Как подключить трёхфазный электродвигатель на 380 Вольт

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу  от сети напряжением 400/690. Пример такого шильдика на картинке снизу.  Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке.  В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по  довольно редкой схеме  звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

Схемы подключения электродвигателя, подключение трехфазного двигателя к трехфазной сети 380 В

На производственном предприятии регулярно возникает необходимость подключения или переподключения трехфазного электродвигателя к трехфазной сети 380 В, 660 В или однофазной 220 В, но не всегда есть опыт грамотно работать со всеми возможными схемами подключения трехфазного электродвигателя. В зависимости от цели эксплуатации электродвигателя, ниже приведены схемы подключения трехфазного двигателя со всеми достоинствами и недостатками. При покупке электродвигателя не всегда обращают внимание на схему подключения на именной табличке или на задней крышке клемной коробки, а подключают новый двигатель по привычке как старый и это является чуть ли не основной причиной сгоревших моторов. Следует отметить что трехфазные электродвигатели встречаются трех модификаций по возможности подключения:

  • 380 В — 3 вывода, схема «звезда» (Y)
  • 220 / 380 В — 6 выводов, схема «треугольник»/«звезда» (Δ/Y)
  • 380 / 660 В — 6 выводов, схема «треугольник»/«звезда» (Δ/Y)

 

ВНИМАНИЕ! Работа с электрическими двигателями без заземления, пусковой и защитной автоматики запрещена. Неквалифицированное обращение с высоким напряжением может нанести вред здоровью и летальному исходу.

Схема подключения электродвигателя 380В — 3 вывода

Это самый простой тип подключения, когда заводом изготовителем заранее собрано схему «звезда» (Y) и в клемной коробке предстоит подсоединить всего три провода (3 фазы) без наличия перемычек меж клеммами.

 

Преимущество данной схемы:

  • Простота подключения электродвигателя.
  • Надежная работа с максимальным КПД и мощностью в номинальном режиме.

 

Недостаток такого исполнения:

  • Невозможность использовать электродвигатель от однофазной сети 220 В с максимальной мощностью до 70%
  • Невозможность осуществить плавный пуск для преодоления тяжелого старта без дополнительной автоматики.

Схема подключения электродвигателя «220/380В» треугольник / звезда — 6 выводов

Данный тип электродвигателя имеет 6 выводов (шесть проводов) в клемной коробке и подключается в трехфазную сеть 380 Вольт по схеме (Y) «звезда» см. Рис.1, которая собрана по умолчанию на заводе изготовителе. В таком исполнении завод изготовитель выпускает чаще всего маломощные трехфазные электродвигатели от 0,12 кВт до 7,5 кВт или же габариты двигателей от АИР 56 до АИР 112.

 

Преимущества схемы «звезда» (Y) для 220/380 В:

  • Высокая надежность работы электромотора.
  • Максимальное КПД двигателя.
  • Устойчивость к кратковременным перегрузам электродвигателя.

 

Преимущества схемы «треугольник» (Δ) для 220/380 В:

  • При необходимости данный электродвигатель может быть использован подключением от сети 220 В по схеме «треугольник» (Δ) с использование рабочего конденсатора и если потребуется дополнительно пускового конденсатора. В этом случае двигатель будет работать на 70% от заявленной мощности. Этот вариант подключения со всеми преимуществами и недостатками подробно разберем в следующей статье.

 

Недостатки исполнения электродвигателя 220/380 В:

  • Невозможность осуществить плавный пуск для преодоления тяжелого старта без дополнительной автоматики.

Схемы подключения трехфазных электродвигателей «380/660В» треугольник / звезда — 6 выводов

Данный тип электродвигателя имеет 6 выводов (шесть проводов) в клемной коробке и чаще всего в новом электродвигателе в заводском исполнении производителем заранее собрана по умолчанию схема «звезда» (Y) см. Рис.1. Исполнение 380/660 чаще всего идет на средней и большой мощности электродвигателей от 4 кВт до 315 кВт и более или от габарита АИР 132 до АИР 355 и более. В связи с универсальностью в эксплуатации данного исполнения электродвигателей средней и высокой мощности низковольтного оборудования можно смело заявить о достоинствах без недостатков.

Трехфазные электродвигатели можно подключать к трехфазной сети 380/660 В по следующим схемам:

  • схема «звезда» (Y) или 660В используется для плавного пуска избегая тяжелого пуска (высокий пусковой момент) и высоких пусковых токов.
  • схема «треугольник» (Δ) работа от стандартной сети 380В в номинальном режиме эксплуатации электродвигателя.
  • схема «звезда-треугольник» (Y/Δ) комбинированная схема подключения для автоматического перехода с плавного пуска на 660В на рабочий режим 380В

 

Схема «звезда» для 380/660 В

Подключение звездой применяют для того, чтобы пуск электродвигателя сделать плавным за счет снижения пусковых токов. Но в ней есть один существенный минус для продолжительной работы: двигатель будет работать с мощностью на 30% меньшей от указанной в паспорте. Как подключить трехфазный асинхронный электродвигатель по схеме «звезда» показано на Рис.1.

 

Схема «треугольник» для 380/660 В

Подключение треугольником к сети 380 В позволяет использовать всю заявленную мощность электродвигателя. Но и она имеет недостаток для пускового момента: во время пуска мотора сила тока очень высока и как результат в двигателе под тяжелой пусковой нагрузкой может подгореть изоляция обмоток. Как подключить трехфазный асинхронный электродвигатель по схеме «треугольник» показано на Рис.1.

 

Схема «звезда-треугольник» для 380/660 В

Комбинированная схема подключения звезда-треугольник позволяет использовать все преимущества двух отдельных схем и обойти их недостатки. Чаще всего так подключают электродвигатели с большой мощностью. Суть этого решения заключается в том, что двигатель запускается по схеме «звезда», а при достижении оптимального числа оборотов переключается на схему «треугольник». Таким образом пуск электродвигателя получается плавным с небольшими пусковыми токами, а после переключения схем его мощность увеличивается на 30% и полностью соответствует заявленной в паспорте. Как подключить трехфазный асинхронный электродвигатель по схеме «звезда-треугольник» показано на Рис. 2. Электродвигатель подключен по схеме «звезда», если замкнуты ключи K1 и K3, а по схеме «треугольник» – если замкнуты ключи K1 и K2. Переключение с одной схемы на другую происходит автоматически или вручную, в зависимости от предустановленного автоматического оборудования. Для этого используют чаще всего магнитный пускатель, пусковое реле или пакетный переключатель.

Как подключить трехфазный двигатель?

Главная » Блог » Wiki » Как подключить 3 фазный двигатель?

При подключении трехфазного двигателя на табличке указано разное напряжение для треугольника это 380-400 вольт и 660-690 вольт для звезды, какой вариант выбрать? напряжение питания Line-to-Line 380-400.

Каждая обмотка статора двигателя выдерживает напряжение 380-400 В.
Таким образом, если вы подключаете свой двигатель (статор вашего двигателя) в треугольник, он должен быть подключен к 380-400 В линия к линии.

С другой стороны, если вы соедините обмотку статора вашего двигателя в Y, вы сможете подключить свой двигатель к линейному напряжению, которое равно sqrt(3) x 380-400 В = 660-690 V.

Фактическая выходная мощность (для стандартного трехфазного двигателя с короткозамкнутым ротором) определяется не самим двигателем, а нагрузкой, которую он приводит в действие. Двигатель будет пытаться работать со скоростью, близкой к его синхронной скорости, и обеспечивать мощность, необходимую для приводимого механизма на этой скорости. Это означает, что ток, потребляемый двигателем при любом заданном напряжении, будет почти одинаковым, независимо от того, соединен он звездой или треугольником. Таким образом, если вы подключите двигатель в звезду, питая его напряжением, на которое он рассчитан при соединении треугольником, ток через каждую обмотку будет в sqrt (3) раз больше, чем рассчитана обмотка. Это опять же означает, что тепловыделение в обмотке будет примерно в 3 раза больше, чем она рассчитана, и поэтому она сгорит, если нагрузить двигатель его номинальной нагрузкой.

Мы должны знать, что мощность двигателя, указанная на его паспортной табличке, по отношению к доступной мощности панели MCC, к которой он подключен, являются важными факторами при выборе типа пуска двигателя.

Учтите тот факт, что при пуске двигателя напрямую в соединение треугольником (что является правильным в зависимости от напряжения вашей сети) токи могут достигать 8xIномиальных тока двигателя, и если ваш ЦУП не способен выдержать этот ток (на при уменьшении напряжения питания) вы можете выйти из строя при пуске DOL Delta. Вот почему, исходя из мощности двигателей, во избежание больших токов во время пуска рекомендуется соединение «звезда-треугольник». Ограничения пусковых токов по схеме Y/D значительны за счет уменьшения тока сначала с помощью sqrt3, потому что напряжение питания не 660 В (вы питаете двигатель 380-400 В), а ток изначально в Y равен sqrt3

Оставить комментарий:

Вычислить (2 + 6) =


Вам также может понравиться:

Что такое программа ANSYS?

Это инструмент анализа методом конечных элементов для различных приложений. В мощности мы получаем распределение напряжения (напряжения) в оборудовании, таком как кабели, изгибы кабелей и т. д., включая обмотки статора генераторов.

Ошибки чередования фаз

Ошибки чередования фаз не так редки, как должны бы быть. Я видел не одно здание с систематической ошибкой чередования фаз. Этого можно избежать, тщательно следуя системе цветового кодирования (желтый…

Кабель питания двигателя — больше или меньше?

При выборе силового кабеля для двигателя мы предпочитаем использовать один кабель большего диаметра, чем два параллельных кабеля меньшего диаметра, хотя это обойдется дешевле. Почему?

Переходное напряжение/пусковой ток в асинхронных двигателях

Переходное напряжение, возникающее при внезапном изменении тока в индуктивном устройстве. Катушки индуктивности сопротивляются внезапному изменению тока. V=L ди/дт В электродвигателях это происходит при запуске, когда . ..

Ротор и статор электродвигателя

Большинство электротехнических сталей, используемых в конструкции статора и ротора, также имеют изолирующее покрытие; некоторые из них являются органическими материалами, а некоторые — неорганическими (на основе растворителей). Выбор есть…

Блог Gozuk: все об управлении электродвигателями и развитии приводов в области энергосбережения.

Избранное

Преобразователь частоты экономит энергию на вентиляторах

Как и насосы, вентиляторы потребляют значительное количество электроэнергии, обслуживая несколько приложений. На многих заводах частотно-регулируемые приводы (переменные …

Как преобразователь частоты экономит энергию?

Преобразователь частоты управляет скоростью двигателя переменного тока. Преобразователь частоты преобразует фиксированную частоту сети (60 Гц) в . ..

Что такое устройство плавного пуска?

Пускатель двигателя (также известный как устройство плавного пуска, устройство плавного пуска двигателя) представляет собой электронное устройство, объединяющее плавный пуск, плавный останов, …

Настройки устройства плавного пуска

Устройство плавного пуска позволяет постепенно уменьшать выходное напряжение для достижения плавного останова, чтобы защитить оборудование. Такой как …

Устройство плавного пуска VS с частотным преобразователем

Устройство плавного пуска снижает пусковой ток электродвигателя в 2-4 раза при пуске двигателя, снижает воздействие на электросеть при …

Обсуждается

© 2022 Все права защищены.

Карта сайта | Условия

Трехфазный двигатель, работающий от однофазного источника питания

Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, низкой стоимости, простоте обслуживания и эксплуатации. 3-фазный двигатель переменного тока использует 3-фазный источник питания (3 фазы 220 В, 380 В, 400 В, 415 В, 480 В и т. д.), но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. д.). .), особенно в бытовой технике. В случае запуска трехфазных машин от однофазных источников питания, есть 3 способа сделать это:

  1. Перемотка двигателя
  2. Купить частотно-регулируемый привод (ГГц)
  3. Купить преобразователь частоты/фазы

I: Перемотка двигателя
Необходимо выполнить некоторые работы по преобразованию работы трехфазного двигателя на однофазное питание. Здесь показано, как преобразовать 3-фазный двигатель 380 В для работы от однофазного источника питания 220 В.

Принцип перемотки
Трехфазный асинхронный двигатель использует три взаимно разделенных угла 120° сбалансированного тока через обмотку статора для создания изменяющегося во времени вращающегося магнитного поля для привода двигателя. Прежде чем говорить об использовании трехфазного асинхронного двигателя, перестраиваемого для работы от однофазного источника питания, следует пояснить вопрос создания вращающегося магнитного поля однофазного асинхронного двигателя, так как запуск однофазного двигателя возможен только после установления вращающегося магнитного поля. . Причина, по которой он не имеет начального пускового момента, заключается в том, что однофазная обмотка в магнитном поле не вращается, а пульсирует. Другими словами, он закреплен относительно статора. В этом случае пульсирующее магнитное поле статора взаимодействует с током в проводнике ротора и не может создавать крутящий момент, поскольку вращающееся магнитное поле отсутствует, поэтому двигатель не может быть запущен. Однако положение двух обмоток внутри двигателя имеет разный пространственный угол. Если он пытается создать другой фазный ток, двухфазный ток имеет определенную разницу фаз во времени для создания вращающегося магнитного поля. Так статор однофазного двигателя должен иметь не только рабочую обмотку, но и обязательно иметь пусковую обмотку. В соответствии с этим принципом мы можем использовать трехфазную обмотку трехфазного асинхронного двигателя и сместить одну из катушек обмотки с помощью конденсатора или индуктивности, чтобы две фазы могли проходить через другой ток, чтобы создать вращающееся магнитное поле для управлять двигателем. Когда трехфазный асинхронный двигатель использует однофазное питание, мощность составляет всего 2/3 от первоначальной.

Метод перемотки
Чтобы использовать 3-фазный двигатель с 1-фазным источником питания, мы можем соединить любые 2-фазные катушки обмотки последовательно, а затем подключить к другой фазе. В это время магнитный поток в двух обмотках имеет разность фаз, но рабочая обмотка и пусковая обмотка подключены к одному и тому же источнику питания, поэтому ток одинаков. Поэтому подключите конденсатор, катушку индуктивности или резистор к пусковой обмотке последовательно, чтобы ток имел разность фаз. Для увеличения пускового момента на соединении можно использовать автотрансформатор для повышения напряжения однофазной сети с 220 В до 380 В, как показано на рисунке 1. 9.0090

Общие малые двигатели имеют соединение Y. Для трехфазного асинхронного двигателя Y-типа клемма обмотки конденсатора C подключается к пусковой клемме автотрансформатора. Если вы хотите изменить направление вращения вала, подключите его, как показано на рисунке 2.

Если вы не хотите увеличивать напряжение, источник питания 220 В также может использовать это. Поскольку первоначальная трехфазная обмотка напряжения питания 380 В теперь используется для питания 220 В, напряжение слишком низкое, поэтому крутящий момент слишком низкий.

Рис. 3 крутящий момент проводки слишком мал. Если вы хотите увеличить крутящий момент, вы можете подключить фазовый конденсатор к двухфазной обмотке вместе в катушке и использовать ее в качестве пусковой обмотки. Одиночная катушка, подключенная напрямую к источнику питания 220 В, см. рис. 4.

На рис. 3 и 4, если вам нужно изменить направление вращения вала, вы можете просто изменить сквозное направление пусковой обмотки или рабочей обмотки. .

Магнитный момент после последовательного соединения двух обмоток (одна из которых обратная) складывается из двух углов магнитного момента 60° (рис. 5). Магнитный момент намного выше, чем у магнитного момента 120° (показан на рис. 6), поэтому пусковой момент проводки на рис. 5 больше, чем у проводки на рис. 6.

Величина входного резистора R (рисунок 7) на обмотке пускателя должна быть замкнута на сопротивление фазы обмотки статора и должна выдерживать пусковой ток, в 0,1-0,12 раза превышающий пусковой момент.

Выбор фазовращающего конденсатора
Рабочий конденсатор c=1950×Ie/Ue×cosφ (микрозакон), Ie, ue, cosφ – исходный номинальный ток двигателя, номинальное напряжение и мощность.
Общий рабочий конденсатор, используемый в однофазном питании трехфазного асинхронного двигателя (220 В): каждые 100 Вт используют от 4 до 6 микроконденсаторов. Пусковой конденсатор можно выбрать в зависимости от пусковой нагрузки, обычно в 1-4 раза превышающей рабочий конденсатор. Когда двигатель достигает 75%~80% номинальной скорости, пусковой конденсатор должен быть отключен, иначе двигатель сгорит.

Емкость конденсатора должна быть правильно подобрана, чтобы токи 11, 12 двух фазных обмоток были равны и равны номинальному току Ie, значит 11=12=Ie. Если требуется высокий пусковой момент, можно добавить пусковой конденсатор и подключить его к рабочему конденсатору. Когда пуск нормальный, отсоедините пусковой конденсатор.

Работа трехфазного двигателя от однофазного источника питания дает много преимуществ, перемотка упрощается. Однако общая мощность однофазного источника питания слишком мала, он должен выдерживать высокий пусковой ток, поэтому этот метод можно применять только к двигателю мощностью 1 кВт или менее.

II: Купите частотно-регулируемый привод (ГГц)
VFD, сокращение от Variable Frequency Drive, это устройство для управления двигателем, работающим на регулируемых скоростях. Однофазный на 3-фазный ЧРП является лучшим вариантом для трехфазного двигателя, работающего от однофазного источника питания (1 фаза 220 В, 230 В, 240 В), он устранит пусковой ток во время запуска двигателя, заставит двигатель работать с нулевой скорости до полной. скорость плавная, плюс, цена абсолютно доступная. Доступны частотно-регулируемые приводы GoHz мощностью от 1/2 л.с. до 7,5 л.с., частотно-регулируемые приводы большей мощности могут быть настроены в соответствии с фактическими двигателями.

Преимущества использования частотно-регулируемого привода (ГГц) для трехфазного двигателя:

  1. Мягкий пуск может быть достигнут путем настройки параметров частотно-регулируемого привода, время пуска может быть установлено на несколько секунд или даже десятков.
  2. Функция бесступенчатой ​​регулировки скорости, обеспечивающая оптимальную работу двигателя.
  3. Преобразуйте двигатель с индуктивной нагрузкой в ​​емкостную, что может увеличить коэффициент мощности.
  4. VFD имеет функцию самодиагностики, а также защиту от перегрузки, перенапряжения, низкого давления, перегрева и более 10 функций защиты.