упаковке они размещались друг над другом, то есть они замечательно стыкуются.
  • И, наконец, тонкий алюминий, из которого сделаны банки, легко обрабатывается доступным инструментом.

По мере накопления нужного количества алюминиевых банок их надо тщательно отмывать с моющим средством и просушивать. Иначе в дальнейшем они будут источать неприятный запах, с которым будет справиться сложнее.

Изготовление корпуса коллектора и его теплоизоляция

В зависимости от доступной площади размещения коллектора рассчитываются его габаритные размеры. В данной статье предлагается сделать солнечный воздушный коллектор размером 8 на 8 алюминиевых банок 0,5 л, что по габаритным размерам составит примерно 1400*670 мм. Одного листа фанеры толщиной 21 мм стандартного размера 1525*1525 мм хватит на изготовление всего солнечного коллектора, а толщина фанеры обеспечит необходимую прочность и жесткость конструкции.

Для изготовления корпуса необходимо:

Тщательно разметить лист фанеры. Для коллектора понадобится:

  • Задняя стенка размером 1400*670 мм.
  • Две боковые стенки 1400*116 мм.
  • Две торцевые стенки 630*116 мм.
  • Две направляющие для банок 630*116 мм.

При разметке стоит учесть то, что для дальнейшей обработки краев деталей надо давать припуск по 3—5 мм с каждой стороны. Чтобы нарезка происходила без сбоев лучше линии прочерчивать ярким маркером.

Резать фанеру лучше всего дисковой пилой, причем чем меньше будут зубья у диска – тем лучше. Для более ровного реза можно воспользоваться направляющей, в качестве которой можно использовать лист ДСП с заводской кромкой. Направляющую можно притянуть к листу фанеры струбцинами.

Для ровного реза кромки фанеры лучше всего подходит дисковая пила совместно с направляющей

Если рез будет идти поперек волокон, то лучше предварительно острым ножом по металлической линейке прорезать верхний слой, так меньше будет сколов. После раскроя листа на детали если кромки неровные – их можно обработать фрезерной машиной по шаблону до идеально ровных и перпендикулярных.

Пришло время собирать каркас. Для этого надо:

  • К задней стенке коллектора прикрепить две боковые стенки. Крепить можно мебельными шурупами 6,3*50 мм – их еще называют конфирматами. Только перед этим обязательно надо предварительно пройтись сверлом диаметром 4 мм. Для крепления можно использовать и обычные шурупы, и различные уголки. Коллектор должен иметь герметичный корпус, поэтому целесообразно промазывать скрепляемые поверхности силиконовым герметиком.
Мебельные шурупы-конфирматы вполне подходят для соединения деталей из фанеры толщиной 21 мм
  • К задней стенке, а затем и к боковым крепятся торцевые стенки. После этого проверяется правильность сборки и размеры.

Задние и боковые стенки коллектора необходимо обязательно утеплить и для этого как нельзя лучше подходит экструдированный пенополистирол (ЭППС) толщиной 2 см. Перед тем как приклеивать утеплитель к стенкам, необходимо обработать фанеру антисептическим средством или просто покрасить, так как в этих местах может конденсироваться влага.

Плиты из экструдированного пенополистирола отлично подходят для теплоизоляции солнечного коллектора

Листы ЭППС можно приклеить к поверхности фанеры монтажной пеной, акриловыми «жидкими гвоздями», клеем «Мастер», клеем «Момент», — в любом случае он будет надежно держаться. Главное, чтобы в описании клея пенопласт был указан в качестве одной из склеиваемых поверхностей. Во время клейки утеплителя надо добиться того, чтобы все стыки были полностью закрыты. При необходимости в дальнейшем они могут «задуваться» монтажной пеной.

После того как вся внутренняя поверхность коллектора будет утеплена, ее можно обклеить отражающей теплоизоляцией, которая представляет собой основу из стеклоткани или вспененного полиэтилена и алюминиевую фольгу. Очень часто эти материалы имеют клеящую основу, что очень удобно, а если нет, то можно приклеить на любой подходящий для этого состав. Стыки обязательно надо проклеить алюминиевым скотчем.

Стыки теплоотражающего слоя должны скрепляться алюминиевым скотчем
Изготовление направляющих для абсорбера

Чтобы колонны из алюминиевых банок точно держали свою геометрию, необходимо изготовить для них направляющие. Для этого ранее были вырезаны два куска фанеры 630*116 мм, которые надо разметить и высверлить следующим образом:

  • От верхней части отступить 53 мм и прочертить линию параллельную длинной стороне.
  • Полученную линию разделить на 9 равных отрезков, то есть по 70 мм, поставить метки. Они будут центрами отверстий.
  • Сверлом для дерева коронка-чашка диаметром 57 мм надо высверлить отверстия в фанере. Но перед этим лучше померить в нижней части банки диаметр опорного кольца устойчивости, так как размеры могут варьироваться. При необходимости выбрать другое сверло. Банка должна входить в отверстие достаточно плотно. При работе на сверло сильно не нажимают и периодически дают ему отдохнуть.
Сверло коронка-чашка просто незаменимо для отверстий большого диаметра в фанере
  • Аналогично делается разметка на верхней направляющей. Диаметр головной части банки немного больше (57,4), чем заднего опорного кольца, поэтому перед высверливанием лучше померить его штангенциркулем и подобрать соответствующую коронку-чашку, а после примерить верх банки.
Изготовление абсорберов

Для подготовки банок к монтажу следует выполнить ряд операций:

  • Все банки надо проверить постоянным магнитом. Очень редко, но встречаются банки из стали, которые надо отсортировать.
  • В верхней части банки ножницами по металлу делаются надрезы от отверстия к краям, а затем эти «язычки» заправляются внутрь. Работать следует в перчатках, чтобы избежать порезов от острых краев алюминия. Направить острые язычки внутрь банки и выровнять края отверстия поможет кусок полимерной трубы, зажатой в тисках. Подобным образом обрабатываем все 64 банки.
Ножницами по металлу лучше всего раскрывать верхнюю часть банки
  • Настало время заняться нижней частью. Для этого коническим сверлом по металлу в донышке просверливаются три отверстия диаметром примерно 20 мм расположенные под 120° друг к другу. Для того чтобы не помять банку, ее надо поместить в упругую оправку (например, кусок трубной изоляции) и не сжимать сильно руками. Так обрабатываются все банки.
Коническое сверло вырезает очень ровные отверстия в донышке банки
  • Для склеивания банок лучше всего воспользоваться высокотемпературным клеем-герметиком High Heat Mortar на основе силикатного цемента. Его применяют для герметизации печей, каминов, дымоходов. Возможно, его огнестойкость для коллектора будет избыточной, но «запас карман не тянет».
Такой герметик для печей и каминов отлично подходит и для изготовления абсорбера
  • Для того чтобы банки во время склеивания выдерживали линию, надо изготовить шаблон из двух ровных досок, скрепленных между собой под углом в 90°. Для прилегания банок к поверхности шаблон ставят наклонно и опирают о стену.
Шаблон очень помогает в сборке
  • Перед склеиванием банки обезжиривают любым доступным растворителем (ацетон, № 646, 647). Эту работу лучше делать на улице.
  • Перед началом следующего этапа на руки надо надеть резиновые перчатки, а рядом иметь емкость с водой. Склеиваемые поверхности увлажняются, из пистолета выдавливается ровной «колбаской» клей-герметик на нижнюю часть банки, а затем она стыкуется с верхней частью банки, находящейся ниже.
Клей-герметик наносится на верхнюю часть банки
  • Увлажненным пальцем в перчатке разравнивается выдавившийся клей так, чтобы весь стык и поверхность рядом с ним была укрыта клеем. Затем все эти операции повторяются для всех банок одного столбика (8 штук). После этого все банки ставятся в шаблон, выравниваются и прижимаются сверху грузом.
  • После того как клей затвердеет, столбик снимают и аккуратно укладывают на горизонтальную поверхность. Подобным образом собирают другие столбики из банок.
Заготовки для абсорбера окончательно высыхают на горизонтальной поверхности
  • Пока полностью высыхают заготовки можно окрасить заднюю стенку солнечного коллектора и направляющие для банок в черный матовый цвет. В хороших автомагазинах всегда можно найти такую краску, предназначенную для глушителей или тормозных барабанов.
Такую краску можно всегда найти в хорошем автомагазине
  • Боковые стенки коллектора окрашивать не надо, поэтому их надо закрыть газетами, прикрепленными малярным скотчем. После обезжиривания поверхностей краску наносят в два слоя.
Сборка воздушного солнечного коллектора
  • Пора начать сборку батареи абсорбера. Для этого каждый столбик укладывается в соответствующую направляющую вначале снизу, а затем сверху. Перед стыковкой банки промазываются герметиком, а потом увлажненным пальцем герметик разравнивается. На этом этапе надо быть особенно внимательным. Собирать лучше на горизонтальной поверхности. После сборки и проверки всех соединений можно аккуратно стянуть две направляющие резиновым жгутом и оставить высыхать.
  • Когда вся конструкция поглотителя высохнет ее можно аккуратно поднять и поместить поверх короба так, чтобы расстояния сверху и снизу были одинаковыми. После этого делается разметка положения направляющих, ведь для их монтажа в короб придется вырезать канавку в утеплителе так, чтобы они плотно сели и уперлись в фанерный лист задней стенки. После монтажа направляющие планки крепятся с торцов через боковины мебельными шурупами-конфирматами. После этого все стыки заделываются герметиком.
Поглотитель (абсорбер) смонтирован на свое штатное место
  • Для входа и выхода воздуха сразу надо предусмотреть отверстия, которые лучше всего сделать в задней стенке. Лучше всего для этого воспользоваться готовыми решениями в системе пластиковых вентиляционных каналов, а именно пластины настенные с фланцем, которые можно легко вмонтировать в заднюю стенку в местах входа и выхода не занятых адсорбером. Для этого в фанерном листе и утеплителе прорезается прямоугольное отверстие по размерам пластины, а затем она крепится к стенке на шурупы через слой герметика.
Настенные пластины с фланцем из системы вентиляционных каналов ПВХ отлично подходят для воздушного солнечного коллектора
  • Если возникнет необходимость перейти на круглый воздуховод, вмонтировать канальный вентилятор, сделать поворот и т. д., то в ассортименте производителей есть любые трубы и фасонные части, которые следует подгонять уже по месту.
  • Верхнюю и нижнюю лицевую часть солнечного коллектора в местах входа и выхода воздуховодов необходимо облицевать. Для этого очень хорошо подходит вагонка, но ее сначала надо обрезать точно по размеру, а потом подрезать утеплитель на боковых и торцевых стенках коллектора ровно на толщину вагонки. После этого она приклеивается на герметик, им же обрабатываются все стыки.
Места входа и выхода удобно облицевать кусками пластиковой вагонки
  • Для покраски коллектор ставится на упоры в положение близкое к вертикальному. Перед окраской поверхности обезжириваются и высушиваются. Краска наносится в несколько слоев до тех пор, пока она не укроет всю видимую поверхность. Каждый слой наносится так, чтобы не образовывались потеки. Поверхность должна получиться насыщенно-черной и матовой.
Покраска коллектора
  • После высыхания краски самое время смонтировать переднее стекло. Для этих целей лучше всего подойдёт акриловое оргстекло или поликарбонатное стекло. Вначале лист стекла прикладывается к поверхности, намечаются его размеры, а после уже он вырезается. Края сразу надо обработать наждачной бумагой и подогнать точно по размеру. Перед монтажом его надо тщательно очистить, особенно нижнюю поверхность и поместить в отсек с адсорбером несколько пакетиков с силикагелем. Он предотвратит появление конденсата на внутренней поверхности стекла.
  • Перед тем как крепить стекло, надо все примыкающие к нему части: периметр короба и направляющие обработать герметиком. Причем необязательно герметик наносить на всю поверхность, достаточно только на торцы фанерных листов. Крепить лучше всего шурупами с пресс-шайбой, предварительно высверлив перед этим отверстия. Желательно еще и прикрыть кромку стекла специальным угловым мебельным профилем.
Для облицовки краев отлично подходит угловой мебельный профиль
  • Для крепления воздушного солнечного коллектора, к нему можно прикрутить кронштейны на заднюю стенку. На этом сборка самого коллектора закончена.

Подключение солнечного воздушного коллектора

Воздушный солнечный коллектор может как интегрироваться в существующую систему вентиляции, так и работать совершенно отдельно. Даже при отсутствии принудительной вентиляции неумолимые физические законы все равно будут «продвигать» нагретый воздух через коллектор, но процесс этот будет идти довольно вяло, поэтому желателен вентилятор с производительностью не менее 150 кубических метров в час.

Применение вентилятора обнажает два важных вопроса:

  1. Где вентилятор ставить: на входе или выходе коллектора? Если коллектор поднимет температуру на выходе до 60—70 °C (а такое вполне возможно), то вентилятор, стоящий там долго не протянет. С другой стороны – вентилятор, стоящий на улице подвергается атмосферным воздействиям и им сложнее управлять. В большинстве случаев его все-таки ставят внутри помещения, а в жаркие дни, когда воздух и так нагрет – вентилятор просто не включают либо подключают его через тепловое реле.
Чаще всего вентилятор монтируют внутри помещения
  1. Применение вентилятора заставляет сомневаться некоторых скептиков в целесообразности воздушного отопления. Не проще ли электроэнергию, потраченную на вращение двигателя вентилятора, направить на подогрев помещения? Но практика показывает, что вышеописанная конструкция коллектора все равно эффективна и выгодна. Разница температур наружно воздуха и на выходе из коллектора может достигать 35 °C.

При эксплуатации воздушного коллектора возникает еще один резонный вопрос: в ночное время, когда инсоляции коллектора нет, даже при неработающем вентиляторе холодный воздух будет проникать в помещение. Решение этого вопроса довольно простое. Среди комплектующих для вентиляционных систем можно найти специальные обратные клапаны, которые открываются только под напором воздушного потока. При неработающем вентиляторе клапан будет закрыт. Важно только правильно его установить, чтобы он не перекрывал воздуховод. Существуют и модели вентиляторов со встроенным клапаном, на которые следует обратить внимание.

Обратный клапан исключит несанкционированный доступ в помещение холодного воздуха ночью

Для быстрого прогрева теплым воздухом можно продумать систему рециркуляции, когда воздух из помещения проходит через коллектор и возвращается в то же помещение. В этом случае оправдано ставить вентилятор, который будет нагнетать воздух в коллектор, а не создавать в нем разрежение. Недостатком рециркуляции является отсутствие притока свежего воздуха.

Эксплуатация и уход за солнечным воздушным коллектором

Чтобы коллектор служил долго и безотказно необходимо соблюдать два простых правила:

  • Периодически надо очищать и промывать лицевое стекло солнечного коллектора.
  • В жаркие летние дни, когда нет надобности в подогреве воздуха, лучше накрыть коллектор плотной светлой тканью во избежание перегрева поверхности абсорбера.
  • Чтобы вентилятор не работал вхолостую, периодически стоит проверять плотность соединений воздуховодов и их целостность.

Узнайте, как сделать солнечную батарею своими руками, а также рассмотрите принцип и порядок сборки, из нашей новой статьи.

Заключение

Подводя итоги статьи, стоит обратить внимание на несколько пунктов:

  • Предложенная в этой статье модель солнечного воздушного коллектора доказала на практике свою эффективность и успешно эксплуатируется во всем мире.
  • По желанию можно изготовить более мощный солнечный коллектор или соединить их несколько последовательно.
  • Воздушные солнечные коллекторы можно использовать периодически. Например, для подогрева воздуха в теплицах ранней весной или для сушки сельскохозяйственной продукции осенью.
Видео: Как сделать воздушный солнечный коллектор (англ)

Видео: Слайд-шоу об изготовлении солнечного коллектора из алюминиевых банок

Солнечные коллекторы для отопления дома

Солнечный коллектор – это специальный агрегат, предназначенный для нагрева воды. Он может применяться для отопления и (или) горячего водоснабжения.

Устройство солнечных коллекторов базируется на принципе изменения плотности воды в разных температурных режимах. Вода движется вверх, выталкивается холодную жидкость для последующего нагрева.

Краткое содержимое статьи:

Особенности работы

Устройство нагревает воду за счет солнечного излучения. Коллектор вбирает в себя излучаемую солнцем энергию, преобразовывая ее в иные типы энергии, использующиеся в человеческой жизнедеятельности.

Проще говоря, агрегат нагревает воду, которая затем поступает в систему отопления или горячего водоснабжения.

Солнечные коллекторы. Применение солнечной энергии.

 Солнце — источник жизни на планете. Люди с давних пор используют энергию солнца. В теплое время года солнце согревает наши дома, а зимой мы используем источники тепла — древесину, газ, уголь — как аккумулированное тепло солнечной энергии. Современная наука ставит задачу : разработать  механизмы и приспособления, которые менее энергозатратны и имеют высокий КПД для производства тепловой энергии. Наиболее перспективными являются такие технологические разработки, которые позволяют при минимальных затратах возобновлять имющиеся энергоресурсы.  Использование энергии солнца коллекторами, которая неисчерпаема и доступна в любой точке планеты, экологически безопасно и экономически оправдано.   Ведь запасы природного топлива (газа, угля, древесины) ограничены, и, следовательно, дорожают с каждым годом.

Сегодня использование солнечных коллекторов для воспроизводства тепловой энергии не проекты будущего, а действующие и реализуемые программы во многих странах мира. Cолнечные коллекторы в инженерных конструкциях зданий  очень широко используются  в Америке, Австралии, Европе .

Тем не менее, распространено убеждение, что в России и на Украине не целесообразно использовать солнечные коллекторы. Распространено убеждение, что лучший способ использовать солнечную энергию в теплое время года — выкрасить бак с водой в темный цвет, который позволит быстрее нагреть воду, и использовать ее по назначению. Использовать лишь этот способ аккумуляции солнечной энергии — не эффективно и КПД этой системы очень низка! Ведь использовать солнечную энергию можно и зимой.

Хотите, чтобы солнце не только дарило вам свет и тепло, но и экономило ваш бюджет? Соременные научные технологии позволяют это!

Слнечные системы для обогрева воды успешно могут быть применены для обогрева жилых домов, коттеджей, гостиничных комплексов, предприятий, промышленных объектов.

Использование солнечных коллекторов позволит решить вопросы:

— обеспечение горячего водоснабжения в автономном режиме

— отопление жилых и производственных помещений

— обогрев воды в бассейнах

— обеспечит  технической водой нужного теплового режима

Солнечные коллекторы аккумулируют природную энергию солнца с максимальной эффективностью. Принцип работы солнечного коллектора основан на так называемом «парниковом эффекте». Солнечные лучи проходят в замкнутое пространство, превращаются в тепловую энергию, где она накапливается и сохраняется длительное время. При этом солнечные коллекторы спроектированы так, что обратно аккумулированная тепловая энергия не может пройти сквозь прозрачную установку. В основе гидравлической системы, предусматривающей использование солнечных коллекторов, используется термосифонный эффект. Принцип действия прост —  жидкость при нагревании вытесняет более холодную воду, тем самым заставляет ее двигаться к месту обогрева.

Существуют разные формы солнечных коллекторов по форме, устройству поглощающих поверхностей,  по способу аккумуляции солнечной энергии. Объединяет их — экологическая безопасность и экономия бюджетных средств.

Виды солнечных коллекторов:

плоский солнечный коллектор

Это наиболее распространенный вид солнечных коллекторов. Он используется в бытовых системах водообогревания и отоплении помещений. Он представляет собой остекленную панель с вмонтированной пластиной энергопоглотителя. Металлическая пластина предназначена для поглощения и удержания солнечной энергии. Чаще всего используют медь или алюминий как металлы-проводники тепловой энергии. Однако, специалисты считают, что для этих целей лучше подходит медь. Медь — более лучший теплопроводник, меньше алюминия подвержена коррозии. Для усиления эффекта поглощения солнечной энергии, пластину обрабатывают специальным покрытием. Тонкий слой аморфного покрытия усиливает поглощающую способность пластины и отличается низким КИ (коэффициентом излучения) в длинноволной инфракрасной области. Матовое остекление коллектора, которое только пропускает свет, позволяет снизить потери тепла. При изготовлении стенок и дна коллектора используют теплоизолирующие материалы, которые также помогают избежать потери тепла.

вакуумный солнечный коллектор с прямой теплопередачей

Трубки вакуумного коллектора, расположенные под углом, соединены с баком, из которого вода контура теплообменника течет в трубки коллектора, нагреваясь, возвращается обратно. При этом  емкость с водой надо расположить выше коллектора или использовать редукторы, которые позволят снизить давление. Вода нагревается в трубках коллектора и поднимается вверх, а холодная вода течет вниз. Происходит беспрерывная циркуляция воды в системе. Термосифонный эффект основан на естественной конвекции жидкости в коллекторе.   Система должна быть безнапорной, чтобы избежать давление на трубки. Если трубка коллектора разобьется, произойдет утечка воды. Этот вид коллектора имеет достаточно большой объем воды контура теплообменника (от 60 до 200 л). Это может быть недостатком системы. Однако, низкая стоимость вакуумного коллектора может быть его преимуществом.

Вакуумный солнечный коллектор

В вакуумный солнечный коллектор с прямой теплопередачей воде  может быть встроен теплообменник. Он встраивается в бак теплообменника, что позволяет соединить систему к системе водоснабжения. При этом сохраняется безнапорный режим в системе. Если заполнить водонагревательный конткр незамерзающей жидкостью, то коллектор можно использовать при минусовых температурах — 5 — 10 градусов. В коллекторах этого вида не скапливаются загрязнения и не откладываются соли отложения, потому что вода проходит по внутреннему теплообменнику, а объем теплоносителя не изменяется.

вакуумный солнечный коллектор с термотрубками

В основе конструкции этого коллектора — закрытые медные трубки с небольшим содержанием жидкости низкой температуры кипения.

При нагревании жидкость испаряется и забирает тепло трубки. Пары, поднимаясь вверх,  конденсируются и передают тепло теплоносителю основного контура или  жидкости отопительного контура. Конденсат стекает вниз, процесс повторяется. Медный приемник с полиуретановой изоляцией покрыт нержавеющим листом. Тепло передается через приемник и поэтому отопительный контур разделен от трубок.   В этом преимущество данного вида коллекторов.  Не смотря на возможное повреждение одной из трубок коллектора, он продолжает работать. Заменить поврежденную трубку просто, при этом не требуется сливать жидкость из контура теплообменника.

Этот вид коллекторов более дорогой, но если учесть его преимущества, то они неоспоримы. Коллектор может работать при температуре — 35 градусов, если коллектор имеет стеклянные тепловые трубки, и при температуре — 50 градусов, если  в основе конструкции металлические тепловые трубки!

Так как солнечный коллектор размещается снаружи помещения, а его составляющее оборудование внутри, то потери тепла миминизированы. 

Солнечные коллекторы позволяют полностью обеспечить потребность в горячей воде в летнее время, а в зимний период обеспечит 60% в потребности горячей воды и 30% в потребности электроэнергии.

Потоки солнечной энергии в любое время года составляет 100 — 250 вт/кв.м, в полдень достигает 1000вт/кв. м.  при солнечной погоде в любой местности. Современные технологии разрабатывают  установки, которые позволяют аккумулировать солнечную энергию и преобразовать ее в нужный вид энергии (электороэнергию, тепловую) при наименьших затратах. Использование плоских солнечных коллекторов является наиболее простым и дешевым способом решения этой задачи. Более сложный способ использования солнечной энергии — при применении вакуумных солнечных коллекторов. Да, при солнечной погоде и в теплое время года оба вида солнечных коллекторов обеспечивают энергией в полной мере. Но при низких температурах применение вакуумного коллектора более предпочтительно. Причем, для плоских коллекторов максимальной температурой является 80-90 градусов, в вакуумных температура может превышать 100 градусов. В то же время в теплой и влажной среде плоских коллекторов есть опасность размножения бактерий и микроорганизмов, что исключается при применении вакуумных коллекторов.

Принцип работы водонагревательной установки с применением солнечного коллектора. Солнечная водонагревательная установка состоит из коллектора и теплообменника. через коллектор проходит теплоноситель. Теплоноситель, нагреваясь в коллекторе, отдает энергию воде через теплообменник (он вмонтирован в бак). Бак сохраняет горячую воду, поэтому важна его хорошая теплоизоляция. Как видно из схемы, в контуре, где работает солнечный коллектор, может использоваться естественная или принудительная циркуляция теплоносителя. В случае продолжительной пасмурной погоды в бакк-аккумулятор может быть вставлен нагреватель-дублер. При понижении температуры в аккумуляторном баке он включается автоматически и поддерживает необходимую температуру воды.

Итак, в солнечных коллекторах могут быть использованы

* одноконтурные схемы для подогрева воды (сезонные или в местностях, где температура не опускается ниже 0 в течении года. В этих системах вода используется мягкая и чистая).

* двухконтурные схемы подогрева воды (использование независимо от погодных условий и качества воды)

По каждой схеме  водонагревания циркуляция может быть естественной и принудительной, так и система теплоснабжения может быть пассивной и активной.

Если накопительный бак расположен выше солнечного коллектора, то  идет естественная циркуляция теплоносителя.  Если такое расположение бака невозможно, то применяется система с активной циркуляцией теплоносителя.

Безусловно, одноконтурная система более дешева, двухконтурная система с активной циркуляцией несколько дороже.