Как подключить трёхфазный двигатель к однофазной сети 220 вольт.
При развитии любой гаражной мастерской, может возникнуть необходимость подключить трёхфазный электродвигатель в однофазную сеть на 220 вольт. Это не удивительно, так как промышленные трёхфазные двигатели на 380 в более распространены, чем однофазные (на 220 в), особенно больших габаритов и мощности. И изготовив какой нибудь станочек, или купив готовый (например токарный) любой гаражный мастер сталкивается с проблемой подключения трёхфазного электромотора к обычной гаражной розетке на 220 вольт. В этой статье мы и рассмотрим варианты подключения, а так же что для этого понадобится.
Для начала следует внимательно изучить шильдик (табличку) электродвигателя, чтобы узнать его мощность, так как от этой мощности будет зависеть ёмкость или количество конденсаторов, которые нужно будет купить. И прежде чем отправляться на поиски и покупку конденсаторов, для начала следует вычислить, какая ёмкость потребуется именно для вашего двигателя.
Расчёт ёмкости.
Ёмкость нужного конденсатора напрямую зависит от мощности вашего электродвигателя и высчитывается по простой формуле:
С = 66 Р мкФ .
Буква С означает ёмкость конденсатора в мкФ (микрофарад), а буква Р означает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 ватт мощности трёхфазного двигателя, потребуется чуть менее 7 мкФ (если быть точным, то 6,6 мкФ) электрической ёмкости конденсатора. Например для эл. двигателя мощностью 1000 ватт (1 Квт) потребуется конденсатор ёмкостью 66 мкФ, а для эл. двигателя на 600 ватт нужен будет конденсатор ёмкостью примерно 42 мкФ.
Так же следует учесть, что потребуются конденсаторы, рабочее напряжение которых в 1,5 — 2 раза больше, чем напряжение в обычной однофазной сети. Обычно на базаре попадаются конденсаторы небольших ёмкостей (8 или 10 мкФ), но необходимую ёмкость легко собрать из нескольких параллельно соединённых конденсаторов маленькой ёмкости.
То есть например 70 мкФ можно легко получить из семи параллельно спаянных конденсаторов по 10 мкФ.Но всё же всегда следует стараться найти по возможности один конденсатор ёмкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так надёжнее. Ну и рабочее напряжение, как я уже говорил, должно быть как минимум в 1,5 — 2 раза больше рабочего, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надёжнее и долговечнее). Рабочее напряжение всегда пишется на корпусе конденсатора (как и мкФ).
Правильно вы подобрали (рассчитали) ёмкость конденсатора или нет, можно и на слух. При вращении мотора, должен быть слышен только шум от подшипников, ну и шум вентилятора воздушного охлаждения. Если же к этим шумам прибавляется и вой двигателя, нужно чуть уменьшить ёмкость (Ср) рабочего конденсатора. Если же звук нормальный, то можно наоборот немного увеличить ёмкость (так будет мощнее мотор), но только чтобы мотор работал тихо (до появления воя).
Проще говоря, нужно поймать момент, меняя ёмкость, когда к нормальному шуму от подшипников и крыльчатки, начнёт прибавляться еле слышимый посторонний вой. Это и будет необходимая ёмкость рабочего конденсатора. Это важно, так как если рабочая ёмкость конденсатора окажется больше необходимой, то мотор будет перегреваться, а если ёмкость будет меньше нужной, то мотор потеряет свою мощность.
Покупать лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если не найдёте таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов, их корпуса нужно хорошо соединить между собой и изолировать от корпуса станка или ящика (если он металлический, но лучше использовать ящик для конденсаторов из диэлектрика — пластик, текстолит и т.п.).
При подключении трёхфазного двигателя к сети 220 вольт, частота вращения его вала (ротора) почти не изменится, а вот мощность его всё же немного уменьшится. И если подключить электродвигатель по схеме треугольник (рис 1), то мощность его уменьшится примерно процентов на 30 и будет составлять 70 — 75 % от его номинальной мощности (при звезде чуть меньше). Но можно подключить и по схеме звезда (рис 2), и при подсоединении звездой, мотор легче и быстрее запускается.
Чтобы подключить трёхфазный электродвигатель по схеме звезда, нужно его две фазные обмотки подключить в однофазную сеть, а третью фазную обмотку двигателя, подключить через рабочий конденсатор Ср к любому из проводов сети 220 в.
Чтобы подключить трёхфазный электромотор мощностью до полтора киловатта (1500 ватт), хватает только рабочего конденсатора необходимой ёмкости. Но при включении больших моторов (более 1500 ватт), движок либо очень медленно набирает обороты, либо вообще не запускается. В таком случае необходим пусковой конденсатор (Сп на схеме), ёмкость которого в два с половиной раза (лучше в 3 раза) больше ёмкости рабочего конденсатора. Лучше всего подходят в качестве пусковых конденсаторов электролитические (типа ЭП), но можно использовать и такого же типа как и рабочие конденсаторы.
Схема подсоединения трёхфазного мотора с пусковым конденсатором показана на рисунке 3 (а так же пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включают только во время пуска двигателя, и когда он запустится и наберёт рабочие обороты (обычно хватает 2 секунд), пусковой конденсатор отключают и разряжают. В такой схеме используются кнопка и тумблер. При пуске аключается тумблер и кнопка одновременно и после запуска двигателя, кнопка просто отпускается и пусковой конденсатор отключается. Чтобы разрядить пусковой конденсатор, достаточно выключить двигатель (после окончания работы) и затем на короткое время нажать кнопку пускового конденсатора, и он разрядится через обмотки электродвигателя.
Определение фазных обмоток и их выводов.
При подключении необходимо знать, где какая обмотка электродвигателя. Как правило выводы обмоток статора электромоторов маркируют различными бирками с обозначением начала или конца обмоток, или помечают буквами на корпусе распределительной коробочки двигателя (или клеммной колодки). Ну а если же маркировка стёрлась или её вообще нет, то нужно прозвонить обмотки с помощью тестера (мультиметра), установив его переключатель на прозвонку, или с помощью обычной лампочки и батарейки.
Для начала следует узнать принадлежность каждого из шести проводов к отдельным фазам обмотки статора. Для этого следует взять любой из проводов (в клеммной коробочке) и подсоединить его к батарейке, например к её плюсу. Минус батарейки подсоедините к контрольной лампе, а второй вывод (провод) от лампочки, по очереди подсоединяйте к оставшимся пяти проводам двигателя, пока контрольная лампочка не загорится. Когда на каком то проводе лампочка загорится, это будет означать, что оба провода (тот что от батарейки и тот к которому подсоединили провод от лампы и лампа загорелась) принадлежат одной фазе (одной обмотке).
Теперь эти два провода пометьте картонными бирками (или малярным скотчем) п напишите на них маркероа начало первого провода С1, а второй провод обмотки С4. С помощью лампы и батарейки (или тестера) аналогично находим и помечаем начало и конец оставшиеся четырёх проводов (двух оставшихся фазных обмоток).Начало и конец второй фазной обмотки помечаем как С2 и С5, и начало и конец третьей фазной обмотки С3 и С6.
Далее следует точно определить, где начало и конец статорных обмоток. Я опишу далее способ, который поможет определить начало и конец статорных обмоток для двигателей до 5 киловатт. Да больше и не надо, так как однофазная сеть (проводка) гаража рассчитана на мощность 4 киловата, а если мощнее, то штатные провода не выдерживают. И вообще то редко кто использует двигатели в гараже, мощнее 5 киловатт.
Для начала соединим все начала фазных обмоток (С1, С2 и С3)в одну точку (согдасно помеченным бирками выводам), по схеме «звезда». И затем включим двигатель в сеть 220 в с использованием конденсаторов. Если при таком подключении, электродвигатель без гудения сразу раскрутится до рабочих оборотов, это значит, что вы попали в одну точку всеми началами или всеми концами фазных обмоток.
Ну а если же при включении в сеть, электродвигатель загудит и не сможет раскрутиться до рабочих оборотов, то в первой фазной обмотке нужно поменять местами выводы С1 и С4 (поменять местами начало и конец).
При всех вышеописанных манипуляциях с проводами, строго соблюдате правила техники безопасности. Провода держите только за изоляцию, лучше плоскогубцами с ручками из диэлектрика. Ведь электромотор имеет общий стальной магнитопровод и на зажимах остальных обмоток, может возникнуть довольно большое напряжение, опасное для жизни.
Изменение вращения вала электродвигателя (ротора).
Часто бывает, что вы например сделали шлифовальный станочек, с лепестковым кругом на валу. И лепестки из наждачной бумаги расположены под определённым углом, против которого вращается вал, а нужно в другую сторону. Да и опилки летят не на пол а наоборот вверх. Значит необходимо поменять вращение вала двигателя в другую сторону.
Как это сделать?Чтобы изменить вращение трёхфазного двигателя, включенного в однофазную сеть на 220 вольт по схеме «треугольник», нужно третью фазную обмотку W (см. рисунок 1,б) подключить через конденсатор к резьбовой клемме второй фазной обмотки статора V.
Ну а чтобы изменить вращение вала трёхфазного двигателя, подключенного по схеме «звезда», необходимо третью фазную обмотку статора W (см. рисунок 2,б) подключить через конденсатор к резьбовой клемме второй обмотки V.
Ну и напоследок хочу сказать, что шум двигателя от длительной его работы (несколько лет) может возникнуть со временем, и не следует путать его с гулом от неправильного подключения. Так же со временем может возникнуть и вибрация мотора. А бывает даже ротор трудно вращать вручную. Причиной этого как правило является выработка подшипников — их дорожки и шарики износились, да и сепаратор тоже. От этого возникают повышенные зазоры между деталями подшипников и они начинают шуметь, и со временем могут даже заклинить.
Этого допускать нельзя, и дело даже не только в том, что вал труднее будет вращаться и мощность двигателя упадёт, а ещё и в том, что между статором и ротором довольно маленький зазор, и при сильном износе подшипников, ротор может начать цеплять за статор, а это уже куда серьёзнее. Детали двигателя могут испортиться и восстановить их не всегда удаётся. Поэтому намного проще заменить зашумевшие подшипники новыми, от какой то авторитетной фирмы (как выбрать подшипник читаем вот тут), и электродвигатель снова будет работать долгие годы.
Надеюсь данная статья поможет гаражным мастерам, без проблем подключить трёхфазный двигатель какого то станка к однофазной гаражной сети на 220 вольт, ведь с применением различных станочков (шлифовальных, полировальных, сверлильных, токарных, гриндера и т.д.) намного упрощается процесс доводки деталей при тюнинге или ремонте.
Подключение трехфазного двигателя к однофазной и трехфазной сети
Из всех видов электропривода наибольшее распространение получили асинхронные двигатели. Они неприхотливы в обслуживании, нет щеточно-коллекторного узла. Если их не перегружать, не мочить и периодически обслуживать или менять подшипники, то он прослужит почти вечность. Но есть одна проблема — большинство асинхронных двигателей, которые вы можете купить на ближайшей барахолке, трёхфазные, так как предназначены для использования на производстве. Несмотря на тенденцию к переходу на трёхфазное электроснабжение в нашей стране, подавляющее большинство домов до сих пор с однофазным вводом. Поэтому давайте разбираться, как выполнить подключение трехфазного двигателя к однофазной и трехфазной сети.
Что такое звезда и треугольник у электродвигателя
Для начала давайте разберемся, какими бывают схемы подключения обмоток. Известно, что у односкоростного трёхфазного асинхронного электродвигателя есть три обмотки. Они соединяются двумя способами, по схемам:
- звезда;
- треугольник.
Такие способы соединения характерны для любых видов трёхфазной нагрузки, а не только для электродвигателей. Ниже изображено, как они выглядят на схеме:
Питающие провода подключаются к клеммной колодке, которая расположена в специальной коробке. Её называют брно или борно. В неё выведены провода от обмоток и закреплены на клеммниках. Сама коробка снимается с корпуса электродвигателя, как и клеммники, расположенные в ней.
В зависимости от конструкции двигателя в брно может быть 3 провода, а может быть и 6 проводов. Если там 3 провода — то обмотки уже соединены по схеме звезды или треугольника и, при необходимости, перекоммутировать их быстро не получится, для этого нужно вскрывать корпус, искать место соединения, разъединять его и делать отводы.
Если в брно 6 проводов, что встречается чаще, то вы можете в зависимости от характеристик двигателя и напряжения питающей сети (об этом читайте далее) соединить обмотки так, как посчитаете нужным. Ниже вы видите брно и клеммники, которые в него устанавливаются. Для 3-проводного варианта в клеммнике будет 3 шпильки, а для 6-проводного — 6 шпилек.
К шпилькам начала и концы обмоток подключаются не просто «как попало» или «как удобно», а в строго определенном порядке, таким образом, чтобы одним набором перемычек вы могли соединить и треугольник, и звезду. То есть начало первой обмотки над концом третьей, начало второй концом первой и начало третьей над концом второй.
Таким образом, если вы установите перемычки на нижние контакты клеммника в линию — получаете соединение обмоток звездой, а установив три перемычки вертикально параллельно друг другу — соединение треугольником. На двигателях «в заводской комплектации» в качестве перемычек используются медные шинки, что удобно использовать для подключения — не нужно гнуть проволочки.
Кстати, на крышках брна электродвигателя часто наносят соответствие расположения перемычек этим схемам.
Подключение к трёхфазной сети
Теперь, когда мы разобрались как подключаются обмотки, давайте разберемся как они подключаются к сети.
Двигатели с 6 проводами позволяют переключать обмотки для разных питающих напряжений. Так получили распространение электродвигатели с питающими напряжениями:
- 380/220;
- 660/380;
- 220/127.
Причем большее напряжение для схемы подключения звездой, а меньшее — для треугольника.
Дело в том, не всегда трёхфазная сеть имеет привычное напряжение в 380В. Например, на кораблях встречается сеть с изолированной нейтралью (без нуля) на 220В, да и в старых советских постройках первой половины прошлого века и сейчас иногда встречается сеть 127/220В. В то время как сеть с линейным напряжением 660В встречается редко, чаще на производстве.
Об отличиях фазного и линейного напряжения вы можете прочитать в соответствующей статье на нашем сайте: https://samelectrik.ru/linejnoe-i-faznoe-napryazhenie.html.
Итак, если вам нужно подключить трехфазный электродвигатель к сети 380/220В, осмотрите его шильдик и найдите питающее напряжение.
Электродвигатели на шильдике которых указано 380/220 можно подключить только звездой к нашим сетям. Если вместо 380/220 написано 660/380 — подключайте обмотки треугольником. Если вам не повезло и у вас старый двигатель 220/127 — здесь нужен либо понижающий трансформатор, либо однофазный частотный преобразователь с трёхфазным выходом (3х220). Иначе подключить его к трём фазам 380/220 не получится.
Самый худший вариант — это когда номинальное напряжение двигателя с тремя проводами с неизвестной схемой соединения обмоток. В этом случае нужно вскрывать корпус и искать точку их соединения и, если это возможно, и они соединены по схеме треугольника — переделывать в схему звезды.
С подключением обмоток разобрались, теперь поговорим о том какие бывают схемы подключения трехфазного электродвигателя к сети 380В. Схемы показаны для контакторов с катушками с номинальным напряжением 380В, если у вас катушки на 220В — подключайте их между фазой и нулем, то есть второй провод к нулю, а не к фазе «B».
Электродвигатели почти всегда подключаются через магнитный пускатель (или контактор). Схему подключения без реверса и самоподхвата вы видите ниже. Она работает таким образом, что двигатель будет вращаться только тогда, когда нажата кнопка на пульте управления. При этом кнопка выбирается без фиксации, т.е. замыкает или размыкает контакты пока удерживается в нажатом положении, как те, что используются в клавиатурах, мышках и дверных звонках.
Принцип работы этой схемы: при нажатии кнопки «ПУСК» начинает протекать ток через катушку контактора КМ-1, в результате якорь контактора притягивается и силовые контакты КМ-1 замыкаются, двигатель начинает работать. Когда вы отпустите кнопку «ПУСК» — двигатель остановится. QF-1 – это автоматический выключатель, который обесточивает и силовую цепь и цепь управления.
Если вам нужно чтобы вы нажали кнопку и вал начал вращаться — вместо кнопки ставьте тумблер или кнопку с фиксацией, то есть контакты которой после нажатия остаются замкнутыми или разомкнутыми до следующего нажатия.
Но так делают нечасто. Гораздо чаще электродвигатели пускают с пультов с кнопками без фиксации. Поэтому к предыдущей схеме добавляется еще один элемент — блок-контакт пускателя (или контактора), подключенный параллельно кнопке «ПУСК». Такая схема может использоваться для подключения электровентиляторов, вытяжек, станков и любого другого оборудования, механизмы которого вращаются только в одном направлении.
Принцип работы схемы:
Когда автоматический выключатель QF-1 переводят во включенное состояние на силовых контактах контактора и цепи управления появляется напряжение. Кнопка «СТОП» — нормально замкнутая, т.е. её контакты размыкаются, когда на неё нажимают. Через «СТОП» подаётся напряжение на нормально-разомкнутую кнопку «ПУСК», блок-контакт и в конечном итоге катушку, поэтому когда вы на неё нажмёте, то цепь управления катушкой обесточится и контактор отключится.
На практике в кнопочном посте каждая кнопка имеет нормально-разомкнутую и нормально-замкнутую пару контактов, клеммы которых расположены на разных сторонах кнопки (см. фото ниже).
Когда вы нажимаете кнопку «ПУСК», ток начинает протекать через катушку контактора или пускателя КМ-1 (на современных контакторах обозначается, как A1 и A2), в результате его якорь притягивается и замыкаются силовые контакты КМ-1. КМ-1.1 – это нормально-разомкнутый (NO) блок-контакт контактора, при подаче напряжения на катушку он замыкается одновременно с силовыми контактами и шунтирует кнопку «ПУСК».
После того как вы отпустите кнопку «ПУСК» — двигатель продолжит работать, так как ток на катушку контактора теперь подаётся через блок-контакт КМ-1.1.
Это и называется «самоподхват».
Основная сложность, которая возникает у новичков в понимании этой базовой схемы, состоит в том, что не сразу становится понятно, что кнопочный пост располагается в одном месте, а контакторы в другом. При этом КМ-1.1, который подключается параллельно кнопке «ПУСК», на самом деле может находится и за десяток метров.
Если вам нужно чтобы вал электродвигателя вращался в обе стороны, например, на лебедке или другом грузоподъёмном механизме, а также разных станках (токарный и пр.) — используйте схему подключения трехфазного двигателя с реверсом.
Кстати эту схему часто называют «реверсивная схема пускателя».
Реверсивная схема подключения – это две нереверсивных схемы с некоторыми доработками. КМ-1.2 и КМ-2.2 — то нормально-замкнутые (NC) блок-контакты контакторов. Они включены в цепь управления катушкой противоположного контактора, это так называемая «защита от дурака», она нужна чтобы не произошло межфазного КЗ в силовой цепи.
Между кнопкой «ВПЕРЁД» или «НАЗАД» (их назначение такое же, что в предыдущей схеме у «ПУСК») и катушкой первого контактора (КМ-1) подключается нормально-замкнутый (NC) блок-контакт второго контактора (КМ-2). Таким образом, когда включается КМ-2 — нормально-замкнутый контакт размыкается соответственно и КМ-1 уже не включится, даже если вы нажмёте «ВПЕРЁД».
И наоборот, NC от КМ-2 установлен в цепь управления КМ-1, чтобы предотвратить одновременное их включение.
Чтобы запустить двигатель в противоположном направлении, то есть включить второй контактор, нужно отключить действующий контактор. Для этого нажимаете на кнопку «СТОП», и цепь управления двумя контакторами обесточивается, и уже после этого нажимайте на кнопку запуска в противоположном направлении вращения.
Это нужно, чтобы не допустить короткого замыкания в силовой цепи. Обратите внимание на левую часть схемы, отличия подключения силовых контактов КМ-1 и КМ-2 состоят в порядке подключения фаз. Как известно для смены направления вращения асинхронного двигателя (реверса) нужно поменять местами 2 из 3 фаз (любые), здесь поменяли местами 1 и 3 фазу.
В остальном работа схемы аналогична предыдущей.
Кстати на советских пускателях и контакторах были совмещенные блок-контакты, т.е. один из них был замкнутым, а второй разомкнутым, в большинстве современных контакторов нужно устанавливать сверху приставку блок-контактов, в которой есть 2-4 пары дополнительных контактов как раз для этих целей.
Подключение к однофазной сети
Для подключения трёхфазного электродвигателя 380В к однофазной сети 220В чаще всего используется схема с фазосдвигающими конденсаторами (пусковыми и рабочими). Без конденсаторов двигатель может и запустится, но только без нагрузки, и придется при запуске крутануть его вал от руки.
Проблема состоит в том, что для работы АД нужно вращающееся магнитное поле, которое нельзя получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через дроссель, можно сдвинуть фазу напряжения до -90˚ а с помощью конденсатора на +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз мы рассматривали в статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.
Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели. Таким образом получают не вращающееся, а эллиптическое. В результате вы теряете около половины мощности от номинала. Однофазные АД работают при таком включении лучше, за счет того, что у них обмотки изначально рассчитаны и расположены на статоре для такого подключения.
Типовые схемы подключения двигателя без реверса для схем звезды или треугольника вы видите ниже.
Резистор на схеме ниже нужен для разрядки конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.
Ёмкость конденсатора для подключения трёхфазного двигателя к однофазной сети вы можете выбрать исходя из таблицы ниже. Если вы наблюдаете сложный и затяжной запуск — зачастую нужно увеличить пусковую (а иногда и рабочую) ёмкость.
Или посчитать по формулам:
Если двигатель мощный или запускается под нагрузкой (например, в компрессоре) — нужно подключить и пусковой конденсатор.
Чтобы упростить включение вместо кнопки «РАЗГОН» используют «ПНВС». Это кнопка для запуска двигателей с пусковым конденсатором. У неё три контакта, на два из них подключается фаза и ноль, а через третий – пусковой конденсатор. На лицевой панели расположено две клавиши — «ПУСК» и «СТОП» (как на автоматах АП-50).
Когда вы включаете двигатель и нажимаете первую клавишу до упора, замыкаются три контакта, после того как двигатель раскрутился, и вы отпускаете «ПУСК», средний контакт размыкается, а два крайних остаются замкнутыми, из цепи выводится пусковой конденсатор. При нажатии кнопки «СТОП» все контакты разомкнуться. Схема подключения при этом почти аналогична.
Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:
Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом изображена ниже. За реверс отвечает переключатель SA1.
Обмотки двигателя 380/220 соединяют треугольником, а у двигателей 220/127 – звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если всего три выхода, а не шесть, то вы не сможете изменять схемы подключения обмоток без вскрытия. Здесь есть два варианта:
- Номинальное напряжение 3х220В — вам повезло, и используйте приведенные выше схемы.
- Номинальное напряжение 3х380В — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть 220В, но стоит попробовать, возможно работать будет!
Но при подключении электродвигателя 380В на 1 фазу 220В через конденсаторы есть одна большая проблема — потери мощности. Они могут достигать 40-50%.
Главным и действенным способом подключения без потери мощности является использование частотника. Однофазные частотные преобразователи выдают на выходе 3 фазы с линейным напряжением 220В без нуля. Таким образом вы можете подключать двигатели до 5 кВт, для большей мощности просто очень редко встречаются преобразователи, способные работать с однофазным вводом. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его.
Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!
Материалы по теме:
Как из 220 сделать 380 вольт: 5 способов
Стандартным бытовым напряжением является 220 В 50 Гц, однако некоторые домашние мастера в своих гаражах и мастерских используют трёхфазные электродвигатели. Такое электропитание может использоваться так же в насосах, подающих воду из скважин или водоёмов на приусадебные участки и в частные дома.
Существуют различные способы подключения этих электродвигателей к бытовой сети, но при этом падает мощность аппарата, поэтому многие владельцы этих устройств задаются вопросом — как из 220 сделать 380 вольт?
Чем трехфазное напряжение отличается от однофазного
Современные жилые дома и абсолютное большинство промышленных предприятий подключены к сети по трёхфазной четырёхпроводной схеме электропитания.
Согласно новым стандартам для повышения безопасности потребителей к ним добавляется пятый заземляющий проводник, который используется только в аварийной ситуации и служит не для подачи напряжения, а для защиты от поражения электрическим током.
Все проводники в трёхфазной сети имеют своё обозначение:
- L1, L2, L3 — линейные (фазные) провода, по которым подаётся напряжение;
- N или PEN — рабочая нейтраль, служащая для соединения потребителей с глухозаземлённой нейтралью трансформатора;
- РЕ — защитное заземление.
В такой схеме электроснабжения имеется две величины напряжения:
- Линейное. Измеряется между двумя линейными проводами и достигает 380 В. На трансформаторных подстанциях и РП оно обозначается 0,4 кВ. Для него необходимы четыре проводника — три питающих L1, L2, L3 и нейтраль N, по которой протекает уравнительный ток.
- Фазное. Измеряется между одним из линейных проводников и нейтралью. Оно составляет 220 В. Именно оно необходимо для большинства бытовых электроприборов и подаётся в квартиру по двум проводам — фаза L и нейтраль N.
Однофазное напряжение является частным случаем трехфазного напряжения и получается при подключении потребителя к фазному и нейтральному проводам. Многоквартирные дома и гаражные кооперативы подключаются к четырёхпроводной трёхфазной сети (с заземляющим проводом РЕ пятипроводной), а к отдельным потребителям подводятся только два провода.
Для частных домов и дач это разделение выполняется на линии электропередач, от которых отходит два или три провода. Третий проводник в бытовой электропроводке заземляющий (защитный) и не участвует в питании электроприборов.
Важно! При обрыве нейтрального проводника напряжение в розетке может колебаться от 0 до 380 В, что пагубно влияет на электроприборы. Это так же относится к электродвигателям, включённым в трёхфазную сеть. Для защиты от выхода аппаратуры из строя желательно установить реле напряжения РН, отключающее питание в аварийной ситуации. |
Однако основное отличие между трёхфазной и однофазной сетями не в величине напряжения и количестве проводов. Главная особенность трёхфазной сети заключается в том, что напряжение в питающих проводниках сдвинуто относительно друг друга на 120°.
Этот сдвиг обеспечивается расположением обмоток в генераторах на электростанции и необходим для обеспечения вращающего момента в электродвигателях. Кроме того, сдвиг фаз позволяет уменьшить сечение нейтрального провода.
В трёхфазной сети по нему протекает не полный ток нагрузки, а только уравнительные токи, которые тем меньше, чем равномернее потребители распределены по отдельным фазам.
Способы как получить 380 Вольт из 220
Бытовые однофазные электроприборы, которые для своей работы требуют напряжение 380 В, отсутствуют, а на производстве в таких ситуациях можно просто подключить устройство к двум разноимённым фазам.
Поэтому вопрос «как из 220 сделать 380 вольт» на самом деле звучит «как из однофазного напряжения получить трёхфазное«. Для этого используются различные приспособления, каждое их которых имеет свои достоинства и недостатки.
1. Использовать преобразователь напряжения (инвертор)
Самый простой способ, как сделать 380 Вольт, — это приобрести и установить трёхфазный преобразователь напряжения (инвертор). На вход этого аппарата подаётся однофазное напряжение 220В, а на выходных клеммах устройства появляются три фазы 380 В. Это самый лучший, хотя и самый дорогой метод получения трёхфазного питания.
Конструктивно инвертор состоит из четырёх узлов — выпрямителя и трёх преобразователей, превращающих постоянное напряжение 220 В в переменное. За счёт соответствующих настроек и соединений узлов отдельные фазы сдвинуты на 120°, что даёт в итоге линейное напряжение 380 В.
В большинстве инверторов имеются встроенные стабилизатор напряжения и различные виды защит, отключающие питание при перегрузке, коротком замыкании или повышенном входном напряжении.
Информация! Кроме преобразователей напряжения, которые подключаются к сети 220 В 50Гц, существуют инверторы, работающие от автомобильного аккумулятора =12В. |
2. Метод использования трех фаз
Ещё один способ получения трёхфазного напряжения — это замена вводного кабеля и электросчётчика. В этом случае однофазное питание квартиры или частного дома меняется на трёхфазное с подключением дополнительных фаз от подъездного щитка или уличной линии электропередач.
Эту работу допускается выполнять только после согласования с электрокомпанией, самовольное подключение считается хищением электроэнергии и влечёт за собой наложение штрафа.
Замену электропитания целесообразно выполнять при установке электроплиты или электроотопления и выполняется для разделения нагрузки по разным фазам и уменьшения потребляемого тока и сечения подводящего кабеля.
Подключение к трёхфазной сети электродвигателей в этом случае будет дополнительным бонусом. Подача питания к одному электродвигателю является финансово невыгодной.
3. Подключение электродвигателя через конденсатор
Чаще всего вопрос можно ли получить 380 Вольт из 220 задают владельцы небольших трёхфазных двигателей. Такие электромашины можно подключить к сети 220В через два конденсатора — пусковой и рабочий.
Для этого обмотки аппарата необходимо соединить «треугольником». Катушки большинства двигателей подключены по схеме «звезда», при этом все начала обмоток соединены вместе, а к концам присоединяется питающий кабель.
При переключении на схему «треугольник» конец каждой катушки подключается к началу следующей. Эта схема применяется для электромашин мощностью до 5 кВт и приводит к падению мощности и вращающего момента наполовину.
При включении такого двигателя на 220 В к одной из обмоток подключается питание, а параллельно одной из оставшихся присоединяется рабочий конденсатор. Для реверса его необходимо подключить к другой обмотке.
Ёмкость этого конденсатора рассчитывается по формуле:
Сраб(мкФ)=70*Рдвиг(кВт)
Эти элементы необходимо использовать только предназначенные для работы в сети переменного тока. На время пуска электромашины параллельно рабочему конденсатору кратковременно подключается пусковой:
Спус=(2-3)Сраб
Совет! В качестве пусковых допускается применять электролитические конденсаторы. |
4. Применение трёхфазного трансформатора
В том случае, если из электродвигателя выходить только три вывода, переключить обмотки в «треугольник» без разборки невозможно, а при схеме «звезда» слишком велики потери мощности. В этом случае для получения напряжения 380 вольт используется повышающий трёхфазный трансформатор или автотрансформатор.
При этом к двум клеммам первичной обмотки однофазное питание подаётся напрямую, а к третьей через конденсатор. Его параметры рассчитываются аналогично включению в однофазную сеть трёхфазной электромашины.
Такая схема применяется достаточно редко из-за необходимости использовать дополнительное устройство.
5. Электродвигатель в качестве генератора
Кроме разного способа преобразований есть ещё один метод, как из 220 Вольт сделать 380. Это получение такого питания по системе двигатель-генератор.
При этом в качестве двигателя используется однофазная машина, например, от стиральной машины или пылесоса, а в качестве генератора необходимо установить синхронный генератор или двигатель. Вместо синхронной машины можно использовать асинхронную, но для этого в роторе необходимо разместить постоянные магниты большой мощности.
Такой способ реализовать достаточно сложно из-за трудности согласования скорости вращения электромашин и невозможности регулировки выходного напряжения.
На практике намного проще взять готовый дизельный или бензиновый генератор, предназначенный для резервного питания при отключении электроэнергии, а при наличии такого аппарата с неисправным двигателем его просто заменить новым или отремонтировать.
Вывод
Как видно из материалов статьи, самым надёжным способом, как из 220 сделать 380 вольт, является установка преобразователя напряжения (инвертора). Для подключения двигателей мощностью до 5 кВт допускается использовать конденсаторную схему с пусковыми конденсаторами и потерей до 50% мощности. Как временное решение можно использовать передвижной трёхфазный генератор.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Подключение трехфазного двигателя к сети 220 вольт. ~ БЛОГ О ЗАТОЧКЕ
Хотелось бы небольшое внимание уделить схемам подключения трехфазных асинхронных двигателей 220/380 вольт к сети напряжением 220 вольт. Ни чего сложного здесь нет и такую работу может сделать любой человек, имеющий минимальный опыт работы электрикой. Если же такого опыта нет, тогда лучше обратиться к специалисту…
1. Схема подключения «звезда«. В такой схеме подключения обмотки двигателя соединяются в одной точке — см. рис.1. Двигатели работают мягче, чем при соединении «треугольник» (см. ниже), но из-за больших потерь, двигатель с таким подключением не может развить полную мощность — потери в мощности составляют около 30-35% от паспортных.
2. Схема подключения «треугольник«. При такой схеме подключения обмотки двигателя соединяются последовательно, т.е. конец одной обмотки соединяется с началом следующей. В этом случае двигатель работает на полную мощность, но возникает большой пусковой ток, это можно почуствовать по небольшом рывку при разгоне двигателя.
3. Какое подключение выбрать. Есть мнение, что подключение «треугольник» лучше делать в случаях, когда при включении двигатель не испытывает нагрузок. Также существуют варианты подключения, когда пуск двигателя происходит по схеме «звезда», а после набора оборотов автоматически переключается на треугольник. Обычно такие схемы используются для электродвигателей большой мощности, поэтому в данной статье мы их рассматривать не будем.
4. Подключение через конденсатор. Наиболее часто подключение таких двигателей к сети 220 вольт переменного тока осуществляется через конденсатор (рис. 3, 4). В этом случае напряжение сети подводят к началам двух фаз двигателя, а к выводу третьей фазы и одному из проводов подключают рабочий конденсатор и отключаемый пусковой, необходимый для увеличения пускового момента (используется при наличии нагрузки при пуске двигателя). 5. Расчет емкостей конденсаторов. Рабочую емкость конденсатора для двигателя с обмоткой «звезда» рассчитываю по формуле: Cр=2800х(I/U); а для двигателя с обмоткой «треугольник»: Ср=4800х(I/U), где Cp — емкость рабочего конденсатора в мкФ, I — потребляемый двигателе ток по паспорту в А, U — напряжение сети. Емкость пусковых конденсаторов выбирают в 2-2.5 раза больше рабочих. Выбор конденсаторов по номинальному напряжению производится из расчета: Uк = 1,2хU (Uк — напряжение на конденсаторе)
6. Пример расчета емкости рабочего конденсатора для асинхронного двигателя АИР-56А4 с характеристиками: 220/380 В, 0.48А, 1500 об/мин, обмотки соединены «треугольником», пуск двигателя без нагрузки: Ср = 4800 x 0.48 / 220 ≈ 10 мкФ. В итоге выбирает конденсатор 10 мкФ с рабочим напряжением 300 В (Uк = 1,2 x 220 = 264 В), или включенных параллельно два конденсатора по 5 мкФ и 300 В каждый….
ZAT (Днепр, Украина)
http://www.zat24.com/
Создана 30.08.10, посл.обновление — 15.05.2019 Трехфазный источник
— обзор
7.2.3 Метод модуляции прямого матричного преобразователя
В этом разделе представлена матрица рабочего цикла для управления каждым переключателем трехфазного прямого матричного преобразователя и метод модуляции трехфазного преобразователя. будет описан преобразователь прямой матрицы, использующий матрицу рабочего цикла. Входное фазное напряжение и выходной фазный ток прямого матричного преобразователя даны как независимые переменные в формуле. (7.12).
(7.12) vi = vsavsbvsc = Vimcosωitcosωit − 2π / 3cosωit + 2π / 3, io = ioAioBioC = Iomcosωot − ϕocosωot − ϕo − 2π / 3cosωot − ϕo + 2π / 3.
В этом случае предположим, что операция генерирует выходное фазное напряжение и входной фазный ток в формуле. (7.13) контролем.
(7,13) vo = voAvoBvoC = Vomcosωotcosωot − 2π / 3cosωot + 2π / 3, ii = isaisbisc = Iimcosωit − ϕicosωit − ϕi − 2π / 3cosωit − ϕi + 2π / 3,
где cos14 ( ϕ 900 ) и cos ( ϕ i ) — коэффициенты мощности нагрузки и входного каскада, соответственно, а ω i и ω o — входная и выходная угловые частоты, соответственно.Опорный потенциал выходного фазного напряжения v oA , v oB и v oC является нейтральной точкой трехфазного источника напряжения входного каскада, как показано на рис. 7.3. .
Входная мощность прямого матричного преобразователя должна быть равна выходной мощности. Следовательно, уравнение. (7.14) определяется из v i T i i = v o T i o .
(7.14) VimIimcosϕi = VomIomcosϕo.
Когда коэффициент усиления по напряжению прямого матричного преобразователя определяется как q = V om / V im , уравнение. (7.15) определяется как
(7.15) Vom = qVim, Iim = qIomcosϕocosϕi.
Когда уравнения. (7.12), (7.13) подставляются в уравнение. (7.10) матрица T заполнения, которая удовлетворяет ограниченному условию продолжительности включения, как в уравнении. (7.11) рассчитывается с использованием уравнения. (7.16).
(7.16) T = dAadAbdAcdBadBbdBcdCadCbdCc = p13d1d2d3d3d1d2d2d3d1 + p23d1′d2′d3′d2′d3′d1′d3′d1′d2 ′,
, где 14 d15 d 1 , d 1 ′, d 2 ′ и d 3 ′ выражены в уравнении. (7.17).
(7.17) d1 = 1 + 2qcosω1t, d2 = 1 + 2qcosω1t + 2π3, d3 = 1 + 2qcosω1t − 2π3, d1 ′ = 1 + 2qcosω2t, d2 ′ = 1 + 2qcosω2t − 2π3, d3 ′ = 1 + 2qω2t + 2π3,
, где ω 1 и ω 2 составляют ω o — ω i и ω o + ω i соответственно, и p 1 и p 2 являются переменными управления коэффициентом мощности положительного и отрицательного направления, соответственно, которые выражены в формуле.(7.18).
(7.18) p1 = 121 + p, p2 = 121 − p, p = tanϕitanϕo.
Из уравнения. (7.18), p 1 + p 2 = 1 и p 1 — p 2 = p . Кроме того, p — это коэффициент передачи фазы между входом и выходом прямого матричного преобразователя. Среди переменных, которые определяют p, , ϕ o определяется характеристиками нагрузки, а ϕ i определяется желаемым значением команды.
Если входной каскад матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), уравнение. (7.16) можно просто переписать, как это дает Ур. (7.19).
(7,19) djk = 131 + 2vojvskVim2j = ABCk = abc.
На рис. 7.10 показан диапазон значений трехфазного входного напряжения источника и выходного фазного напряжения прямого матричного преобразователя. Трехфазное выходное фазное напряжение не может выходить за пределы диапазона входного фазного напряжения, поскольку выходное фазное напряжение прямого матричного преобразователя синтезируется из входного напряжения.Следовательно, максимальная величина выходного фазного напряжения ограничена 50% от входного фазного напряжения. Другими словами, максимальное значение управляющего параметра q составляет 0,5 в матрице скважности уравнения. (7.16).
Рис. 7.10. Входное напряжение и выходное фазное напряжение ( q макс. = 0,5).
На рис. 7. 11 показан способ получения большего выходного фазного напряжения, чем выходное фазное напряжение на рис. 7.10, путем добавления синфазного напряжения к выходному фазному напряжению по формуле.(7.13). Как упоминалось ранее, синфазное напряжение, приложенное к выходному фазному напряжению, не влияет на линейное напряжение выходного каскада прямого матричного преобразователя, поскольку опорные потенциалы выходного фазного напряжения v oA , v oB и v oC являются нейтральными точками трехфазного источника напряжения входного каскада.
Рис. 7.11. Входное напряжение и выходное фазное напряжение ( q max = 0.866) с использованием синфазного напряжения в модуляции.
Следовательно, фазные напряжения на выходе выражаются в формуле. (7.20) как
(7.20) vo = voAvoBvoC = Vomcosωot + vcmtcosωot − 2π / 3 + vcmtcosωot + 2π / 3 + vcmt,
, где v cm — синфазное напряжение, выраженное в уравнении . (7.21) как
(7.21) vcmt = −16cos3ωot + 36cos3ωit.
В результате максимальное значение q увеличивается до √ 3/2 (= 0,866). Дополнительно q max = 0.866 — это уникальная характеристика прямого матричного преобразователя, которая определяется независимо от метода модуляции управления прямого матричного преобразователя.
Если выходное фазное напряжение уравнения. (7.20) вместо уравнения. (7.13) окончательное решение обычно выражается комплексным уравнением, полученным с помощью оптимального метода Вентурини. Кроме того, этот метод необходим для многих расчетов в реальном приложении. Однако, если входной каскад прямого матричного преобразователя работает с единичным коэффициентом мощности ( ϕ i = 0), окончательное решение может быть легко реализовано, как показано в уравнении.(7.22).
(7.22) djk = 131 + 2vojvskVim2 + 4q33sinωit + βksin3ωit, j = A, B, C, k = a, b, c, βa = 0, βb = −2π / 3, βc = 2π / 3.
В зависимости от оптимального метода анализа Вентурини, соотношение между передаточным отношением фазы на входе и выходе p прямого матричного преобразователя и коэффициентом усиления по напряжению q выбирается из уравнения. (7.23).
(7,23) 2qp⋅1 − signλ3 + sgnλ3≤1,
, где λ и sgn ( λ ) выражаются следующим образом в уравнении. (7.24).
(7.24) λ = 2q31 − p, signλ = 1, λ≥0−1, λ <0.
На рис. 7.12 показано изменение максимального усиления по напряжению q max в зависимости от значения p . Если p управляется для управления коэффициентом мощности входного каскада прямого матричного преобразователя, необходимо соблюдать осторожность, поскольку максимальное усиление напряжения q max изменяется, как показано на рис. 7.12.
Рис. 7.12. Максимальное усиление напряжения q max в зависимости от значения p .
Если требуется, чтобы q max было> 0,5, диапазон p должен быть ограничен в диапазоне — 1 < p <1. Кроме того, в диапазоне - 1 < p <1, диапазон регулировки угла коэффициента мощности входного каскада ограничен как - | ϕ o | < ϕ i <| ϕ o | из уравнения. (7.18).
На рис. 7.13 показан пример метода, который генерирует стробирующие сигналы, которые являются функцией присутствия переключателя ( S jk ), с использованием каждого матричного элемента ( d jk ) матрицы заполнения . Т матричного преобразователя.Стробирующие сигналы переключателей S Aa , S Ab и S Ac , подключенных к выходному каскаду фазы A, определяются путем сравнения несущего сигнала v треугольника треугольника. форма с d Aa и ( d Aa + d Ab ) мгновенно. Кроме того, они выражаются следующим образом в формуле. (7.25):
Рис. 7.13. Формирование стробирующих сигналов из дежурного сигнала (переключение фазы А).
(7.25) sAasAbsAc = 100,0≤vtri , где s ij = 0 представляет состояние выключения переключателя и s ij = 1 представляет состояние включения. Методы, которые генерируют стробирующие сигналы переключателей ( S Ba , S Bb и S Bc ), подключенных к выходному каскаду фазы B и переключателям ( S Ca , S Cb и S Cc ), подключенные к выходному каскаду C-фазы, аналогичны методу для переключателей, подключенных к выходному каскаду A-фазы. Трехфазная электроэнергия — распространенный метод передачи электроэнергии. Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении. В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока. Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе. Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением.В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза). Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки. Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя. Наконец, трехфазные системы могут создавать магнитное поле, которое вращается в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства. Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите. На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора. Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы. В трехфазной системе фазы распределены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но для получения более подробной информации см. «Системы электроснабжения»). Генераторы выдают напряжение от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до более подходящего для передачи. После многочисленных дополнительных преобразований в сети передачи и распределения мощность окончательно преобразуется в стандартное сетевое напряжение (, т.е. «домашнее» напряжение). На этом этапе питание может быть уже разделено на однофазное или все еще может быть трехфазным.При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением. Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль. Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). должны быть доступны из того же источника. В большом оборудовании для кондиционирования воздуха и т. Д. Используются трехфазные двигатели из соображений эффективности, экономии и долговечности. Нагреватели сопротивления, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам. Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением.Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз. Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя. Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока. Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд. В большинстве стран Европы печи рассчитаны на трехфазное питание. Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить возможность подключения к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание. Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, например, жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование.Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное. Поскольку однофазная мощность стремится к нулю в каждый момент, когда напряжение пересекает ноль, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды. Один из методов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения.При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания. В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала. Вторым методом, который был популярен в 1940-х и 50-х годах, был метод, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов.Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня. Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей. Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может вызвать перегрев нагрузок двигателя, а в некоторых случаях — перегрев.Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного и выпрямительного типа. Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается за счет создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью. Преобразователи частоты (также известные как твердотельные инверторы) используются для точного управления скоростью и крутящим моментом трехфазных двигателей.Некоторые модели могут питаться от однофазной сети. Преобразователи частоты работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя. Цифровые фазовые преобразователи — это последняя разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки. Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений. Один цикл напряжения трехфазной системы На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы. Основным преимуществом этого было то, что конфигурация обмотки была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту. Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют расщепленной фазой. Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, и поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — раньше все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют. Использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с шагом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток. Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Это позволяет применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволит увеличить передачу мощности в коридоре той же ширины линии электропередачи. Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений. В Северной Америке в многоквартирных домах может быть распределено напряжение 120 В (линия на нейтраль) и 208 В (линия на линию). Основные однофазные приборы, такие как духовки или плиты, предназначенные для системы с разделением фаз на 240 В, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 В; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при поданном на 13% напряжении. Коэффициент мощности энергосистемы переменного тока определяется как отношение активной (истинной или реальной) мощности к полной мощности , где Реактивная мощность требуется для намагничивания электродвигателя, но не выполняет никакой работы. Реактивная мощность, необходимая для индуктивных нагрузок, увеличивает объем полной мощности — и требуемую подачу в сеть от поставщика энергии к распределительной системе. Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF . Обычно коэффициент мощности — PF — определяют как косинус фазового угла между напряжением и током — или « cosφ »: PF = cos φ где PF = коэффициент мощности φ = фазовый угол между напряжением и током Коэффициент мощности, определенный IEEE и IEC, является соотношением между приложенной активной (истинной) мощностью — и полная мощность , и в общем случае может быть выражена как: PF = P / S (1) , где PF = коэффициент мощности P = активная (истинная или действительная) мощность (Вт) S = полная мощность (ВА, вольт-амперы) Низкий коэффициент мощности — это результат lt индуктивных нагрузок, таких как трансформаторы и электродвигатели. В отличие от резистивных нагрузок, создающих тепло за счет потребления киловатт, индуктивные нагрузки требуют протекания тока для создания магнитных полей для выполнения желаемой работы. Коэффициент мощности является важным измерением в электрических системах переменного тока, потому что Международные стандарты, такие как IEC 61000-3-2, были установлены для управления искажением формы сигнала тока путем введения ограничений на амплитуду гармоник тока. Промышленное предприятие потребляет 200 А при 400 В , а трансформатор питания и резервный ИБП рассчитаны на 400 В x 200 A = 80 кВА . Если коэффициент мощности — PF — нагрузки составляет 0,7 — только 80 кВА × 0,7 = 56 кВт реальной мощности. Если коэффициент мощности близок к 1 (чисто резистивная цепь), система питания с трансформаторами, кабелями, распределительным устройством и ИБП может быть значительно меньше. Требуемая площадь поперечного сечения проводника с более низким коэффициентом мощности: Низкий коэффициент мощности дорог и неэффективен, и некоторые коммунальные предприятия могут взимать дополнительную плату, если коэффициент мощности меньше 0,95 . Низкий коэффициент мощности снизит пропускную способность электрической системы из-за увеличения тока и падения напряжения. Коэффициент мощности обычно указывается как «опережающий» или «запаздывающий», чтобы показать знак фазового угла. Индуктивные и емкостные нагрузки накапливают энергию в магнитных или электрических полях в устройствах во время частей циклов переменного тока. В течение остальных циклов энергия возвращается обратно в источник питания. В системах с преимущественно индуктивными нагрузками — как правило, на промышленных предприятиях с большим количеством электродвигателей — запаздывающее напряжение компенсируется конденсаторными батареями. Полная мощность, необходимая индуктивному устройству, например, двигателю или аналогичному, состоит из Коэффициент мощности трехфазного электродвигателя может быть выражен как: PF = P / [(3) 1/2 UI] (2) где PF = коэффициент мощности P = приложенная мощность (Вт, Вт) U = напряжение (В) I = ток (А, амперы) — или альтернативно: P = (3) 1/2 UI PF = (3) 1/2 U I cos φ (2b) U, l и cos φ обычно указаны на паспортной табличке двигателя. Типичные неулучшенные коэффициенты мощности: 0,506 0,46 0,35 0,09 Электродвигатель мощностью 150 кВт имеет коэффициент мощности до улучшения cosΦ = 0.75 . Для необходимого коэффициента мощности после улучшения cosΦ = 0,96 — коэффициент коррекции конденсатора составляет 0,58 . Требуемая мощность KVAR может быть рассчитана как C = (150 кВт) 0,58 = 87 KVAR Рекомендуемые размеры блоков KVAR, необходимых для коррекция асинхронных двигателей до коэффициента мощности примерно 95%. Источники питания 50 Гц и 60 Гц наиболее часто используются в международных энергосистемах.В некоторых странах (регионах) обычно используется электросеть с частотой 50 Гц, в то время как в других странах используется электросеть с частотой 60 Гц. ЧТО ТАКОЕ ГЕРЦ? Герц, короче Гц, — основная единица измерения частоты в ознаменование открытия электромагнитных волн немецким физиком Генрихом Рудольфом Герцем. В 1888 году немецкий физик Генрих Рудольф Герц (22 февраля 1857 — 1 января 1894), первый человек подтвердил существование радиоволн и внес большой вклад в электромагнетизм, поэтому единица измерения частоты в системе СИ названа в честь Герца. его. ДЛЯ ЧЕГО ИСПОЛЬЗУЕТСЯ Hz? Гц (Герц) — единица измерения частоты цикла вибрации электрической, магнитной, акустической и механической вибрации, т.е.е. количество раз в секунду (цикл / сек). ЧТО ТАКОЕ 50 ГЕРЦ? 50 Гц (Гц) означает, что ротор генератора вращается 50 циклов в секунду, ток изменяется 50 раз в секунду вперед и назад, направление изменяется 100 раз. Это означает, что напряжение изменяется с положительного на отрицательное и с отрицательного на положительное напряжение, этот процесс преобразуется 50 раз в секунду. Электричество 380 В переменного тока и 220 В переменного тока имеют частоту 50 Гц. Частота вращения двухполюсного синхронного генератора 50 Гц составляет 3000 об / мин.Частота переменного тока определяется числом полюсов генератора p и скоростью n , Гц = p * n /120. Стандартная частота сети составляет 50 Гц, что является постоянным значением. Для двухполюсного двигателя частота вращения n = 50 * 120/2 = 3000 об / мин; для 4-х полюсного двигателя частота вращения n = 50 * 120/4 = 1500 об / мин. ПОЧЕМУ 50 ГЕРЦ? МОЖЕТ ЛИ МОТОР 50 ГЕРЦ РАБОТАТЬ НА 60 ГЕРЦ? Так как формула для регулирования синхронной скорости трехфазного двигателя: n = (120 * Гц ) / p , если это 4-полюсный двигатель, то при 50 Гц скорость будет 1500 Об / мин, тогда как при 60 Гц скорость будет 1800 об / мин.Поскольку двигатели являются машинами с постоянным крутящим моментом, то, применив формулу л.с., = ( крутящий момент * n ) / 5252, вы можете увидеть, что при увеличении скорости на 20% двигатель также сможет производить 20% больше лошадиных сил. Двигатель сможет создавать номинальный крутящий момент на обеих частотах 50/60 Гц. Применяется только в том случае, если соотношение В / Гц является постоянным, что означает, что при 50 Гц напряжение питания должно быть 380 В, а при 60 Гц напряжение питания потребуется. составлять 460 В. В обоих случаях соотношение В / Гц равно 7.6 В / Гц. ЧТО ТАКОЕ 60 ГЕРЦ? При 60 Гц ротор генератора вращается 60 циклов в секунду, ток меняется 60 раз в секунду вперед и назад, направление меняется 100 раз. Это означает, что напряжение изменяется с положительного на отрицательное и с отрицательного на положительное напряжение, этот процесс преобразуется 60 раз в секунду. Электричество 480 В переменного тока и 110 В переменного тока имеют частоты 60 Гц. Скорость двухполюсного синхронного генератора 60 Гц составляет 3600 об / мин. Частота переменного тока определяется числом полюсов генератора p и скоростью n, частот.= р * п / 120. Стандартная частота сети составляет 60 Гц, что является постоянным значением. Для 2-полюсного двигателя частота вращения n = 60 * 120/2 = 3600 об / мин; для 4-полюсного двигателя частота вращения n = 60 * 120/4 = 1800 об / мин. КАК ИЗМЕНИТЬ 60 Гц НА 50 Гц Преобразователь частоты может преобразовывать мощность переменного тока фиксированной частоты (50 Гц или 60 Гц) в переменную частоту, мощность переменного напряжения посредством преобразования переменного тока → постоянного тока → переменного тока, выводить чистую синусоидальную волну, и регулируемая частота и напряжение. Это отличается от частотно-регулируемого привода, который предназначен только для управления скоростью двигателя, а также от обычного стабилизатора напряжения.Идеальный источник питания переменного тока — это стабильная частота, стабильное напряжение, сопротивление примерно равно нулю и форма волны напряжения — чистая синусоида (без искажений). Выходной сигнал преобразователя частоты очень близок к идеальному источнику питания, поэтому все больше и больше стран используют источник питания преобразователя частоты в качестве стандартного источника питания, чтобы обеспечить наилучшую среду электропитания для приборов для оценки их технических характеристик. 50 Гц по сравнению с 60 Гц ПРИ РАБОЧЕЙ СКОРОСТИ Основная разница между 50 Гц (Герцы) и 60 Гц (Герцы) просто состоит в том, что частота 60 Гц на 20% выше по частоте.Для генератора или насоса с асинхронным электродвигателем (простыми словами) это означает 1500/3000 об / мин или 1800/3 600 об / мин (для 60 Гц). Чем ниже частота, тем меньше потери в стали и потери на вихревые токи. Уменьшите частоту, скорость асинхронного двигателя и генератора будет ниже. Например, при 50 Гц генератор будет работать со скоростью 3000 об / мин против 3600 об / мин при 60 Гц. Механические центробежные силы будут на 20% выше при частоте 60 Гц (стопорное кольцо обмотки ротора должно выдерживать центробежную силу при проектировании). Но с более высокой частотой выходная мощность генератора и асинхронных двигателей будет выше для двигателя / генератора того же размера из-за более высокой скорости на 20%. 50 Гц VS 60 Гц ПО КПД Конструкция таких магнитных машин такова, что они действительно одно или другое. В некоторых случаях это может сработать, но не всегда. Переключение между разными частотами источника питания, безусловно, повлияет на эффективность и может означать необходимость снижения номинальных значений. Между системами 50 Гц и 60 Гц существует небольшая реальная разница, если оборудование рассчитано на соответствующую частоту. Важнее иметь стандарт и придерживаться его. Более существенное различие состоит в том, что системы 60 Гц обычно используют 110 В (120 В) или около того для внутреннего источника питания, в то время как системы 50 Гц обычно используют 220 В, 230 В и т. Д. Для разных стран. Это приводит к тому, что домашняя проводка должна быть в два раза больше сечения для системы 110 В при той же мощности. Однако оптимальной считается система около 230 В (размер провода и требуемая мощность по сравнению с безопасностью). 60 Гц ЛУЧШЕ, ЧЕМ 50 Гц? Нет большой разницы между 50 Гц и 60 Гц, в принципе ничего плохого или хорошего.Для независимого энергетического оборудования, такого как корабли, самолеты или изолированные области, такие как газовые / нефтяные установки, может быть разработана любая частота (например, 400 Гц) в зависимости от пригодности. Источник: http://www.gohz.com/difference-between-50hz-and-60hz-frequency РАБОТА ДВИГАТЕЛЕЙ 60 ГЦ, 50 ГЦ быть специально спроектированным и изготовленным для 50 Гц. Часто доставка продуктов с частотой 50 Гц такова, что желателен альтернативный образ действий с использованием продуктов с частотой 60 Гц. Общие правила эксплуатации двигателей 60 Гц в системах 50 Гц касаются того факта, что напряжение за цикл должно оставаться постоянным при любом изменении частоты. Кроме того, поскольку двигатель будет работать только на пяти шестых от скорости 60 Гц, выходная мощность в лошадиных силах при 50 Гц ограничена максимум пятью шестыми от номинальной мощности. Источник: U.S. Motors http://www.usmotors.com/TechDocs/ProFacts/50Hz-Operation-60Hz.aspx ЧТО НУЖНО УЧИТАТЬ ПРИ ЭКСПЛУАТАЦИИ ОБОРУДОВАНИЯ 50 ГЦ ПРИ 60 ГЦ? Машины, импортируемые в США, часто рассчитаны на рабочую частоту 50 Гц, если только они не спроектированы для работы на частоте 60 Гц.. Это может быть проблематично для электродвигателей. Это особенно актуально при работе насосов и вентиляторов с нагрузкой. Часто дистрибьюторы и покупатели этого оборудования предполагают, что производитель оригинального оборудования принял это во внимание. Это распознается, когда двигатели поступают в ремонт, разгоряченные от перегрузки. Преобразователь частоты (VFD) может использоваться для правильного решения проблем, связанных с работой оборудования с частотой 50 Гц и частотой 60 Гц. Скорость двигателя прямо пропорциональна рабочей частоте.Изменение рабочей частоты насоса или вентилятора увеличивает рабочую скорость и, как следствие, увеличивает нагрузку на двигатель. Нагрузка насоса или вентилятора — это нагрузка с переменным крутящим моментом. Нагрузка с переменным крутящим моментом зависит от куба скорости. Двигатель 50 Гц, работающий на частоте 60 Гц, будет пытаться вращаться с увеличением скорости на 20%. Нагрузка станет в 1,23 (1,2 x 1,2 x 1,2) или в 1,73 раза больше (173%), чем на исходной частоте. Переконструировать двигатель для такого увеличения мощности невозможно. Одним из решений может быть модификация приводного оборудования для уменьшения нагрузки. Это может включать в себя обрезку диаметра крыльчатки вентилятора или крыльчатки для обеспечения такой же производительности при 60 Гц, как и у агрегата при 50 Гц. Для этого потребуется консультация с производителем оборудования. Есть и другие соображения, связанные с увеличением скорости помимо увеличения нагрузки. К ним относятся механические ограничения, пределы вибрации, рассеивание тепла и потери. Лучшее решение — использовать двигатель с той скоростью, на которую он был рассчитан.Если это 50 Гц, то можно установить частотно-регулируемый привод. Эти приводы преобразуют сетевую мощность 60 Гц в мощность 50 Гц на клеммах двигателя. Это решение дает множество других преимуществ. Эти преимущества включают в себя: Источник: Precision Electric, Inc., Автор: Craig Chamberlin , 25 ноября 2009 г. http://www.precision-elec.com/faq-vfds-are-there- вещи, которые следует учитывать при эксплуатации-50-Гц-оборудование-при-60-Гц / Как известно, напряжение — это разность потенциалов между двумя точками. Однофазная система питания — это система, в которой есть только один источник переменного напряжения. Однофазный состоит всего из двух проводов, один из которых называется фазой, а другой — нейтральным. Напряжение измеряется между фазой и нейтралью. В то время как 3 фазы — это напряжение между любыми двумя из этих трех фаз. В трехфазном питании есть 3 линии питания, сдвинутые по фазе на 120 градусов друг от друга. Таким образом, чистая разница напряжений между двумя фазами в соответствии с фазовым углом 120 градусов составляет 440 В. Как показано на рисунке ниже, трехфазный источник питания имеет три провода (RYB). Напряжение на любой одной фазе и нейтрали составляет 220 В, а напряжение на 3 фазе — 440 В, потому что мы проверяем напряжение между любыми двухфазными RY, YB или BR. Рассмотрим одну синусоидальную волну с максимальной амплитудой 220 относительно ее оси. Таким образом, будь то положительный или отрицательный цикл, он может достигать максимума 220 (+220 или -220). Но если учесть напряжение между фазами, тогда оно станет равным 440. Теперь все 3 фазы имеют одинаковое максимальное среднеквадратичное значение. То есть, если рассмотреть любую из фаз и сравнить их напряжение с нейтралью, оно выйдет на 220 или 240 вольт или около того. В то время как в случае трех фаз напряжение может использоваться между двумя фазами вместо одной фазы и нейтрали. Будь то три фазы, но вы можете рассчитать напряжение между любыми двумя из них одновременно. Максимальное напряжение, которое можно получить от любых двух фаз, — это когда одна из них находится на вершине своего положительного цикла (т. e +220), а другой — в самом низком отрицательном цикле (-220). Если мы проверим напряжение между этими двумя точками, то оно будет 440 вольт ((+220) — (- 220) = 440). Далее: Трехфазное электрическое питание | Передача электроэнергии
— коэффициент мощности в зависимости от индуктивной нагрузки
Коэффициент мощности
Пример — коэффициент мощности
Система потребляет Зависимость поперечного сечения проводника от коэффициента мощности
Коэффициент мощности 1 0,9 0.8 0,7 0,6 0,5 0,4 0,3 Поперечное сечение 1 1,2 1,6 2,04 6 4,0 6,0 2,8 2,8 «Опережающий» или «запаздывающий» коэффициенты мощности
Коэффициент мощности трехфазного двигателя
Типичный коэффициент мощности двигателя
Мощность
(л.с.) Скорость
(об / мин) Коэффициент мощности (cos φ ) Без нагрузки 1/499 нагрузка 1/2 нагрузки 3/4 нагрузки полная нагрузка 0-5 1800 0,15 — 0,20 0,5 — 0,6 0,72 0,82 0,84 0,84 — 20 1800 0.15 — 0,20 0,5 — 0,6 0,74 0,84 0,86 20-100 1800 0,15 — 0,20 0,5 — 0,6 0,79 0,86 907 100-300 1800 0,15 — 0,20 0,5 — 0,6 0,81 0,88 0,91 Коэффициент мощности по отраслям
34 Коэффициент мощности Пивоваренный завод 75-80 Цемент 75-80 Химический 65-75 40 906 Электрохимический Литейное производство 75-80 Поковка 70-80 Hospi tal 75-80 Производство, машины 60-65 Производство, краска 65-70 Металлообработка 65-70 уголь — 80 Офис 80-90 Масляный насос 40-60 Производство пластмасс 75-80 Штамповка 37 9036 9036 9036 65-80 Текстиль 35-60 Преимущества коррекции коэффициента мощности
Коррекция коэффициента мощности с помощью конденсатора
Поправочный коэффициент конденсатора Коэффициент мощности до улучшения (cosΦ) Коэффициент мощности после улучшения (cosΦ) 6 1. 0 0,99 0,98 0,97 0,96 0,95 0,94 0,93 0,92 0,91 0,90 0,90 6 903 1,44 1,40 1,37 1,34 1,30 1,28 1,25 0,55 1,52 1.38 1,32 1,28 1,23 1,19 1,16 1,12 1,09 1,06 1,04 0.60 6 0.60 6 1,36 903 1,01 0,97 0,94 0,91 0,88 0,85 0,65 1,17 1,03 0.97 0,92 0,88 0,84 0,81 0,77 0,74 0,71 0,69 0,70 1,02 6 0,86 1,02 6 0,88 1,02 6 0,88 906 0,66 0,62 0,59 0,56 0,54 0,75 0,88 0,74 0,67 0. 63 0,58 0,55 0,52 0,49 0,45 0,43 0,40 0,80 0,75 0,61 6 0,46 0,32 0,29 0,27 0,85 0,62 0,48 0,42 0,37 0.33 0,29 0,26 0,22 0,19 0,16 0,14 0,90 0,48 0,34 0,28 6 0,16 6 0,16 9040 0,06 0,02 0,91 0,45 0,31 0,25 0,21 0,16 0,13 0.09 0,06 0,02 0,92 0,43 0,28 0,22 0,18 0,13 0,10 6 0,06 0,06 0,10 6 0,06 906 903 0,25 0,19 0,15 0,10 0,07 0,03 0,94 0. 36 0,22 0,16 0,11 0,07 0,04 0,95 0,33 0,18 6 0,1283 0,18 6 0,1283 0,96 0,29 0,15 0,09 0,04 0.97 0,25 0,11 0,05 0,98 0,20 0,06 Пример — Повышение коэффициента мощности с помощью конденсатора
Рекомендуемые характеристики конденсаторов для двигателей с Т-образной рамой NEMA класса B
Мощность асинхронного двигателя
(л.с.) Номинальная скорость двигателя (об / мин) 3600 1800 1200 Мощность конденсатора
9 Ток
(%) Номинал конденсатора
(кВАр) Снижение линейного тока
(%) Номинал конденсатора
(кВАр) Снижение линейного тока
(%) 3 1.5 14 1,5 23 2,5 28 2,5 5 2 14 2,5 22 3 3 20 4 21 6 12406 10 4 14 4 18 5 21 15406 18 6 20 20 6 12 6 17 7. 5 19 25 7,5 12 7,5 17 8 19 30 8 11 906 40 12 12 13 15 16 19 50 15 12 18 6 18 6 906 60 18 12 21 14 22.5 17 75 20 12 23 14 25 15 100 22,5 30 11 906 30 11 906 906 125 25 10 36 12 35 12 150 30 10 42 12406 906 906 9036 906 200 35 10 50 11 50 10 250 40 11 60 10 62. 5 10 300 45 11 68 10 75 12 350 840 840 50 12 906 906 400 75 10 80 8 100 12 450 80 8 90 906 906 9037 8 90 906 500 100 8 120 9 150 12 50 Гц v 60 Гц | КСБ
При увеличении частоты потребление меди и стали в генераторе и трансформаторе уменьшается, а также уменьшается вес и стоимость, но при этом увеличиваются индуктивности электрического оборудования и линии передачи, уменьшаются емкости и увеличиваются потери, тем самым снижение эффективности передачи. Если частота будет слишком низкой, материалы электрического оборудования увеличатся, а также станут тяжелыми и дорогостоящими, и огни будут явно мигать. Практика показала, что использование частот 50 Гц и 60 Гц является приемлемым. Почему трехфазное напряжение составляет 440 вольт?
Однофазный
Трехфазный
Почему 440 вольт?
Об авторе
Проницательный профессионал с 25-летним стажем работы инженером по КИПиА начал карьеру в целлюлозно-бумажной промышленности. Со временем был переведен на электростанцию, установку целлюлозы, химические заводы (сульфид углерода, Clo2 и серную кислоту), нефть и газ (разведка и добыча).
Как использовать трехфазный двигатель в однофазном источнике питания
На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал при возникновении аварийной или критической ситуации. Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?
Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном питании с помощью постоянного КОНДЕНСАТОРА. Эта маленькая вещь (конденсатор) очень полезна для работы трехфазного двигателя в однофазном питании. поставка.
Согласно нашему последнему обсуждению трехфазного двигателя, обычно у него есть две (2) общие обмотки, соединение ЗВЕЗДА или ТРЕУГОЛЬНИК. В этом посте я объяснил, как подключить конденсатор в трехфазном двигателе, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.
Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием?
1) Подключение конденсатора для вращения ВПЕРЕД
-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.
* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.
2) Подключение конденсатора для ОБРАТНОГО вращения
— Для ОБРАТНОГО вращения необходимо установить конденсатор в любые две фазы обмотки в соединении ЗВЕЗДА (Y), как показано на рисунке ниже.
* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.
Мощность двигателя
Мы должны учитывать мощность двигателя при переходе с трехфазного источника питания на однофазный, чтобы соответствовать и подходить для нашего приложения. Но мы не можем получить фактическое значение из-за множества аспектов, которые мы должны рассчитать, и это так сложно. можно оценить приблизительное значение мощности двигателя в процентах (%) ниже: —
Как выбрать подходящий конденсатор?
Это очень важное решение, которое мы должны учитывать в отношении размера конденсатора при планировании работы трехфазного двигателя от однофазного источника питания.При неправильном выборе это может повлиять на состояние двигателя, а его производительность также может привести к повреждению обмотки двигателя.
Ниже приводится приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение и напряжение сети, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —
Трехфазный ток — простой расчет
Расчет тока в трехфазной системе был поднят на нашем сайте отзывов, и это обсуждение, в которое я, кажется, время от времени участвую.Хотя некоторые коллеги предпочитают запоминать формулы или факторы, я предпочитаю решать проблему поэтапно, используя базовые принципы. Я подумал, что неплохо было бы написать, как я делаю эти расчеты. Надеюсь, это может оказаться полезным для кого-то еще.
Трехфазная мощность и токМощность, потребляемая цепью (одно- или трехфазной), измеряется в ваттах Вт (или кВт). Произведение напряжения и тока представляет собой полную мощность, измеряемую в ВА (или кВА).Соотношение между кВА и кВт — это коэффициент мощности (pf):
что также может быть выражено как:
Однофазная система — с этим проще всего иметь дело. Учитывая кВт и коэффициент мощности, можно легко рассчитать кВА. Сила тока — это просто кВА, деленная на напряжение. В качестве примера рассмотрим нагрузку, потребляющую 23 кВт мощности при 230 В и коэффициенте мощности 0,86:
.
Примечание: вы можете выполнять эти уравнения в ВА, В и А или в кВА, кВ и кА в зависимости от величины параметров, с которыми вы имеете дело.Чтобы преобразовать ВА в кВА, просто разделите на 1000.
Трехфазная система — Основное различие между трехфазной системой и однофазной системой — это напряжение. В трехфазной системе у нас есть линейное напряжение (V LL ) и фазное напряжение (V LN ), связанные следующим образом:
«Введение в трехфазную электрическую мощность».
или как вариант:
чтобы лучше понять это или получить больше информации, вы можете прочитать статью
Для меня самый простой способ решить трехфазные проблемы — это преобразовать их в однофазную. Возьмем трехфазный двигатель (с тремя одинаковыми обмотками), потребляющий заданную кВт. Мощность в кВт на обмотку (однофазная) должна быть разделена на 3. Точно так же трансформатор (с тремя обмотками, каждая из которых идентична), питающий заданную кВА, будет иметь каждую обмотку, обеспечивающую треть общей мощности. Чтобы преобразовать трехфазную задачу в однофазную, возьмите общую мощность в кВт (или кВА) и разделите ее на три.
В качестве примера рассмотрим сбалансированную трехфазную нагрузку, потребляющую 36 кВт при коэффициенте мощности 0.86 и линейное напряжение 400 В (В LL ):
линия к нейтрали (фаза) напряжение В LN = 400 / √3 = 230 В
трехфазная мощность 36 кВт, однофазная мощность = 36/3 = 12 кВт
теперь просто следуйте описанному выше однофазному методу
Достаточно просто. Чтобы найти мощность при заданном токе, умножьте его на напряжение, а затем на коэффициент мощности, чтобы преобразовать его в W. Для трехфазной системы умножьте на три, чтобы получить общую мощность.
Использование формулЛичная записка по методу
Как правило, я запоминаю методику (а не формулы) и переделываю ее каждый раз, когда делаю расчет. Когда я пытаюсь запомнить формулы, я всегда быстро их забываю или неуверен, правильно ли я их запоминаю. Мой совет — всегда старайтесь запоминать метод, а не просто запоминать формулы. Конечно, если у вас есть суперспособность запоминать формулы, вы всегда можете придерживаться этого подхода.
Вывод формулы — Пример
Сбалансированная трехфазная система с общей мощностью P (Вт), коэффициентом мощности pf и линейным напряжением В LL
Преобразование в однофазную проблему:
P1ph = P3
Полная мощность одной фазы S 1 фаза (ВА):
S1ph = P1phpf = P3 × pf
Фазный ток I (A) — полная однофазная мощность, деленная на напряжение между фазой и нейтралью (и дано В LN = В LL / √3):
I = S1phVLN = P3 × pf3VLL
Упрощение (и с 3 = √3 x √3):
I = P3 × pf × VLL
Приведенный выше метод основан на запоминании нескольких простых принципов и манипулировании проблемой, чтобы дать ответ.
Для получения того же результата можно использовать более традиционные формулы. Их можно легко получить из вышеприведенного, например:
I = W3 × pf × VLL, дюйм A
Несбалансированные трехфазные системыВышеупомянутое относится к сбалансированным трехфазным системам. То есть ток в каждой фазе одинаковый, и каждая фаза обеспечивает или потребляет одинаковое количество энергии. Это типично для систем передачи энергии, электродвигателей и аналогичного оборудования.
Часто, когда задействованы однофазные нагрузки, например, в жилых и коммерческих помещениях, система может быть несбалансированной, поскольку каждая фаза имеет разный ток и доставляет или потребляет разное количество энергии.
Сбалансированное напряжение
К счастью, на практике напряжения имеют тенденцию быть фиксированными или очень небольшими. В этой ситуации, немного подумав, можно распространить вышеупомянутый тип расчета на трехфазные системы с несимметричным током. Ключом к этому является то, что сумма мощности в каждой фазе равна общей мощности системы.
Например, возьмем трехфазную систему 400 В (V LL ) со следующими нагрузками: фаза 1 = 80 A, фаза 2 = 70 A, фаза 3 = 82 A
линия к нейтрали (фаза) напряжение В LN = 400 / √3 = 230 В
Полная мощность фазы 1 = 80 x 230 = 18400 ВА = 18,4 кВА
Полная мощность фазы 2 = 70 x 230 = 16100 ВА = 16,1 кВА
Полная мощность фазы 3 = 82 x 230 = 18 860 ВА = 18.86 кВА
Общая трехфазная мощность = 18,4 + 16,1 + 18,86 = 53,36 кВА
Аналогичным образом, учитывая мощность в каждой фазе, вы можете легко найти фазные токи. Если вам также известен коэффициент мощности, вы можете преобразовать его из кВА в кВт, как показано ранее.
Несбалансированные напряжения
Если напряжения становятся несимметричными или есть другие соображения (например, несбалансированный фазовый сдвиг), то необходимо вернуться к более традиционному анализу сети. Системные напряжения и токи можно найти, подробно изобразив схему и используя законы Кирхгофа и другие сетевые теоремы.
КПД и реактивная мощностьСетевой анализ не является целью данной заметки. Если вас интересует введение, вы можете просмотреть наш пост: Теория сети — Введение и обзор
Другие факторы, которые следует учитывать при проведении расчетов, могут включать эффективность оборудования.Зная, что эффективность энергопотребляющего оборудования — это выходная мощность, деленная на входную, опять же, это легко подсчитать. Реактивная мощность не обсуждается в статье, а более подробную информацию можно найти в других примечаниях (просто воспользуйтесь поиском на сайте).
СводкаПомня, что трехфазная мощность (кВт или кВА) просто в три раза больше однофазной мощности, любую трехфазную задачу можно упростить. Разделите кВт на коэффициент мощности, чтобы получить кВА.