Содержание

Таблица теплопроводности и других качеств материалов для утепления

Да, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.

Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.

Что такое теплопроводность?

Теплопроводность можно описать как процесс передачи тепловой энергии до наступления теплового равновесия. Температура, так или иначе, будет выровнена, вопрос только в скорости этого процесса. Если применить это понятие к дому, то ясно, что чем дольше температура внутри здания выравнивается с наружной, тем лучше. Проще говоря, насколько быстро дом остывает это вопрос того, какая теплопроводность его стен.

В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.

Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.

Таблица теплопроводности утеплителей

В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.

Таблица теплопроводности утеплителей

  1. Утеплитель
Теплопроводность, Вт/(м*С)Плотность, кг/м3Паропроницаемость, мг/ (м*ч*Па)«+»«-»Горюч.
Пенополиуретан0,023320,0-0,052. Бесшовный монтаж пеной; 3.Долгосрочность; 4.Лучшая тепло-, гидроизоляция1.недешевый 2. Не устойчив к УФ-излучениюСамозатухающий
0,02940
0,03560
0,04180
Пенополистирол (пенопласт)0,038400,013-0,051.Отлично изолирует; 2. Дешевый; 3. Влагонепроницаем1. Хрупкий; 2. Не «дышит» и образует конденсатГ3 и Г4. Сопротивление возгоранию и самозатухание
0,041100
0,05150
Экструдированный пенополистирол0,031330,0131.Очень низкая теплопроводность; 3.Влагонепроницаем; 4.Прочен на сжатие; 5. Не гниет и не плесневеет; 6. Эксплуатация от -50 °С до +75°С; 7.Удобен в монтаже.1. На порядок дороже пенопласта; 2. Восприимчив к органическим растворителям; 3. Паропроницаемость низкая, образует конденсат.Г1 у марок с антипеновыми добавками, другие Г3 и Г4. Сопротивление возгоранию и самозатухание
Минеральная (базальтовая) вата0,048500,49-0,61.Хорошая паропроницаемость –«дышит»; 2.Противостоит грибкам; 3.Звукоизоляция; 4.Высокая термоизоляция; 5.Механическая прочность; 6.Не сыпется1.НедешевыйОгнеупорный
0,056100
0,07200
Стекловолокно (стекловата)0,041-0,044155-2000,51.Низкая теплопроводность; 2.При пожарах не выделяет токсичных веществ1.Со временем теплоизоляция снижается; 2.Может появляться плесень; 3.Проблемный монтаж: волокна осыпаются и наносят вред коже, глазам; 4.Паропроницаемость низкая, образует конденсат.Не горит
Пенопласт ПВХ0,0521250,0231. Жесткий и удобный в монтаже1.Недолговечен; 2.Плохая паропроницаемость и образование конденсатаГ3 и Г4. Сопротивление возгоранию и самозатухание
Древесные опилки0,07-0,182301.Дешевизна; 2.Экологичность1.Портиться и гниет; 2.Теплоизоляционные свойства падают при высокой влажностиПожароопасен

Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.

Полезные показатели утеплителей

На какие основные показатели нужно обратить внимание при выборе утеплителя:

  • Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
  • Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
  • Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
  • Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
  • Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
  • Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
  • Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
  • Долговечность определяет срок службы материала;
  • Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
  • Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.

Кто на свете всех теплей?

Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.

Пенополиуретан или экструдированный пенополистирол

Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.

Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.

А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.

Минеральная вата или пенопласт

Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.

Другие утеплители

Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.

Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.

Выбирая утеплитель

Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей. Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями. Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».

Оцените статью: Поделитесь с друзьями!

Сравнительная таблица утеплителей по теплопроводности, толщине и плотности

Автор Марсель Сагитов На чтение 6 мин. Просмотров 246

В привычной для населения страны холодной зиме, востребованность теплоизоляционных материалов всегда на высоком уровне. Необходимо учитывать все особенности каждого из утеплителей, чтобы сделать выбор в пользу качественного и целесообразного материала.

Зачем нужна теплоизоляция?

Актуальность теплоизоляции заключается в следующем:

  • Сохранение тепла в зимний период и прохлады в летний период.

Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.

  • Увеличение долговечности конструкций здания.

В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.

  • Шумоизоляция.

Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).

  • Увеличение полезной площади зданий.

Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.

Как правильно выбрать утеплитель?

При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.

Основные требования, предъявляемые к теплоизоляционным материалам:

  • Теплопроводность.

Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.

Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы.

Теплопроводность одного и того же материала может изменяться в зависимости от плотности.

Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.

Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и  подходят для утепления вертикальных конструкций внутри помещений.

А как зависит теплопроводность

от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.

А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.

Толщину утеплителя необходимо определять на основании теплотехнического расчета с учетом климатических особенностей территории, материала стены и её минимально допустимого значения сопротивления теплопередачи.

В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!

Таблица теплопроводности материалов

МатериалТеплопроводность материалов, Вт/м*⸰СПлотность, кг/м³
Пенополиуретан0,02030
0,02940
0,03560
0,04180
Пенополистирол0,03710-11
0,03515-16
0,03716-17
0,03325-27
0,04135-37
Пенополистирол (экструдированный)0,028-0,03428-45
Базальтовая вата0,03930-35
0,03634-38
0,03538-45
0,03540-50
0,03680-90
0,038145
0,038120-190
Эковата0,03235
0,03850
0,0465
0,04170
Изолон0,03133
0,03350
0,03666
0,039100
Пенофол0,037-0,05145
0,038-0,05254
0,038-0,05274
  • Экологичность.

Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.

  • Пожарная безопасность.

Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.

  • Паро- и водонепроницаемость.

Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что  эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.

  • Долговечность.

В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату  в первые годы службы значительно снижают свою эффективность.  Зато пенополиуретан обладает сроком службы

свыше 50 лет.

Достоинства и недостатки утеплителей

  1. Пенополиуретанна сегодняшний день самый эффективный утеплитель.

    Виды ППУ

Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.

Недостатки: дороговизна материала, неустойчивость к УФ-излучению.

  1. Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.

Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.

Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.

  1. Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.

Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.

Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.

  1. Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.

Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.

Недостатки: более высокая стоимость, по сравнению с аналогами.

  1. Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.

Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.

Недостатки

: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.

  1. Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.

Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.

Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.

  1. Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.

Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость,  негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.

Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.

Заключение

Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.

Полезно1Бесполезно

Таблица данных по теплопроводности утеплителей

Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.

Главные параметры

Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.

Чувствительность к влаге

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.

Также не рекомендуется применять водопоглощающую изоляцию при отделке ванных комнат, санузлов, кухонь и других помещений с высоким уровнем влажности.

Плотность и теплоемкость

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.

Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Коэффициент сопротивления

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.

 

Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр — если речь идет об изоляции — должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Теплопроводность основных видов утеплителей

Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:

Преимущества и недостатки

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Выбор утеплителя, чем утеплить дом

На современном строительном рынке присутствует не один, и даже не десять видов утеплителя, а гораздо больше. Большинство из них имеют различное происхождение и абсолютно не похожи друг на друга. Объединяет их только низкая теплопроводность.

У материалов, достойных называться утеплителями, коэффициент теплопроводности не превышает 0,08 Вт/(м*°К). Речь идет об эффективных утеплителях. Но, кроме них, существует довольно много материалов, обладающей невысокой теплопроводностью, которые так или иначе можно задействовать при утеплении.

Выбор утеплителя зависит, прежде всего, от среды его применения. На языке профессионалов это называется «условия эксплуатации». Одним из главных критериев выбора утеплителя является водопоглощение. Влага – это первый враг теплоизоляции. Дело в том, что коэффициент теплопроводности воды намного выше, чем у любого утеплителя.

Впитываемая в утеплитель, влага снижает её свойства по удерживанию тепла в помещении.

Термоизолирующим фактором в теплоизоляции является воздух, теплопроводность которого очень низкая. Практически лишен теплопередачи только абсолютный вакуум. Однако вакуумная теплоизоляция в строительстве не применяется, во всяком случае, до сегодняшнего дня. Впрочем, некоторые производители уже пытались заработать на теме вакуума, но все эти попытки оказались не более чем спекуляцией. Речь идет о всевозможных теплоизоляционных красках, несостоятельность которых была подтверждена в лабораторных условиях.

Характеристики утеплителей

Прежде чем обращаться непосредственно к теме выбора теплоизоляции, следует разобраться в вопросе их эксплуатационных характеристик. К таковым относятся не только теплопроводность и водопоглощение. Есть еще целый ряд параметров, влияющих на выбор. Рассмотрим их по порядку.

Теплопроводность.

Данная характеристика напрямую связана с плотностью материала. Чем он плотнее, тем меньше в нём воздуха, и соответственно выше теплопроводность. Поэтому, сравнивая утеплители, обязательно учитывают их плотность.

Один и тот же утеплитель может иметь разную плотность, которая обязательно указывается в его маркировке. Так, например, у пенополистирола плотностью 25 кг/м²; коэффициент теплопроводности составляет 0,039 Вт/м·°C, тогда как при плотности 50 кг/м³; данный коэффициент увеличивается до 0,041 Вт/м·°С. То же касается минеральной ваты, пенополиуретана, пеностекла, пенофола и прочих утеплителей.

Сравнивать разные утеплители без учета их плотности нет смысла. Чтобы корректно сравнить утеплители по параметру теплопроводности, необходимо брать материалы равной плотности.

И ещё один момент. Нельзя путать теплопроводность (Вт/м⋅К) и сопротивление теплопередаче (м²·°С/Вт). Это противоположные по смыслу понятия. Кроме того, когда говорят о сопротивлении теплопередаче, то обязательно указывают толщину материала или ограждающей конструкции, тогда как коэффициент теплопроводности подразумевает фиксированный слой метровой толщины.

Плотность

Все эффективные утеплители имеют малый вес. Один кубометр утеплителя весит 15-50 кг. Промышленность выпускает утеплители различной плотности для того чтобы предоставить строителям определенный выбор по прочностным характеристикам. Чем плотнее утеплитель, тем он сильнее сопротивляется различным деформационным нагрузкам.

Прочность

Необходимость в прочности теплоизолятора в строительстве возникает нередко. Кроме того, что утеплитель не должен сжиматься под собственным весом, необходимо чтобы он легко справлялся и с дополнительными нагрузками. При фасадном утеплении материалы должны обладать достаточной прочностью и несущей способностью, чтобы выдержать собственный вес и вес штукатурки (при методе скрепленной изоляции). Чем плотнее утеплитель, тем он прочнее и крепче, однако вместе с этим увеличивается его теплопроводность и падает эффективность. Очевидно, что многие характеристики утеплителей тесно взаимосвязаны между собой.

Водопоглощение

Существуют утеплители с высоким и средним водопоглощением, а также маловпитывающие и совершенно не впитывающие воду материалы. Нет необходимости запоминать параметры водопоглощения того или иного утеплителя, достаточно просто знать, какой из них впитывает воду, а какой нет.

Легче всего напитываются водой волокнистые утеплители, такие как минеральная вата, эковата, войлок, шерсть и т.д. Вода вопреки законам гравитации способна подняться капиллярным способом практически на любую высоту. Например, если минеральная вата на фасаде будет иметь доступ к воде на уровне цоколя, то постепенно вымокнет весь фасад до самой крыши. Однако это не повод отказываться от минваты (подробнее об этом в отдельной главе о минеральной вате).

Наименьшим водопоглощением обладают вспененные утеплители с закрытыми ячейками в их структуре. К таким материалам, прежде всего, относится пеноплекс (экструдированный пенополистирол) и пеностекло. У названных утеплителей практически нулевое водопоглощение, благодаря чему их часто используют во влажных средах – для утепления подвалов, фундаментов и эксплуатируемых кровель. Оба утеплителя, кроме всего прочего, обладают ещё и значительной прочностью на сжатие, что делает их ещё более пригодными для утепления названных конструкций.

Обычный пенополистирол (пенопласт), особенно самые легкие его сорта, имеет определенное водопоглощение. Производители указывают о.2% по объему в течение 24 часов. Однако уже из практики известно, что обычный (неэкструдированный) пенополистирол способен напитать значительное количество влаги, которая теоретически может заполнить собой все его пустоты. Но так происходит редко, поскольку пенополистирол отдает влагу ещё легче, чем поглощает её. Благодаря этому свойству данный утеплитель считается одним из самых удобных и практичных при фасадном утеплении.

Горючесть

Класс горючести является очень важной характеристикой при выборе утеплителя. Горючие утеплители, такие как пенополистирол, разрешается использовать только при условии их отделки негорючими материалами, например, цементной штукатуркой. Для снижения горючести используются специальные добавки, направленные на самозатухание. С их помощью горючие утеплители не поддерживают самостоятельное горение.

С точки зрения пожарной безопасности менее всего подходят утеплители из натуральных волокон, такие как эковата, шерсть, джут, лен и т.д. Для снижения их горючести не только применяют антипиреновые добавки, но и уплотняют структуру. Если волокна мощно спрессованы, то к ним уменьшается доступ кислорода и горение сменяется тлением. Это повышает шансы успешного пожаротушения.

Плохо горит натуральная пробка, к тому же её не так просто поджечь. А вот тростниковые и соломенные маты легко воспламеняются, поэтому их следует защищать негорючими материалами.

Специфика утеплителей

В предыдущей главе вкратце раскрыта суть основных характеристик утеплителей. Теперь рассмотрим, как эти характеристики влияют на выбор того или иного утеплителя.

Для фасадного утепления чаще всего применяется пенополистирол и минеральная вата. Эти утеплители имеют сопоставимые коэффициенты теплопроводности с учетом их плотности. Вата на 10-30% дороже пенополистирола и её сложнее крепить, однако она считается более экологичной и в значительной степени пожаробезопасной.

Каменная вата (разновидность минеральной ваты, производимая из базальта) выдерживает высокие температуры до 1000°С и способна защитить конструкции от внешних источников жара и пламени.

Каменную вату производят из базальта.

Пенополистирол дешевле, легче монтируется и терпит огрехи монтажа. Благодаря низкому водопоглощению и легкой отдаче влаги, пенополистирол остается эффективным теплоизолятором практически в любых условиях, которые могут ожидать его с внешней стороны фасада. Его главный недостаток – низкая паропроницаемость. Стало быть, пенополистиролом нет смысла утеплять деревянные дома, достоинством которых являются дышащие стены.

Больше всего споров возникает как раз между приверженцами минеральной ваты и пенополистирола, поскольку это самые экономичные и популярные утеплители. Объективно оба утеплителя хороши, но их следует применять по назначению.

При помощи минеральной ваты лучше всего утеплять по схеме вентилируемого фасада. Данная схема подразумевает крепление минераловатных плит вплотную к стене, а с внешней стороны эти плиты отделываются клинкером или панелями с вентзазором. Восходящие тепловые потоки, возникающие в вентзазоре, создают постоянную тягу и подсушивают волокнистые плиты. Таким образом, минераловатный утеплитель остается сухим и не переувлажняется паром, просачивающимся из помещения через поры в стеновом материале.

Минеральная вата используется и при утеплении методом скрепленной теплоизоляции (мокрый метод). Однако риск накопления избытка влаги в этом случае присутствует даже при полном соблюдении технологии. Дело в том, что насколько бы проницаемой не оказалась бы штукатурка, она все равно в несколько раз хуже проводит пар, нежели минеральная вата. А это уже само по себе есть нарушение порядка расположения материалов ограждающей конструкции, при котором каждый последующий слой стены должен быть более паропроницаем, чем предыдущий. Поэтому сегодня многие специалисты сходятся во мнении, что минеральная вата не лучший выбор для легкого и тем более тяжелого мокрого метода фасадного утепления.

Суспензионный пенополистирол (обычный пенополистирол со структурой в виде шариков) оптимален при утеплении каменных и бетонных стен методом скрепленной теплоизоляции, а также в структуре слоеных стен.

Суспензионный полистирол — самый обычный полистирол.

При внешней защите негорючими материалами (штукатурка, кирпич) его возгорание исключено даже при продолжительном воздействии локальных источников пламени. Но в вентилируемых фасадах его применение категорически недопустимо. Даже самые самозатухающие виды пенопласта в вентилируеумых фасадах сгорают с высокой скоростью и потушить их очень проблематично. Восходящий поток в вентзазоре становится настолько мощным, что вызывает эффект автогена.

Экструзионный пенополистирол состоит из закрытых пор, внутрь которых не может попасть вода, благодаря чему его водопоглощение стремится к нулю. Этот материал дороже своего суспензионного собрата, но это вызвано не столько разницей в качестве, сколько разными технологиями производства.

Экструзионный или экструдированный полистирол.

Экструзионный пенополистирол есть смысл использовать там, где утеплителю угрожает влага. Данный материал хорош при утеплении подвалов, фундаментов, инверсионных кровель.

Однако при выборе стоит принимать во внимание температурный диапазон эксплуатации пенополистиролов. Так, экструзионный пенополистирол вряд ли можно посоветовать в качестве утеплителя для бань и саун. Здесь будет более безопасна каменная вата.

Но самым лучшим утеплителем в данном случае является пеностекло. Этот материал не горит, не выделяет вредных веществ при любых температурах и совершенно не боится влаги.

Пеностекло.

Не менее хорош пробковый агломерат, но проигрывает пеностеклу по жаростойкости.

Пробковый агломерат.

Натуральные утеплители. Для застройщиков, ставящих приоритетом использование натуральных материалов, важна экологическая безопасность утеплителя. Они выбирают материалы, произведенные из натурального сырья.

На постсоветском пространстве натуральные утеплители используют редко. Во-первых, они, как правило, дороже; во-вторых, наши люди считают, что нет особой разницы чем утеплять, поскольку теплоизоляция находится снаружи здания, а не внутри. Тем не менее, есть узкая категория застройщиков, которые выбирают именно натуральный утеплитель, поскольку занимаются строительством экологического жилья.

Натуральными утеплителями имеет смысл утеплять дома из натуральных материалов, прежде всего из дерева. Существуют отдельные технологии, в которых натуральный утеплитель является основным слоем ограждающих конструкций. Например, эковата, получаемая из экологически чистого бумажного вторсырья.

Эковата.

Её напыляют в мокром виде машинным способом, как штукатурку. После высыхания она превращается в непрерывную теплоизолирующую оболочку. Эковату применяют при строительстве каркасных домов, заполняя ею пространство между обшивками.

Одним из самых экологичных утеплителей является натуральная пробка.

Натуральная пробка.

Материал этот сам по себе уникальный. Пробка – это кора пробкового дуба, произрастающего на португальских и испанских побережьях средиземноморья и Атлантики. В пробке содержатся бактерицидные вещества, противодействующие её биоразложению. Она гипоаллергенна, не имеет запаха, не выделяет никаких вредных веществ даже при нагревании. Кроме того, пробка плохо горит и склонна к самозатуханию. Вместе с тем по теплопроводности она сопоставима с минеральной ватой, поэтому считается очень эффективным натуральным утеплителем.

Цельная натуральная пробка – материал недешевый. Однако для утепления используют пробковые агломераты (техническая пробка). Агломерат представляет собой спрессованную пробковую крошку, которая является отходом производства декоративных пробковых отделок. Агломераты состоят на 100% из пробки. Крошка связывается собственными клейкими веществами, выделяющимися из неё при нагревании.

Пробковые агломераты могут различаться по цвету от темно-коричневого до почти черного. Чем темнее агломерат, тем сильнее он нагревался в процессе производства. Но цвет агломерата по большому счету на эксплуатационные характеристики материала не влияет. Значение имеет только плотность. Чем она ниже, тем ниже теплопроводность агломерата.

Практически все натуральные утеплители хорошо проводят сквозь себя пар. Данное свойство важно, если ставится цель сохранения высокой паропроницаемости ограждающих конструкций.

Минеральная вата является условно натуральной, поскольку производится на основе песка или базальта (стеклянная и каменная вата соответственно). Однако в ней присутствуют химические добавки, антигигроскопичные, противопожарные, разрыхляющие и т.д. Эти добавки не позволяют отнести минвату к разряду полностью натуральных утеплителей.

Выбор утеплителя при строительстве дома

Выше было уже много сказано о сфере применения существующих утеплителей. Но во избежание ошибочных трактовок в этой главе будут предложены готовые решения. В то же время, благодаря предыдущим информационным блокам, логика этих решений будет понятна.

Каменные и бетонные стены можно утеплить тремя способами: слоеная стена, «мокрый метод» (скрепленная теплоизоляция) и вентилируемый фасад. Рассмотрим каждый из них в отдельности.

Слоеные стены – это внешние ограждающие конструкции, в толще которых расположен слой утеплителя. Они бывают двухслойными и трехслойными. Двухслойная стена состоит из несущего слоя и утеплителя с фасадной отделкой. Стены, утепленные мокрым методом тоже относятся к двухслойным. Трехслойные стены состоят из несущего слоя, утеплителя и фасадного слоя.

Трёхслойная стена.

Утеплителем в таких конструкциях служат вспененные материалы, обладающие низким водопоглощением. Применение в трехслойных стенах минеральной ваты считается ошибкой. Вата, зажатая между двух слоев кладки без вентзазора, станет увлажняться, утрачивая свои теплоизолирующие свойства.

Мокрый метод подразумевает крепление утеплителя с внешней стороны стены с последующим тонкослойным оштукатуриванием. Этот метод применяется как при новом строительстве, так и при термомодернизации старых домов.

Утепление по технологии «мокрый фасад».

В данном случае применяют и пенополистирол, и минеральную вату. Однако авторитетные специалисты считают, что применение волокнистых утеплителей, в частности минваты, в данном случае имеет ряд недостатков. Дело в том, что оштукатуренная минвата с трудом избавляется от пара, деффундирующего изнури помещений. В строительной практике регистрировались случаи, критического намокания ваты под штукатуркой.

Более подробно об этой технологии утепления можно узнать в отдельной статье: способы утепления фасада.

Вентилируеумый фасад. В данном случае на стену накладывается слой из плит минеральной (каменной) ваты, а фасадная отделка в виде клинкерной кладки или панелей возводится с вентиляционным зазором шириной 3-4 см.

Монтаж утеплителя по технологии «вентилируемый фасад».

Данная схема позволяет минеральной вате свободно избавляться от лишней влаги. Вспененные утеплители в вентилируемых фасадах не применяются. Во-первых, в этом нет никакого практического смысла, поскольку пенные утеплители сами по себе являются паробарьерами. Во-вторых, синтетические пены в структурах с вентиляционным зазором легко воспламеняются и сгорают за считанные секунды.

Подробнее о технологиях такого способа утепления можно узнать в отдельной статье: правильное утепление методом «вентилируемый фасад».

Термомодернизация

Если нужно утеплить уже существующий дом, то выбор утеплителя зависит, прежде всего, от способа утепления. Каменные и бетонные стены целесообразнее утеплять методом скрепленной теплоизоляции (мокрый метод) с использованием пенополистирола. При желании получить более изысканную отделку, например, клинкер или фасадные панели, рекомендуется сооружать вентилируемый фасад (утеплитель – вентиляционный зазор – фасадный слой). В вентфасадах используется только минеральная вата.

Теплые штукатурки

В отдельных случаях привести сопротивление теплопередаче стены к нормативным показателям можно при помощи нанесения слоя теплой штукатурки. Данный класс материалов использует в качестве наполнителя гранулы с низкой теплопроводностью. Чаще всего это перлит, вермикулит или пенополистирольные шарики.

Тёплая штукатурка.

Большинство теплых штукатурок являются паропроницаемыми и обладают достаточно низкой теплопроводностью. Однако для получения выраженного эффекта утепления необходимо наносить их толстым слоем. Теплые штукатурки чаще всего используют в качестве дополнительного утепления стен из ячеистых бетонов, а также при термомодернизации.

инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео, фото

При проведении строительных работ нередко приходится сравнивать свойства разных материалов. Это нужно для того, чтобы подобрать наиболее подходящий из них.

Ведь там, где хорош один из них, совсем не подойдет другой. Поэтому, осуществляя теплоизоляцию, нужно не просто утеплить объект. Важно выбрать утеплитель, подходящий именно для данного случая.

Такая диаграмма нагляднее таблицы

А для этого нужно знать характеристики и особенности разных видов теплоизоляции. Вот об этом мы и поговорим.

Что такое теплопроводность

Для обеспечения хорошей теплоизоляции важнейшим критерием является теплопроводность утеплителей. Так называется передача тепла внутри одного предмета.

То есть, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Тот же самый процесс происходит и в здании.

Таким образом, стены, крыша и даже пол могут отдавать тепло в окружающий мир. Для сохранения тепла в доме этот процесс нужно свести к минимуму. С этой целью используют изделия, имеющие небольшое значение данного параметра.

Таблица теплопроводности

Обработанную информацию об этом свойстве разных материалов можно представить в виде таблицы. К примеру, вот так:

Сводная таблица

Здесь присутствуют всего два параметра. Первый – это коэффициент теплопроводности утеплителей. Второй – толщина стены, которая потребуется для обеспечения оптимальной температуры внутри здания.

Взглянув на эту таблицу, становится очевидным следующий факт. Построить комфортное здание из однородных изделий, например, из полнотелых кирпичей, невозможно. Ведь для этого потребуется толщина стены не менее 2,38м.

Поэтому для обеспечения нужного уровня тепла в помещениях требуется теплоизоляция. И первым и важнейшим критерием ее отбора является вышеуказанный первый параметр. У современных изделий он не должен быть более 0.04 Вт/м°С.

Совет!
При покупке обратите свое внимание на следующую особенность.
Изготовители, указывая на своих изделиях теплопроводность утеплителя, часто используют не одну, а целых три величины: первая – для случаев, когда материал эксплуатируется в сухом помещении с температурой в 10ºС;второе значение – для случаев эксплуатации опять же, в сухом помещении, но с температурой в 25 ºС; третья величина – для эксплуатации изделия в разных условиях влажности.
Это может быть помещение с влажностью категории А или В.
Для ориентировочного расчета следует использовать первое значение.
Все остальные нужны для проведения точных расчетов. О том, как они осуществляются, можно узнать из СНиП II-3-79 «Строительная теплотехника».

Иные критерии выбора

При выборе подходящего изделия должна учитываться не только теплопроводность и цена товара.

Нужно обратить внимание и на иные критерии:

  • объемный вес утеплителя;
  • формостабильность данного материала;
  • паропроницаемость;
  • горючесть теплоизоляции;
  • звукоизоляционные свойства изделия.

Рассмотрим эти характеристики подробнее. Начнем по порядку.

Объемный вес утеплителя

Объемным весом называется масса 1 м² изделия. Причем в зависимости от плотности материала эта величина может быть различной – от 11 кг до 350 кг.

Такая теплоизоляция будет иметь значительный объемный вес

Вес теплоизоляции непременно нужно учитывать, особенно проводя утепление лоджии. Ведь конструкция, на которую крепится утеплитель, должна быть рассчитана на данный вес. В зависимости от массы будет отличаться и способ монтажа теплоизолирующих изделий.

К примеру, при утеплении крыши, легкие утеплители устанавливают в каркас из стропил и обрешетки. Тяжелые экземпляры монтируются поверх стропил, как того требует инструкция по установке.

Формостабильность

Этот параметр означает не что иное, как сминаемость используемого изделия. Иными словами, оно не должно изменять своих размеров в течение всего срока службы.

Любая деформация приведет к потере тепла

В противном случае, может произойти деформация утеплителя. А это уже приведет к ухудшению его теплоизоляционных свойств. Исследованиями доказано, что потери тепла при этом могут составлять до 40%.

Паропроницаемость

По данному критерию все утеплители можно условно подразделить на два вида:

  • «ваты» – теплоизоляционные материалы, состоящие из органических или минеральных волокон. Они являются паропроницаемыми, поскольку легко пропускают через себя влагу.
  • «пены» – теплоизоляционные изделия, изготовленные путем затвердевания особой пенообразной массы. Влагу они не пропускают.

В зависимости от конструктивных особенностей помещения, в нем могут быть использованы материалы первого или второго вида. Кроме того, паропроницаемые изделия нередко устанавливают своими руками вместе со специальной пароизоляционной пленкой.

Горючесть

Весьма и весьма желательно, чтобы используемая теплоизоляция была негорючей. Допускается вариант, когда она будет самозатухающей.

Но, к сожалению, в условиях реального пожара даже это не поможет. В эпицентре огня будет гореть даже то, что не загорается в обычных условиях.

Звукоизоляционные свойства

Мы уже упоминали про два вида изоляционных материалов: «ваты» и «пены». Первый из них является отличным звукоизолятором.

Второй же, напротив, не имеет таких свойств. Но это вполне можно исправить. Для этого при утеплении «пены» нужно установить вместе с «ватами».

Вывод

Таблица теплопроводности наглядно иллюстрирует теплоизоляционные свойства тех или иных материалов. Более наглядной может быть лишь диаграмма.

На фото – наглядная таблица

То же самое, но в виде диаграммы

Как видите, теплопроводность базальтового утеплителя и пенополистирола является наименьшей. Следовательно, они обладают наилучшими теплоизоляционными свойствами по сравнению с остальными материалами для утепления.

Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.


Какой толщины должен быть утеплитель, сравнение теплопроводности материалов.

Необходимость использования Систем теплоизоляции WDVS вызвана высокой экономической эффективностью.

Вслед за странами Европы, в Российской Федерации приняли новые нормы теплосопротивления ограждающих и несущих конструкций, направленные на снижение эксплуатационных расходов и энергосбережение. С выходом СНиП II-3-79*, СНиП 23-02-2003 «Тепловая защита зданий» прежние нормы теплосопротивления устарели. Новыми нормами предусмотрено резкое возрастание требуемого сопротивления теплопередаче ограждающих конструкций. Теперь прежде использовавшиеся подходы в строительстве не соответствуют новым нормативным документам, необходимо менять принципы проектирования и строительства, внедрять современные технологии.

 Как показали расчёты, однослойные конструкции экономически не отвечают принятым новым нормам строительной теплотехники. К примеру, в случае использования высокой несущей способности железобетона или кирпичной кладки, для того, чтобы этим же материалом выдержать нормы теплосопротивления, толщину стен необходимо увеличить соответственно до 6 и 2,3 метров, что противоречит здравому смыслу. Если же использовать материалы с лучшими показателями по теплосопротивлению, то их несущая способность сильно ограничена, к примеру, как у газобетона и керамзитобетона, а пенополистирол и минвата, эффективные утеплители, вообще не являются конструкционными материалами. На данный момент нет абсолютного строительного материала, у которого бы была высокая несущая способность в сочетании с высоким коэффициентом теплосопротивления.

Чтобы отвечать всем нормам строительства и энергосбережения необходимо здание строить по принципу многослойных конструкций, где одна часть будет выполнять несущую функцию, вторая — тепловую защиту здания. В таком случае толщина стен остаётся разумной, соблюдается нормированное теплосопротивление стен. Системы WDVS по своим теплотехническим показателям являются самыми оптимальными из всех представленных на рынке фасадных систем.

Таблица необходимой толщины утеплителя для выполнения требований действующих норм по теплосопротивлению в некоторых городах РФ:

Таблица, где: 1 — географическая точка 2 — средняя температура отопительного периода 3 — продолжительность отопительного периода в сутках 4 — градусо-сутки отопительного периода Dd, °С * сут 5 — нормируемое значение сопротивления теплопередаче Rreq, м2*°С/Вт стен 6 — требуемая толщина утеплителя

Условия выполнения расчётов для таблицы:

1. Расчёт основывается на требованиях СНиП 23-02-2003
2. За пример расчёта взята группа зданий 1 — Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития.
3. За несущую стену в таблице принимается кирпичная кладка толщиной 510 мм из глиняного обыкновенного кирпича на цементно-песчаном растворе l = 0,76 Вт/(м * °С)
4. Коэффициент теплопроводности берётся для зон А.
5. Расчётная температура внутреннего воздуха помещения + 21 °С «жилая комната в холодный период года» (ГОСТ 30494-96)
6. Rreq рассчитано по формуле Rreq=aDd+b для данного географического места
7. Расчёт: Формула расчёта общего сопротивления теплопередаче многослойных ограждений:
R0= Rв + Rв.п + Rн.к + Rо.к + Rн Rв — сопротивление теплообмену у внутренней поверхности конструкции
Rн — сопротивление теплообмену у наружной поверхности конструкции
Rв.п — сопротивление теплопроводности воздушной прослойки (20 мм)
Rн.к — сопротивление теплопроводности несущей конструкции
Rо.к — сопротивление теплопроводности ограждающей конструкции
R = d/l d — толщина однородного материала в м,
l — коэффициент теплопроводности материала, Вт/(м * °С)
R0 = 0,115 + 0,02/7,3 + 0,51/0,76 + dу/l + 0,043 = 0,832 + dу/l
dу — толщина теплоизоляции
R0 = Rreq
Формула расчёта толщины утеплителя для данных условий:
dу = l * ( Rreq — 0,832 )

а) — за среднюю толщину воздушной прослойки между стеной и теплоизоляцией принято 20 мм
б) — коэффициент теплопроводности пенополистирола ПСБ-С-25Ф l = 0,039 Вт/(м * °С) (на основании протокола испытаний)
в) — коэффициент теплопроводности фасадной минваты l = 0,041 Вт/(м * °С) (на основании протокола испытаний)

* в таблице даны усреднённые показатели необходимой толщины этих двух типов утеплителя.

Примерный расчёт толщины стен из однородного материала для выполнения требований СНиП 23-02-2003 «Тепловая защита зданий».

* для сравнительного анализа используются данные климатической зоны г. Москвы и Московской области.

Условия выполнения расчётов для таблицы:

1. Нормируемое значение сопротивления теплопередаче Rreq = 3,14
2. Толщина однородного материала d= Rreq * l

Таким образом, из таблицы видно, что для того, чтобы построить здание из однородного материала, отвечающее современным требованиям теплосопротивления, к примеру, из традиционной кирпичной кладки, даже из дырчатого кирпича, толщина стен должна быть не менее 1,53 метра.


Чтобы наглядно показать, какой толщины необходим материал для выполнения требований по теплосопротивлению стен из однородного материала, выполнен расчёт, учитывающий конструктивные особенности применения материалов, получились следующие результаты:

В данной таблице указаны расчётные данные по теплопроводности материалов.

По данным таблицы для наглядности получается следующая диаграмма:

Автор: Геннaдий Eмeльянoв

Теплопроводность утеплителей: назначение, таблица, критерии выбора

На чтение 10 мин Просмотров 674 Опубликовано Обновлено

Выбор теплоизоляционных материалов на современном рынке огромен. Производители выпускают различные по структуре, плотности, звукоизоляционным характеристикам и влагостойкости модели. Потребителям необходимо знать теплопроводность утеплителей и критерии подбора. Подробное сравнение всех видов поможет найти идеальный для постройки материал.

Понятие теплопроводности

Утеплители имеют разный коэффициент теплопроводности — это главный показатель материала

Под теплопроводностью понимается передача энергии тепла от объекта к объекту до момента теплового равновесия, т.е. выравнивания температуры. В отношении частного дома важна скорость процесса – чем дольше происходит выравнивание, тем меньше остывает конструкция.

В числовом виде явление выражается через коэффициент теплопроводности. Показатель наглядно выражает прохождение количества тепла за определенное время через единицу поверхности. Чем больше величина, тем быстрее утекает тепловая энергия.

Теплопередача различных материалов указывается в характеристиках изготовителя на упаковке.

Факторы влияния на теплопроводность

Теплопроводность зависит от плотности и толщины теплоизолята, поэтому важно учитывать ее при покупке. Плотность – это масса одного кубометра материалов, которые по этому критерию классифицируются как очень легкие, легкие, средние и жесткие. Легкие пористые изделия применяются для покрытия внутренних стен, несущих перегородок, плотные – для наружных работ.

Модификации с меньшей плотностью легче по весу, но имеют лучшие параметры теплопроводности. Сравнение утеплителей по плотности представлено в таблице.

МатериалПоказатель плотности, кг/м3
Минвата50-200
Экструдированный пенополистирол33-150
Пенополиуретан30-80
Мастика из полиуретана1400
Рубероид600
Полиэтилен1500

Чем выше плотность, тем меньше уровень пароизоляции.

Толщина материала также влияет на степень теплопередачи. Если она избыточная, нарушается естественная вентиляция помещений. Маленькая толщина становится причиной мостов холода и образования конденсата на поверхности. В результате стена покроется плесенью и грибком. Сравнить параметры толщины материалов можно в таблице.

МатериалТолщина, мм
Пеноплекс20
Минвата38
Ячеистый бетон270
Кладка из кирпича370

При подборе толщины стоит учитывать климат местности, материал постройки.

Характеристики разных материалов

Перед рассмотрением таблицы теплопроводности утеплителей имеет смысл ознакомиться с кратким обзором. Информация поможет застройщикам разобраться в специфике материала и его назначении.

Пенопласт

Пенопласт и пенополистирол отличаются способом производства, ценой и теплопроводностью

Плитный материал, изготовленный посредством вспенивания полистирола. Отличается удобством раскроя и монтажа, низкой теплопроводностью – в сравнении с другими изоляторами пенопласт легче. Преимущества изделия – недорогая стоимость, стойкость к влажной среде. Минусы пенопласта – хрупкость, быстрая возгораемость. По этой причине плиты толщиной 20-150 мм используются для теплоизоляции легких наружных конструкций – фасадов под штукатурные работы, стены цоколей и подвалов.

При горении пенопласта выделяются токсичные вещества.

Экструдированный пенополистирол

Вспененный полистирол с экструзией отличается стойкость к воздействию влажной среды. Материал легко раскраивается, не горит, прост в укладке и транспортировке. У плит помимо низкой теплопроводности – высокая плотность и прочность на сжатие. Среди российских застройщиков популярен экструдированный пенополистирол брендов Техноплекс и Пеноплекс. Его применяют для теплоизоляции отмостки и ленточного фундамента.

Минеральная вата

Чем плотнее плиты минеральной базальтовой ваты, тем хуже они проводят тепло

Коэффициент теплопроводности минеральной ваты – 0,048 Вт/(м*С), что больше пенопласта. Материал изготавливается на основе горных пород, шлака или доломита в форме плит и рулонов, у которых разный индекс жесткости. Для утепления вертикальных поверхностей допускается применять жесткие и полужесткие изделия. Горизонтальные конструкции лучше утеплять при помощи легких минплит.

Несмотря на оптимальный индекс теплопроводности, у минеральной ваты маленькая устойчивость к влажной среде. Плиты не подойдут для утепления подвальных помещений, парилок, предбанников.

Применение минваты с низкой теплопроводностью допускается только при наличии пароизоляционного и гидроизоляционного слоев.

Базальтовая вата

Основой для изоляции является базальтовый вид горной породы, который раздувается при нагреве до состояния волокон. При изготовлении также добавляют нетоксичные связующие компоненты. На российском рынке продукция бренда Роквул, на примере которой можно рассмотреть особенности утеплителя:

  • не подвергается возгоранию;
  • отличается хорошим показателем тепло- и звукоизоляции;
  • отсутствие слеживания и уплотнения в процессе эксплуатации;
  • экологически чистый строительный материал.

Параметры теплопроводности позволяют использовать каменную вату для наружных и внутренних работ.

Стекловата

Стекловата имеет коэффициент теплопроводности выше, чем каменная вата, материал гигроскопичен

Стекловатный утеплитель изготавливается из буры, известняка, соды, просеянного доломита и песка. Для экономии на производстве применяют стеклобой, что не нарушается свойства материала. К преимуществам стекловаты относятся высокие показатели тепло- и звукоизоляции, экологическая чистота и низкая стоимость. Минусов больше:

  • Гигроскопичность – впитывает воду, вследствие чего теряет утепляющие характеристики. Для предотвращения гниения и разрушения конструкции укладывают между пароизоляционными слоями.
  • Неудобство монтажа – волокна с повышенной хрупкостью распадаются, могут вызывать жжение и зуд кожи.
  • Непродолжительная эксплуатация – через 10 лет происходит усадка.
  • Невозможность применения для утепления влажных комнат.

При работе со стекловатой нужно защищать кожу рук перчатками, лицо – очками или маской.

Вспененный полиэтилен

Вспененный фольгированный полиэтилен имеет пропускает тепло хуже, чем обычный

Рулонный полиэтилен с пористой структурой имеет дополнительный отражающий слой из фольги. Преимущества изолона и пенофола:

  • маленькая толщина – от 2 до 10 мм, что в 10 раз меньше обычных изоляторов;
  • возможность сохранения до 97 % полезного тепла;
  • стойкость к воздействию влаги;
  • минимальная теплопроводность за счет пор;
  • экологическая чистота;
  • отражающий эффект, за счет которого аккумулируется тепловая энергия.

Рулонная теплоизоляция подходит для укладки во влажных комнатах, на балконах и лоджиях.

Напыляемая теплоизоляция

Пенополиуретан имеет самую низкую теплопроводность

Если обратиться к таблице, то видно, что напыляемые виды заменяют 10 см минваты. Они выпускаются в баллонах, напоминают монтажную пену и наносятся при помощи специального инструмента. Напыляемый утеплитель бывает разной жесткости, в емкости также присутствуют пенообразователи – полиизоционатом и полиолом. По типу основного компонента изоляция бывает:

  • ППУ. Пенополиуретан с открытой ячеистой структурой прочен, теплоэффективен. При наличии закрытых пустот в составе – может пропускать пар.
  • Пеноизольная. Жидкий пенопласт на карбамидоформальдегидной основе отличается паропроницаемостью, стойкость к возгоранию. Наносится посредством заливки. Оптимальная температура затвердевания – от +15 градусов.
  • Жидкая керамика. Керамические компоненты расплавляются до жидкого состояния, потом смешиваются полимерными веществами и пигментами. Получаются вакуумированные полости. Наружное утепление обеспечивает защиту здания на 10 лет, внутреннее – на 25 лет.
  • Эковата. Целлюлоза измельчается до состояния пыли, приобретает клейкость при попадании воды. Материал подходит для работы на влажных стеновых поверхностях, но не используется рядом с каминными трубами, дымоходами и печами.

Напыляемые утеплители отличаются хорошей сцепкой с поверхностями, для которых применялись дерево, кирпич или газобетон.

Таблица коэффициентов теплопроводности разных материалов

На основе таблицы с коэффициентами теплопроводности строительных материалов и популярных утеплителей можно сделать сравнительный анализ. Он обеспечит подбор оптимального варианта теплоизоляции для строения.

МатериалТеплопроводность, Вт/м*КТолщина, ммПлотность,  кг/м³Температура укладки,  °CПаропроницаемость, мг/м²*ч*Па
Пенополиуретан0,0253040-60От -100 до +1500,04-0,05
Экструдированный пенополистирол0,033640-50От -50 до +750,015
Пенопласт0,056040-125От -50 до +750,23
Минвата (плиты)0,0475635-150От -60 до +1800,53
Стекловолокно (плиты)0,0566715-100От +60 до +4800,053
Базальтовая вата (плиты)0,0378030-190От -190 до +7000,3
Железобетон2,0425000,03
Пустотелый кирпич0,0585014000,16
Деревянные брусья с поперечным срезом0,181540-500,06

Для параметров толщины применялся усредненный показатель.

Иные критерии подбора утеплителей

Теплоизоляционное покрытие обеспечивает снижение теплопотерь на 30-40 %, повышает прочность несущих конструкций из кирпича и металла, сокращает уровень шума и не забирает полезную площадь постройки. При выборе утеплителя помимо теплопроводности нужно учитывать другие критерии.

Объемный вес

Вес и плотность минваты влияет на качество утепления

Данная характеристика связана с теплопроводностью и зависит от типа материала:

  • Минераловатные продукты отличаются плотностью 30-200 кг/м3, поэтому подходят для всех поверхностей строения.
  • Вспененный полиэтилен имеет толщину 8-10 мм. Плотность без фольгирования равняется 25 кг/м3 с отражающей основой – около 55 кг/м3.
  • Пенопласт отличается удельным весом от 80 до 160 кг/м3, а экструдированный пенополистирол – от 28 до 35 кг/м3. Последний материал является одним из самых легких.
  • Полужидкий напыляемый пеноизол при плотности 10 кг/м3 требует предварительного оштукатуривания поверхности.
  • Пеностекло имеет плотность, связанную со структурой. Вспененный вариант характеризуется объемным весом от 200 до 400 кг/м3. Теплоизолят из ячеистого стекла – от 100 до 200 м3, что делает возможным применение на фасадных поверхностях.

Чем меньше объемный вес, тем меньше затрачивается материала.

Способность держать форму

Плиты и пенополиуретан имеют одинаковую степень жесткости, хорошо выдерживают форму

Производители не указывают формостабильность на упаковке, но можно ориентироваться на коэффициенты Пуассона и трения, сопротивления изгибам и сжатиям. По стабильности формы судят о сминаемости или изменении параметров теплоизоляционного слоя. В случае деформации существуют риски утечки тепла на 40 % через щели и мосты холода.

Формостабильность стройматериалов зависит от типа утеплителя:

  • Вата (минеральная, базальтовая, эко) при укладке между стропилами расправляется. За счет жестких волокон исключается деформация.
  • Пенные виды держат форму на уровне жесткой каменной ваты.

Способность изделия держать форму также определяется по характеристикам упругости.

Паропроницаемость

Определяет «дышащие» свойства материала – способность к пропусканию воздуха и пара. Показатель важен для контроля микроклимата в помещении – в законсервированных комнатах образуется больше плесени и грибка. В условиях постоянной влажности конструкция может разрушаться.

По степени паропроницаемости выделяют два типа утеплителей:

  • Пены – изделия, для производства которых применяется технология вспенивания. Продукция вообще не пропускает конденсат.
  • Ваты – теплоизоляция на основе минерального или органического волокна. Материалы могут пропускать конденсат.

При монтаже паропроницаемых ват дополнительно укладывают пленочную пароизоляцию.

Горючесть

Показатель, на который ориентируются при строительстве наземных частей жилых зданий. Классификация токсичности и горючести указана в ст. 13 ФЗ № 123. В техническом регламенте выделены группы:

  • НГ – негорючие: каменная и базальтовая вата.
  • Г – возгораемые. Материалы категории Г1 (пенополиуретан) отличаются слабой возгораемостью, категории Г4 (пенополистирол, в т.ч. экструдированный) – сильногорючие.
  • В – воспламеняемые: плиты из ДСП, рубероид.
  • Д – дымообразующие (ПВХ).
  • Т – токсичные (минимальный уровень – у бумаги).

Оптимальный вариант для частного строительства – самозатухающие материалы.

Звукоизоляция

Характеристика, связанная с паропроницаемостью и плотностью. Ваты исключают проникновение посторонних шумов в помещении, через пены проникает больше шума.

У плотных материалов лучше шумоизоляционные свойства, но укладка осложняется толщиной и весом. Оптимальным вариантом для самостоятельных теплоизоляционных работ будет каменная вата с высоким звукопоглощением. Аналогичные показатели – у легкой стекловаты или базальтового утеплителя со скрученными длинными тонкими волокнами.

Нормальный показатель звукоизоляции – плотность от 50 кг/м3.

Практическое применение коэффициента теплопроводности

Коэффициент теплопроводности необходим для вычисления объема утеплителя в климатическом поясе

После теоретического сравнения материалов нужно учитывать их разделение на группы теплоизоляционных и конструкционных. У конструкционного сырья – самые высокие индексы теплопередачи, поэтому оно подходит для возведения перекрытий, ограждений или стен.

Без использования сырья со свойствами утеплителей понадобится укладывать толстый слой теплоизоляции. Обратившись к таблице теплопроводности, можно определить, что низкий теплообмен конструкций из железобетона будет только при их толщине 6 м. Готовый дом будет громоздким, может просесть под почву, а затраты на строительство не окупятся и через 50 лет.

Достаточная толщина теплоизоляционного слоя – 50 см.

Применение теплоизоляционных материалов обеспечивает сокращение затрат на строительные мероприятия и снижает переплаты за энергию зимой. При покупке утеплителя нужно учитывать параметры теплопроводности, основные характеристики, стоимость и удобство самостоятельного монтажа.

Теплопроводность — выбранные материалы и газы

Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

«количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади, за счет градиента единичной температуры в условиях устойчивого состояния»

Теплопроводность Единицами измерения являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

900 90078 0,1 — 0,22 0,606
Теплопроводность
k —
Вт / (м · К)

Материал / вещество Температура
25 o C
(77 o F)
125 o C
(257 o F)
225 o C
(437 o F)
Acetals 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера (газ) 0,0262 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Оксид алюминия 30
Аммиак (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 1) 0,744
Асбестоцементные листы 1) 0,166
Асбестоцемент 1) 2,07
Асбест в рыхлой упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75
Бальсовое дерево 0,048
Битум
Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 — 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17
Доменный газ (газ) 0,02
Шкала котла 1,2 — 3,5
Бор 25
Латунь
Бризовый блок 0.10 — 0,20
Кирпич плотный 1,31
Кирпич огневой 0,47
Кирпич изоляционный 0,15
Кирпич обыкновенный (Строительный кирпич ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
Бронза
Коричневая железная руда 0.58
Масло (содержание влаги 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 1,7
Двуокись углерода (газ) 0,0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированная 0.23

Ацетат целлюлозы, формованный, лист

0,17 — 0,33
Нитрат целлюлозы, целлулоид 0,12 — 0,21
Цемент, Портленд 0,29
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор (газ) 0,0081
Хром никелевая сталь 16,3
Хром
Оксид хрома 0,42
Глина, от сухой до влажной 0.15 — 1,8
Глина насыщенная 0,6 — 2,5
Уголь 0,2
Кобальт
Треск (влажность 83% содержание) 0,54
Кокс 0,184
Бетон, легкий 0,1 — 0,3
Бетон, средний 0.4 — 0,7
Бетон, плотный 1,0 — 1,8
Бетон, камень 1,7
Константан 23,3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка, повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Вата 0,029
Углеродистая сталь
Утеплитель из шерсти 0,029
Купроникель 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0.06
Диатомит 0,12
Дуралий
Земля, сухая 1,5
Эбонит 0,17 11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидный 0,35
Этиленгликоль 0,25
Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Волокнистая изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1,4
Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкость) 0,09
Бензин 0,15
Стекло 1.05
Стекло, жемчуг, жемчуг 0,18
Стекло, жемчуг, насыщенное 0,76
Стекло, окно 0.96
Стекло-вата Изоляция 0,04
Глицерин 0,28
Золото
Гранит 1,7 — 4,0
Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0,33
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Твердая древесина (дуб, клен ..) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед ( 12,6% влажности) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Чугун 47-58
Изоляционные материалы 0,035 — 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа 0 .58
Капок изоляция 0,034
Керосин 0,15
Криптон (газ) 0,0088
Свинец
Свинец
, сухой 0,14
Известняк 1,26 — 1,33
Литий
Магнезиальная изоляция (85%) 0.07
Магнезит 4,15
Магний
Магниевый сплав 70-145
Мрамор 2,08 — 2,94
Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
Молибден
Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ) 0,0151
Нейлон 6, Нейлон 6/6 0,25
Масло машинное смазочное SAE 50 0,15
Оливковое масло 0.17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05
Парафиновый воск 0,25
Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Фенолформальдегидные формовочные смеси 0,13 — 0,25
Фосфорбронза 110 Pinchbe20 159
Шаг 0,13
Карьерный уголь 0.24
Гипс светлый 0,2
Гипс, металлическая планка 0,47
Гипс песочный 0,71
Гипс, деревянная планка 0,28
Пластилин 0,65 — 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19
Полиэстер
Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 — 0,51
Полиизопреновый каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат 0,17 — 0,25
Полипропилен
Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуретан 0,03
Фарфор 1,5
Калий 1
Картофель, сырая мякоть 0,55
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1.005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл
Рений
Родий
Порода, твердая 2-7
Порода, вулканическая порода (туф) 0.5 — 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Резина, ячеистая 0,045
Резина натуральная 0,13
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 — 0,25
Песок влажный 0,25 — 2
Песок насыщенный 2-4
Песчаник 1,7
Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема 0.02
Кремниевая литьевая смола 0,15 — 0,32
Карбид кремния 120
Кремниевое масло 0,1
Серебро
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 — 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1
Почва, с органическими материя 0,15 — 2
Грунт насыщенный 0,6 — 4

Припой 50-50

50

Сажа

0.07

Насыщенный пар

0,0184
Пар низкого давления 0,0188
Стеатит 2
Сталь углеродистая
Сталь, нержавеющая
Изоляция из соломенных плит, сжатая 0,09
Пенополистирол 0.033
Диоксид серы (газ) 0,0086
Сера кристаллическая 0,2
Сахара 0,087 — 0,22
Тантал
Смола 0,19
Теллур 4,9
Торий
Древесина, ольха 0.17
Лес, ясень 0,16
Лес, береза ​​ 0,14
Лес, лиственница 0,12
Лес, клен 0,16
Древесина дубовая 0,17
Древесина осина 0,14
Древесина оспа 0.19
Древесина, бук красный 0,14
Древесина, сосна красная 0,15
Древесина, сосна белая 0,15
Древесина ореха 0,15
Олово
Титан
Вольфрам
Уран
Пенополиуретан 0.021
Вакуум 0
Гранулы вермикулита 0,065
Виниловый эфир 0,25
Вода, пар (пар) 0,0267 0,0359
Пшеничная мука 0.45
Белый металл 35-70
Древесина поперек волокон, белая сосна 0,12
Древесина поперек волокон, бальза 0,055
Древесина поперек волокон, сосна желтая, древесина 0,147
Дерево, дуб 0,17
Шерсть, войлок 0.07
Древесная вата, плита 0,1 — 0,15
Ксенон (газ) 0,0051
Цинк

1) Асбест плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример — кондуктивная теплопередача через алюминиевый бак по сравнению с баком из нержавеющей стали

Кондуктивная теплопередача через стенку ванны может быть рассчитана как

q = (k / s) A dT (1)

или, альтернативно,

q / A = (к / с) dT

, где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , БТЕ / (ч фут 2 ))

k = теплопроводность ( Вт / мК, БТЕ / (час фут ° F) )

dT = t 1 — t 2 = разница температур ( o C, o F)

с = толщина стены (м, фут)
9000 5

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

s = толщина стенки (м, фут)

A = площадь поверхности (м 2 , футы 2 )

dT = t 1 — t 2 = разница температур ( o C, o F)

Примечание! — общая теплопередача через поверхность определяется « общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку горшка толщиной 2 мм — разность температур 80
o C

Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80
o C

Теплопроводность нержавеющей стали составляет 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

Общий коэффициент теплопередачи

Можно рассчитать теплопередачу через поверхность, например стену как

q = UA dT (1)

где

q = теплопередача (Вт (Дж / с), БТЕ / ч)

U = общий коэффициент теплопередачи (Вт / ( м 2 K), БТЕ / (фут 2 h o F) )

A = площадь стены (м 2 , фут 2 )

dT = (t 1 — t 2 )

= темпера разность температур по стене ( o C, o F)

Общий коэффициент теплопередачи для многослойной стены, трубы или теплообменника — с потоком жидкости на каждой стороне стены — можно рассчитать как

1 / UA = 1 / ч ci A i + Σ (s n / k n A n ) + 1 / h co A o (2)

, где

U = общий коэффициент теплопередачи (Вт / (м 2 K), БТЕ / (фут 2 ч o F) ) )

k n = теплопроводность материала в слое n (Вт / (м · К), БТЕ / (час фут ° F) )

h ci , o = внутри или снаружи стены 900 24 индивидуальная жидкость конвекция коэффициент теплопередачи (Вт / (м 2 K), Btu / (ft 2 h o F) )

s n = толщина слоя n (м, фут)

Плоская стена с равной площадью во всех слоях — может быть упрощена до

1 / U = 1 / h ci + Σ (s n / k n ) + 1 / h co (3)

Теплопроводность — k — для некоторых типичных материалов (проводимость не является свойством, которое может изменяться в зависимости от температуры)

  • Полипропилен PP: 0.1 — 0,22 Вт / (м · К)
  • Нержавеющая сталь: 16 — 24 Вт / (м · К)
  • Алюминий: 205 — 250 Вт / (м · К)
Преобразовать между Метрические и имперские единицы
  • 1 Вт / (м · К) = 0,5779 БТЕ / (фут · ч o F)
  • 1 Вт / (м 2 K) = 0,85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Коэффициент конвективной теплопередачи — h — зависит от

  • тип жидкости — газ или жидкость
  • свойства потока, такие как скорость
  • другие свойства, зависящие от потока и температуры

Коэффициент конвективной теплопередачи для некоторых распространенных жидкостей:

  • Воздух — от 10 до 100 Вт / м 2 K
  • Вода — 500 до 10 000 Вт / м 2 K

Многослойные стены — Калькулятор теплопередачи

Этот калькулятор можно использовать для расчета общего коэффициента теплопередачи и теплопередачи через многослойную стену.Калькулятор является универсальным и может использоваться для метрических или британских единиц при условии, что единицы используются последовательно.

A — площадь (м 2 , футы 2 )

t 1 — температура 1 ( o C, o F)

t 2 — температура 2 ( o C, o F)

h ci — коэффициент конвективной теплоотдачи внутри стенки (Вт / (м 2 K), Btu / ( ft 2 h o F) )

s 1 — толщина 1 (м, фут) k 1 — теплопроводность 1 (W / (m K) , БТЕ / (час фут ° F) )

с 2 — толщина 2 (м, фут) k 2 — теплопроводность 2 (Вт / (м · К), BTU / (час фут ° F) )

s 3 — толщина 3 (м, фут) k 3 — теплопроводность 3 (Вт / (м · К), БТЕ / (ч · фут · ° F) )

ч co — коэффициент конвективной теплопередачи снаружи стены ( Вт / (м 2 K), БТЕ / (фут 2 ч o F) )

Тепловое сопротивление теплопередачи

Сопротивление теплопередачи банка быть выражено как

R = 1 / U (4)

, где

R = сопротивление теплопередаче (м 2 K / W, ft 2 h ° F / BTU)

Стена разделена на участки термического сопротивления, где

  • теплопередача между жидкостью и стенкой — это одно сопротивление
  • сама стена является одним сопротивлением
  • передача между стеной и t Вторая жидкость — это термическое сопротивление.

Поверхностные покрытия или слои «обожженного» продукта добавляют дополнительное термическое сопротивление стенкам, снижая общий коэффициент теплопередачи.

Некоторые типичные сопротивления теплопередаче
  • статический слой воздуха, 40 мм (1,57 дюйма) : R = 0,18 м 2 K / Вт
  • внутреннее сопротивление теплопередаче, горизонтальный ток: R = 0,13 м 2 K / W
  • внешнее сопротивление теплопередаче, горизонтальный ток: R = 0,04 м 2 K / W
  • внутреннее сопротивление теплопередаче, тепловой ток снизу вверх: R = 0,10 м 2 K / W
  • внешнее сопротивление теплопередаче, тепловой ток сверху вниз: R = 0.17 м 2 K / W

Пример — теплообмен в теплообменнике воздух-воздух

Пластинчатый теплообменник воздух-воздух площадью 2 м 2 и толщиной стенки 0,1 мм может быть изготовлен из полипропилен PP, алюминий или нержавеющая сталь.

Коэффициент конвекции теплопередачи для воздуха составляет 50 Вт / м 2 K . Внутренняя температура теплообменника составляет 100 o C , а наружная температура 20 o C .

Общий коэффициент теплопередачи U на единицу площади можно рассчитать, изменив (3) на

U = 1 / (1 / h ci + s / k + 1 / h co ) (3b)

Общий коэффициент теплопередачи для теплообменника из полипропилена

  • с теплопроводностью 0,1 Вт / мК равен

U PP = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0.1 мм ) (10 -3 м / мм) / ( 0,1 Вт / м · K ) + 1/ ( 50 Вт / м 2 K ) )

= 24,4 Вт / м 2 K

Теплопередача

q = ( 24,4 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

= 3904 W

= 3.9 кВт

  • нержавеющая сталь с теплопроводностью 16 Вт / м · К :

U SS = 1 / (1 / ( 50 Вт / м 2 K ) + ( 0,1 мм ) (10 -3 м / мм) / ( 16 Вт / мK ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • алюминий с теплопроводностью 205 Вт / мK :

U Al = 1 / (1 / ( 50 Вт / м 2 K 90 024) + ( 0.1 мм ) (10 -3 м / мм) / ( 205 Вт / м · K ) + 1/ ( 50 Вт / м 2 K ) )

= 25 Вт / м 2 K

Теплопередача

q = ( 25 Вт / м 2 K ) ( 2 м 2 ) (( 100 o C ) — (2 0 o C ))

= 4000 Вт

= 4 кВт

  • 1 Вт / (м 2 К) = 0.85984 ккал / (hm 2 o C) = 0,1761 Btu / (ft 2 h o F)

Типичные общие коэффициенты теплопередачи

  • Газ свободной конвекции — газ свободной конвекции: U = 1-2 Вт / м 2 K (типичное окно, воздух из помещения через стекло)
  • Газ без конвекции — принудительная жидкая (проточная) вода: U = 5-15 Вт / м 2 K (типовые радиаторы центрального отопления)
  • Свободная конвекция газа — конденсирующийся пар Вода: U = 5-20 Вт / м 2 K (типичные паровые радиаторы)
  • Принудительная конвекция (проточная) Газ — Свободная конвекция газ: U = 3-10 Вт / м 2 K (пароперегреватели)
  • Принудительная конвекция (проточный) Газ — Принудительная конвекция Газ: U = 10-30 Вт / м 2 K (газы теплообменника)
  • Принудительная конвекция (проточный) газ — Принудительная жидкая (проточная) вода: U = 10-50 Вт / м 2 9 0044 K (газовые охладители)
  • Принудительная конвекция (проточный) Газ — конденсирующийся пар Вода: U = 10-50 Вт / м 2 K (воздухонагреватели)
  • Безжидкостная конвекция — принудительная конвекция Газ: U = 10-50 Вт / м 2 K (газовый котел)
  • Жидкостная конвекция — свободная конвекция Жидкость: U = 25-500 Вт / м 2 K (масляная баня для отопления)
  • Без жидкости Конвекция — принудительный ток жидкости (вода): U = 50 — 100 Вт / м 2 K (нагревательный змеевик в воде в резервуаре, вода без рулевого управления), 500-2000 Вт / м 2 K (нагревательный змеевик в воде в резервуаре) , вода с рулевым управлением)
  • Конвекция без жидкости — конденсирующийся пар воды: U = 300 — 1000 Вт / м 2 K (паровые рубашки вокруг сосудов с мешалками, вода), 150 — 500 Вт / м 2 K (другие жидкости)
  • Принудительная жидкость (текущая) вода — газ свободной конвекции: U = 10-40 Вт / м 2 K (горючий камера + излучение)
  • Принудительная жидкость (текущая) вода — Свободная конвекционная жидкость: U = 500 — 1500 Вт / м 2 K (охлаждающий змеевик — перемешиваемый)
  • Принудительная жидкость (текущая) вода — Принудительная жидкость (проточная вода): U = 900 — 2500 Вт / м 2 K (теплообменник вода / вода)
  • Принудительная жидкая (проточная) вода — Конденсирующий пар водяной: U = 1000 — 4000 Вт / м 2 K (конденсаторы водяного пара)
  • Кипящая жидкая вода — свободный конвекционный газ: U = 10-40 Вт / м 2 K (паровой котел + излучение)
  • Кипящая жидкая вода — принудительное течение жидкости (вода) : U = 300 — 1000 Вт / м 2 K (испарение холодильников или охладителей рассола)
  • Кипящая жидкая вода — Конденсирующий пар воды: U = 1500 — 6000 Вт / м 2 K (испарители пар / вода)

Коэффициент теплопроводности — обзор

2.5 Обнаружение и анализ тепловых свойств

Что касается тепловых свойств наноматериалов, физические величины, требующие определения характеристик, включают коэффициент теплопроводности, удельную теплоемкость, тепловое расширение, термическую стабильность и температуру плавления.

Когда тонкопленочный слой материала достигает определенной толщины, эффект границ зерен будет оказывать все более значительное влияние на теплопроводность. Кроме того, коэффициент теплопроводности перпендикулярно пленке имеет тенденцию к уменьшению с уменьшением толщины пленки.

Теоретические предсказания и экспериментальные результаты подтвердили, что наноструктурированные материалы имеют удельную теплоемкость намного выше, чем у обычных объемных материалов. Наноматериалы имеют сравнительно хаотичное распределение атомов по структуре, которая имеет больший объем по сравнению с объемными аналогами. Таким образом, энтропийные вклады из-за этой некристаллической поверхности вносят гораздо больший вклад в удельную теплоемкость, чем средние крупнокристаллические материалы, что приводит к увеличению удельной теплоемкости.

Нанокристаллы почти в два раза больше средних кристаллов по коэффициенту теплового расширения, причем увеличение t в основном связано с составом кристаллических границ. Основной прибор для измерения коэффициента теплового расширения материалов известен как анализатор теплового расширения, но он также известен как термодилатометрический анализатор или термомеханический анализатор . Анализ коэффициента теплового расширения материалов может дать представление о молекулярном движении, структурных изменениях и поведении при тепловом расширении.Для решения таких проблем, как термическое соединение различных материалов при производстве полупроводниковых устройств, анализатор теплового расширения является лучшим инструментом для анализа.

Точка плавления — это температура, при которой материал переходит из твердого состояния в жидкость. Для кристаллических объектов существует четкая точка плавления; однако некристаллические объекты имеют плохо определенную температуру плавления. Температура может увеличиваться до значения, при котором небольшое количество атомов в общей структуре начинает двигаться одновременно с жидким поведением.Эта температура известна как температура стеклования ( T г ). При температуре ниже Т г стекломатериал находится в твердом состоянии; при температурах выше Т г — переохлажденная жидкость. Выражаясь в механических терминах, если температура ниже T g , то произойдет упругая деформация; если температура выше Т г , то начинается вязкостная (жидкая) деформация.

Температура термического разложения — это значение, при котором связи материала могут быть нагреты до разорванного состояния и диссоциированы на другие вещества.

Для пластифицированных некристаллических или аморфных наноматериалов температура стеклования и температура термической диссоциации, отличные от точки плавления, также являются очень важными тепловыми свойствами. Таблица 2.4 показывает температуру плавления нескольких видов материалов в разных масштабах.

Таблица 2.4. Точка плавления нескольких материалов в разных масштабах

Тип материала Размер частиц: диаметр (нм) или общее количество атомов Точка плавления (K)
Au Обычные сыпучие материалы 1340
300 нм 1336
100 нм 1205
20 нм 800
2 нм 600
Sn 10–30 555
500 480
Pb Обычные сыпучие материалы 600
30–45 583
CdS Обычные сыпучие материалы 1678
2 нм ≈910
1.5 нм ≈600
Cu Обычные насыпные материалы 1358
20 нм ≈312

Термические свойства наноматериалов обычно обнаруживаются и анализируются с помощью термогравитационного анализа (TGA) и производная термогравиметрия (DTG).

ТГА может обеспечивать непрерывное измерение на основе изменения веса материалов в процессе нагрева во время измерения.В частности, изменения массы отслеживаются как функция температуры с заданной температурной скоростью и могут быть соотнесены с потерями массы и тепловыми переходами в материале. Одновременно можно проводить дифференцированное лечение. А именно, запись изменений качества составляет метод измерения DTG.

С помощью TGA (или DTG) можно определить ряд тепловых свойств материалов, например температуру старения во время пиролиза и динамику старения, поведение при старении при разных температурах и в различных газовых средах, упаковочные материалы IC, используемые в процесс изготовления исполняемых полупроводниковых устройств, гибких печатных плат и стеклянных подложек, керамических подложек и других компонентов анализа.

В коллоидной системе связанные термические свойства частиц также включают, среди прочего, броуновское движение, баланс диффузии и седиментации.

При броуновском движении среднее смещение частицы X¯ может быть выражено как:

X¯ = RTN0Z3πηr

, где R — постоянная идеального газа, T — абсолютная температура, N 0 — постоянная Авогадро, Z — интервал времени наблюдения, η — вязкость дисперсионной среды, r — радиус частицы.

Броуновское движение оказывает существенное влияние на природу коллоидных частиц. Броуновское движение — важный фактор, который может повлиять на стабильность дисперсной системы коллоидных частиц. Из-за броуновского движения осаждение коллоидных частиц происходит не из-за гравиметрических сил, а из-за коллоидной агрегации, вызванной столкновениями между частицами, что приводит к осаждению.

Явление диффузии связано с переносом массы, который возникает из-за броуновского движения частиц (броуновского движения) при наличии градиента концентрации.Чем крупнее частицы и чем меньше тепловая скорость, тем менее заметной становится диффузия. Обычно коэффициент диффузии используется для измерения скорости диффузии. Это физическое количество материала, указывающее на диффузионную способность.

В коллоидной системе коэффициент диффузии D можно выразить как:

D = RTN0⋅16πηr

Здесь R — постоянная идеального газа, T — абсолютная температура, N 0 — постоянная Авогадро, η — вязкость дисперсионной среды, r — радиус частицы.

Поскольку коэффициент диффузии коррелирует со средним смещением, полученный коэффициент диффузии D можно также выразить как:

D = X¯22Z

Здесь Z — это определенный интервал времени наблюдения, а X¯ — среднее смещение частицы при броуновском движении. В таблице 2.5 показан коэффициент диффузии золя, образующегося из наночастиц золота, при 291 К.

Таблица 2.5. Коэффициент диффузии золя, образующегося из частиц нано-Au при 291 K

Размер частиц нано-Au (нм) Коэффициент диффузии (109 м 2 / с)
1 0 .213
10 0,0213
100 0,00213

Когда частицы, взвешенные в жидкости, показывают скорость осаждения, равную скорости диффузии, система достигает состояния равновесия, а именно равновесия седиментации. . В состоянии седиментационного равновесия концентрация коллоидных частиц подчиняется закону распределения Гаусса.

Закон распределения Гаусса для коллоидных частиц может быть выражен как:

n2 = n1e − N0RT⋅43r3 (ρp − ρ0) (x2 − x1) g

Здесь n 1 и n 2 — концентрация частиц в поперечном сечении на высоте x 1 и x 2 соответственно, R — идеальная газовая постоянная, T — абсолютная температура, A — Константа Авогадро, r — радиус частицы, ρ0 — плотность коллоидных частиц, ρp — плотность дисперсионной среды, г — ускорение свободного падения.

Коэффициент теплопередачи — обзор

8.4.3 Упрощенная модель

Коэффициент теплопередачи от горячего газа к поверхности реторты ч 0 можно рассчитать, применив простую модель, показанную на рис. 8.5 и 8.6.

Рисунок 8.5. Передача тепла к поверхности реторты.

Рисунок 8.6. Модель теплопередачи.

На рис. 8.6 инфракрасный луч испускается из протекающего газа при высокой температуре, достигает обеих поверхностей реторты и цилиндра изоляционной крышки.Для расчетов конструкции удобно использовать следующие коэффициенты теплопередачи за счет теплового излучения:

От газа до реторты, приблизительно

(8.4.1) hrg = ɛgɛH (4.88) [(Tg + 273100) 4− (TH0 + 273100) 4] Tg − TH0

От внутренней поверхности изоляционного покрытия до внешней поверхности реторты,

(8.4.2) (час) SH = ɛS (1 − ɛg) ɛH (4.88) [(TS +273100) 4− (TH0 + 273100) 4] TS − TH0

Следует иметь в виду, что указанное выше приближение возможно в случае, когда ɛ H и ɛ S близки к единице (т.е.е. черное тело). В противном случае мы должны рассчитывать их в соответствии со строгой теорией замкнутости. Однако на практике H и ɛ S обычно близки к единице, что оправдывает приведенное выше приближение.

В случае, когда линейная скорость потока газа на поверхностях нагрева велика, коэффициент конвективной теплопередачи h C должен быть сопоставим с h rg параллельно.

Предположим, что изоляция достаточно толстая и потери тепла незначительны по сравнению с тепловым потоком от протекающего газа, тепловая энергия, принимаемая внутренней поверхностью цилиндра крышки, излучается в виде инфракрасных лучей, а затем передается на поверхность возразить.

Основываясь на единице площади поверхности реторты, механизм теплопередачи в пространстве между цилиндром изоляционной крышки и ретортой может быть представлен следующими уравнениями.

На внутренней поверхности цилиндра изоляционной крышки

(8.4.3) (hc + hrg) (Tg − TS) = (час) SH (TS − ​​TH0)

Общее тепло, переданное реторте q H определяется как

(8.4.4) (hc + hrg) (Tg − TH0) + (hrs) SH (TS − ​​TH0) −qH = h0 (Tg − TH0)

T S получается из уравнения.(8.4.3), и представленный уравнениям. (8.4.4). Таким образом, суммарный коэффициент теплопередачи ч 0 рассчитывается по следующему уравнению.

(8.4.5) h0 = hc + hrg + 11hc + hrg + 1 (час) SH

Что такое теплопроводность?

Диаграмма, показывающая передачу тепловой энергии посредством теплопроводности. Кредит: Безграничный

Тепло — интересный вид энергии. Он не только поддерживает жизнь, делает нас комфортными и помогает готовить пищу, но и понимание его свойств является ключом ко многим областям научных исследований.Например, знание того, как передается тепло и степень, в которой различные материалы могут обмениваться тепловой энергией, управляет всем: от обогревателей здания и понимания сезонных изменений до отправки кораблей в космос.

Тепло может передаваться только тремя способами: теплопроводностью, конвекцией и излучением. Из них кондукция, пожалуй, самая распространенная и регулярно встречается в природе.Короче говоря, это передача тепла посредством физического контакта. Это происходит, когда вы нажимаете рукой на оконное стекло, когда вы ставите горшок с водой на активный элемент и когда вы кладете утюг в огонь.

Этот перенос происходит на молекулярном уровне — от одного тела к другому — когда тепловая энергия поглощается поверхностью и заставляет молекулы этой поверхности двигаться быстрее. В процессе они натыкаются на своих соседей и передают им энергию, и этот процесс продолжается до тех пор, пока добавляется тепло.

Процесс теплопроводности зависит от четырех основных факторов: градиента температуры, поперечного сечения материалов, длины пути и свойств этих материалов.

Температурный градиент — это физическая величина, которая описывает, в каком направлении и с какой скоростью изменяется температура в определенном месте. Температура всегда течет от самого горячего источника к самому холодному, потому что холод — это не что иное, как отсутствие тепловой энергии. Этот переход между телами продолжается до тех пор, пока разница температур не исчезнет и не наступит состояние, известное как тепловое равновесие.

Поперечное сечение и длина пути также являются важными факторами. Чем больше размер материала, участвующего в переносе, тем больше тепла необходимо для его нагрева. Кроме того, чем больше площадь поверхности подвергается воздействию открытого воздуха, тем выше вероятность потери тепла. Поэтому более короткие объекты с меньшим поперечным сечением — лучший способ минимизировать потери тепловой энергии.

Теплопроводность происходит через любой материал, представленный здесь прямоугольным стержнем. Скорость переноса частично зависит от толщины материала (представ.пользователя A). Кредит: Безграничный

И последнее, но не менее важное, это физические свойства используемых материалов. По сути, когда дело доходит до теплопроводности, не все вещества одинаковы. Металлы и камень считаются хорошими проводниками, поскольку они могут быстро передавать тепло, тогда как такие материалы, как дерево, бумага, воздух и ткань, являются плохими проводниками тепла.

Эти проводящие свойства оцениваются на основе «коэффициента», который измеряется относительно серебра.В этом отношении серебро имеет коэффициент теплопроводности 100, тогда как другие материалы имеют более низкий рейтинг. К ним относятся медь (92), железо (11), вода (0,12) и дерево (0,03). На противоположном конце спектра находится идеальный вакуум, который не может проводить тепло, и поэтому оценивается как нулевой.

Материалы, плохо проводящие тепло, называются изоляторами. Воздух с коэффициентом проводимости 0,006 является исключительным изолятором, поскольку он может удерживаться в замкнутом пространстве.Вот почему в искусственных изоляторах используются воздушные отсеки, такие как окна с двойным остеклением, которые используются для сокращения счетов за отопление. По сути, они действуют как буферы от потерь тепла.

Перо, мех и натуральные волокна являются примерами натуральных изоляторов. Эти материалы позволяют птицам, млекопитающим и людям оставаться в тепле. Морские выдры, например, живут в океанических водах, которые часто очень холодны, а их роскошный густой мех согревает их. Другие морские млекопитающие, такие как морские львы, киты и пингвины, полагаются на толстый слой жира (он же.жир) — очень плохой проводник — чтобы предотвратить потерю тепла через кожу.

Та же самая логика применяется к изоляции домов, зданий и даже космических кораблей. В этих случаях методы включают либо воздушные карманы между стенами, стекловолокно (которое задерживает воздух) или пену высокой плотности. Космические аппараты представляют собой особый случай и используют изоляцию в виде пенопласта, армированного углеродного композитного материала и плиток из кварцевого волокна. Все они являются плохими проводниками тепла и, следовательно, предотвращают потерю тепла в космосе, а также предотвращают попадание экстремальных температур, вызванных атмосферным входом, в кабину экипажа.

Электропроводность, как показано при нагревании металлического стержня пламенем. Кредит: Высшее образование Томсона.

Законы теплопроводности очень похожи на закон Ома, регулирующий электрическую проводимость. В этом случае хороший проводник — это материал, который позволяет электрическому току (то есть электронам) проходить через него без особых проблем. Электрический изолятор, напротив, представляет собой любой материал, внутренние электрические заряды которого не текут свободно, и поэтому очень трудно проводить электрический ток под действием электрического поля.

В большинстве случаев материалы, которые плохо проводят тепло, также плохо проводят электричество. Например, медь хорошо проводит тепло и электричество, поэтому медные провода так широко используются в производстве электроники. Золото и серебро еще лучше, и там, где цена не является проблемой, эти материалы также используются при строительстве электрических цепей.

И когда кто-то хочет «заземлить» заряд (т.е.е. нейтрализовать его), они отправляют его через физическое соединение с Землей, где теряется заряд. Это обычное дело для электрических цепей, в которых присутствует незащищенный металл, гарантирующий, что люди, случайно вступившие в контакт, не будут поражены электрическим током.

Это вид носовой части космического корабля «Дискавери», построенного из жаропрочных углеродных композитов. Предоставлено: НАСА.

Изоляционные материалы, такие как резина на подошвах обуви, используются для защиты людей, работающих с чувствительными материалами или рядом с электрическими источниками, от электрических зарядов.Другие изоляционные материалы, такие как стекло, полимеры или фарфор, обычно используются в линиях электропередач и высоковольтных передатчиках мощности, чтобы энергия передавалась в цепи (и ничего больше!)

Короче говоря, проводимость сводится к передаче тепла или передачи электрического заряда. И то, и другое происходит в результате способности вещества позволять молекулам передавать энергию через них.


Разработан теплопроводящий пластик

Ссылка : Что такое теплопроводность? (2014, 9 декабря) получено 13 июня 2021 г. с https: // физ.org / news / 2014-12-what-is-heat-constraction.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

КОЭФФИЦИЕНТ ТЕПЛОПЕРЕДАЧИ

Коэффициент теплопередачи — это количественная характеристика конвективной теплопередачи между текучей средой (текучей средой) и поверхностью (стенкой), через которую она протекает.Эта характеристика появляется как коэффициент пропорциональности а в соотношении Ньютона-Рихмана

где — плотность теплового потока на стенке, T w — температура стенки, T t — характерная температура жидкости, например, температура T e вдали от стенки во внешнем потоке, температура объемного потока T b в трубках и т. д. Единица измерения в международной системе единиц (СИ) (см. Международную систему единиц) — Вт / (м 2 K), 1 Вт / (м 2 K) = 0 .86 ккал / (м 2 ч ° C) = 0,1761 БТЕ / (hft 2 ° F) или 1 ккал / (м 2 ч ° C) = 1,1630 Вт / (м 2 K), 1 BTU / (hft 2 ° F) = 5,6785 Вт / (м 2 K). Коэффициент теплопередачи получил широкое распространение при расчетах конвективной теплопередачи и при решении задач внешнего теплообмена между теплопроводной твердой средой и ее окружением. Коэффициент теплопередачи зависит как от тепловых свойств среды, гидродинамических характеристик ее потока, так и от гидродинамических и тепловых граничных условий.Используя методы теории подобия, зависимость коэффициента теплоотдачи от многих факторов может быть представлена ​​во многих практически важных случаях в виде компактных соотношений между безразмерными параметрами, известных как критерии подобия. Эти отношения называются обобщенными уравнениями (формулами) или подобием. Число Нуссельта Nu = αl / λf или число Стентона St = используется в качестве безразмерного числа для теплопередачи в этих уравнениях, где 1 — характерный размер поверхности в потоке, массовая скорость потока жидкости, λ f и C pf — теплопроводность и теплоемкость жидкости.При решении задач теплопроводности в твердом теле распределение коэффициента теплопередачи α между телом и его окружением часто задается как граничное условие. Здесь полезно использовать безразмерный независимый параметр, число Био Bi = αl / λ s , где λ s — теплопроводность твердого тела, а 1 — его характерный размер. Зависимость чисел Nu и St от чисел Re и Pr играет существенную роль в теплообмене за счет принудительной конвекции.В случае полностью развитой теплопередачи в круглой трубе с ламинарным потоком жидкости число Нуссельта является константой, а именно Nu = 3,66 при постоянной температуре стенки и 4,36 при постоянном тепловом потоке (см. Трубы (однофазная теплопередача в) ). В случае свободной конвекции число Nu зависит от чисел Gr и Pr. Когда теплоемкость жидкости существенно меняется, коэффициент теплопередачи часто определяется в терминах разности энтальпий (h w — h f ).Понятие коэффициента теплоотдачи используется также при теплообмене с фазовыми превращениями в жидкости (кипение, конденсация). В этом случае температура жидкости характеризуется температурой насыщения T s . Порядок величины коэффициента теплоотдачи для разных случаев теплообмена представлен в таблице 1.

При анализе внутренней теплопередачи в пористых телах, т. Е. Конвективной теплопередачи между жесткой матрицей и проникающей через нее жидкостью, часто используется объемный коэффициент теплопередачи.

где qv — тепловой поток, проходящий от жесткой матрицы к текучей среде в единице объема пористого тела, T w — локальная температура матрицы, а T f — локальная объемная температура текучей среды.

Следует подчеркнуть, что постоянство α в широком диапазоне и ΔT (при прочих равных условиях) встречается только в случае конвективного теплообмена, когда физические свойства жидкости изменяются незначительно при теплопередаче. При конвективной теплопередаче в жидкости с различными свойствами и при кипении коэффициент теплопередачи может существенно зависеть от и ΔT. В этих случаях увеличение теплового потока может вызвать опасные явления, такие как выгорание (переходный тепловой поток) и ухудшение турбулентной теплопередачи в трубках.Если (ΔT) является нелинейным, представляется неуместным представлять его в терминах коэффициента α при анализе, например, устойчивости к кипению.

Общий коэффициент теплопередачи

где T f1 и T f2 — температуры нагреваемой и нагретой жидкостей, используется при расчетах теплопередачи между двумя жидкостями через разделительную стенку. Значения U для наиболее часто используемых конфигураций стен определяются по формулам

для плоской многослойной стены,

для цилиндрической многослойной стенки, и

для сферической многослойной стены.

Здесь D 1 и D 2 — внутренний и внешний диаметры стены, D — эталонный диаметр, по которому определяется эталонная поверхность теплопередачи, S i , D i , D i + 1 и λ и — толщина, внутренний и внешний диаметры, а также теплопроводность i-го слоя. Первое и третье слагаемые в скобках называются тепловыми сопротивлениями теплопередачи. Для их опускания стены оребрены оребрением и используются различные методы увеличения теплоотдачи.Второй член в скобках означает термическое сопротивление стены, которое может значительно увеличиться в результате загрязнения стены, например накипи и образования золы, или плохой теплопередачи между слоями стены. Значения α и U для малого элемента теплопередающей поверхности называются локальными. Если они не сильно меняются, то при практических расчетах теплоотдачи на поверхностях конечных размеров используются средние значения коэффициентов и уравнение теплопередачи

где A — эталонная поверхность теплопередачи и (как правило, среднее логарифмическое) падение температуры (см. среднюю разность температур).

Таблица 1. Примерные значения коэффициента теплопередачи

ССЫЛКИ

Якоб М. (1958) Теплопередача , Вили, Нью-Йорк, Чепмен и Холл, Лондон.

Шнайдер П. Дж. (1955) Conduction Heat Transfer , Addison-Wesley Publ. Co., Кембридж.

Adiutory, E. F. (1974) The New Heat Transfer, vols. 1,2, Ventuno Press, Цинциннати.

Теплопроводный нагрев ТСН

Во время TCH тепло, излучаемое термальными скважинами, нагревает обрабатываемый объем до заданной температуры.Технология TCH полностью зависит от теплопроводности литологии участка и степени его насыщения. TCH может применяться для восстановления как почвы, так и грунтовых вод и является очень эффективной технологией для удаления LNAPL и DNAPL.

Ниже перечислены основные механизмы удаления загрязняющих веществ, которые имеют место во время ТКП:

  • Улетучивание и отгонка паром летучих органических соединений и летучих органических соединений
  • Снижение вязкости для отходов заводов по производству масел и промышленных газов (МГП)
  • Разложение или разрушение in situ при обработке SVOC, ПАУ, ПХД, пестицидов и диоксинов при высоких температурах

ТЕХНОЛОГИЯ, КОТОРАЯ РАБОТАЕТ ДЛЯ ВАС

  • Опыт — Члены TerraTherm, команда Cascade Company, участвовали в TCH с момента его разработки Shell Oil и TerraTherm в конце 1980-х годов.
  • Надежность — TerraTherm предлагает самую надежную и гибкую версию TCH, в которой используются нагреватели с электрическим приводом.
  • Безопасность — обогреватели TerraTherm сертифицированы на соответствие строгим требованиям безопасности UL499.

ПОДХОДИТ

TerraTherm предлагает приложения TCH при низких, умеренных и высоких температурах. В зависимости от выбранного уровня нагрева TCH может обрабатывать ЛОС, SVOC, ПАУ, ПХД, диоксины и даже некоторые тяжелые металлы. Это также идеальное средство от LNAPL и DNAPL.

TCH идеально подходит как для восстановления почвы на месте, так и для восстановления грунтовых вод, а также для обработки складированной почвы и отложений ex situ. Успешно применяемая на глубине более 150 футов ниже уровня земли, TCH — это постоянный выбор технологии для крупных площадок.

TCH обычно используется для нагрева грунта до 100 ° C, но это единственная технология термической реабилитации на месте, которая также может достигать температуры 335 ° C. Применение TCH при более низких температурах используется для удаления летучих органических соединений, летучих органических соединений и легкого масла / NAPL.Применение при высоких температурах позволяет удалять / разлагать SVOC, PAH, PCB, пестициды, диоксины и даже некоторые тяжелые металлы.

TCH также может применяться ex situ с использованием термодесорбции в куче (IPTD ® ). Загрязненная почва выкапывается и обрабатывается с использованием технологии TCH в сваях, которые могут достигать 20 футов в высоту и покрывать площади размером с футбольное поле. Для небольших приложений вне помещений наша запатентованная технология Heated-Box (HB1100) может быть наиболее экономичным вариантом.

TerraTherm успешно обработала более 60 объектов с помощью TCH, последовательно выполняя цели восстановления на каждом из них. Работая с местными партнерами, мы внедрили ТКП более чем на 15 объектах по всему миру. Имея партнеров или филиалов ТКП в Европе, Канаде, Бразилии, Японии, Вьетнаме и Китае, мы можем внедрить технологию ТКП по всему миру.