Содержание

Схема подключения и принципы работы люминесцентных ламп.

Среди всех источников искусственного света самыми распространенными сегодня являются люминесцентные лампы. Благодаря тому что они в 5-7 раз экономичнее ламп накаливания и гораздо дешевле самых сверхэффективных на сегодня- светодиодных.

Люминесцентные лампы сегодня можно встретить на каждом шагу. Они используются преимущественно для освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях, а после появления компактных вариантов, подходящих под обычные патроны E27 и E14 домашних светильников и люстр, люминесцентные лампы стали широко применяться для освещения в многоквартирных квартирах и частных домах.

Принцип работы.

Люминесцентная лампа — это газоразрядный источник света, внутри стрелянной трубы протекает электрический разряд между двумя спиралями (катодом и анодом), расположенными  с обоих сторон. Пары ртути под воздействием электрического разряда излучают невидимое для наших глаз ультрафиолетовое излучение, которое затем преобразовывается в видимый свет при помощи нанесенного по внутренней поверхности лампы люминофора, состоящего из смеси фосфора с другими элементами.

Схема подключения с применением электромагнитный балласта или  ЭмПРА.

ЭмПРА — это сокращенная аббревиатура- Электромагнитный Пускорегулирующий Аппарат. Часто называемый, как дроссель. Его мощность должна соответствовать общей мощности подключаемым к нему лампам.
Это довольно старая (активно применяемая еще в советское время) простая стартерная схема подключения к электросети  люминесцентной лампы дневного света.

Стартер — это миниатюрная лампочка с неоновым наполнением с  двумя биметаллическими электродами внутри, которые разомкнуты в нормальном положении.

Принцип работы: при включении электропитания в стартере возникает разряд и замыкаются накоротко биметаллические электроды, после чего ток в цепи электродов и стартера ограничивается только внутренним сопротивлением дросселя, в результате чего возрастает почти в три раза больше  рабочий ток в лампе и моментально разогреваются  электроды люминесцентной лампы. Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.

В этот момент разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и зажигается лампа. После этого напряжение на ней будет равняться половине от сетевого, которого будет недостаточно  для повторного замыкания электродов стартера.
Если лампа светит стартер не будет участвовать в схеме работы и его контакты всегда будут разомкнуты.

Часто встречается последовательная схема включения  2 ламп, для работы в которой применяются стартеры на 127 Вольт,  но они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт!

 

Недостатки  схемы ПРА:

  1. По сравнению со схемой с электронным балластом на 10-15 % больший расход электроэнергии
    .
  2. Долгий запуск  не менее 1 до 3  секунд (зависимость от износа лампы).
  3. Звук от гудения пластин дросселя, возрастающий со временем.
  4. Стробоскопический эффект мерцания лампы, что негативно влияет на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  5. Неработоспособность при низких температурах окружающей среды. Например, зимой в неотапливаемом гараже.

Схема подключения с применением электронного балласта или ЭПРА.

Электронный Пускорегулирующий Аппарат (сокращенно-  ЭПРА) в отличии от электромагнитного-  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает возможность появления заметного для глаз мигания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Схемы подключений бывают разные, как правило они наносятся сверху на блоке и не вызывают трудности в подключении. Давайте рассмотрим пример.


Слева, L – фаза и N- ноль от электропитания. Один провод общий на контакты с левой стороны и два — раздельные.
Справа, 4 контакта. По два на каждую нить накала. Только соблюдайте схему подключения на каждую лампу с обоих сторон.

Преимущества схем с ЭПРА:

  • Увеличение срока службы люминесцентных ламп, благодаря специальному режиму работы и запуска.
  • По сравнению с ПРА до 20% экономия электроэнергии.
  • Отсутствие в процессе работы шума и мерцания.
  • Отсутствует в схеме  стартер, который часто ломается.
  • Специальные модели выпускаются с возможностью диммирования  или регулирования яркости свечения.

Как Вы уже поняли у ЭПРА  много преимуществ,  именно поэтому Мы только и рекомендуем их использовать.
Дополнительно прочитайте по этом теме нашу статью  ”Характеристики люминесцентных ламп и светильников”.

схемы, инструкции и советы мастеров

Электрофурнитура

Подключение люминесцентной лампы сложнее обычной накальной, но не настолько, чтобы обязательно вызывать электрика. Разобраться может каждый, у кого есть желание. Существует несколько схем, по которым осуществляется монтаж, но суть их сводится к двум: с дросселем и без него. Пусковое устройство необходимо в обоих случаях, но оно бывает разных типов, поэтому следует хорошо знать особенности каждого варианта.

1

Конструкция и принцип работы люминесцентных источников света

Лампы дневного света известны довольно давно. Они освещают помещение подобно лампочкам накаливания, но потребление электроэнергии в 5 раз меньше. От самых современных светильников нового поколения, которые еще экономичнее, ЛДС выгодно отличаются демократичной стоимостью. Мягкий световой поток обеспечивается смесью газов, находящихся внутри прибора. При этом состав рассчитан так, что ионизация происходит при незначительных затратах энергии – отсюда экономия на освещении.

Устройство ЛДС

Люминесцентная лампа по сравнению с накальной более сложна по конструкции. Имеет вид герметичного стеклянного баллона с газами и ртутными парами внутри. На торцах расположены электроды, на которых при напряжении происходит разряд и возникает невидимое человеческому глазу ультрафиолетовое свечение. Оно воздействует на нанесенный изнутри по стеклу люминофор, который излучает мягкий свет.

Для работы люминесцентной лампы необходима поддержка тлеющего разряда, который подается на электроды. Он появляется, если напряжение существенно превышает обычные 220 В. Поэтому вначале вырабатывается высоковольтный импульс, затем светильник входит в нормальный режим, используя минимальное количество электроэнергии для постоянного свечения.

Дроссель для устройства

Чтобы запустить процесс, необходима пускорегулирующая аппаратура: устаревшая электромагнитная (ЭмПРА) или современная электронная (ЭПРА).

В ЭмПРА главный элемент – дроссель (балластное сопротивление). Его задача – ограничить ток при разогреве электродов, затем подать импульс, чтобы зажглась лампа. Он также стабилизирует напряжение, поэтому мерцание светильника малозаметно.

Стартер

Газоразрядная лампа и конденсатор – другие элементы пускорегулирующей аппаратуры. Они размещены в небольшом корпусе, вместе называются стартером. Когда включают лампу дневного света, 220 В недостаточно, чтобы разогреть спирали электродов. Увеличение тока в несколько раз обеспечивает газоразрядная лампа, которая отключается как только зажигается светильник. Стартер больше не работает до тех пор, пока опять не придется повторить процесс.

2

Подключение с электромагнитным балластом – классическая схема

Первые лампы дневного света включались через дроссель и стартер. Раньше это были отдельные устройства (в некоторых моделях так и сейчас) с гнездами в корпусе светильника для каждого. Схема также имеет 2 конденсатора. Один размещен в стартере – продлевает импульс, второй стабилизирует напряжение. Все оборудование называют электромагнитным балластом.

Этот тип подключения имеет несколько преимуществ:

  • прошел испытание временем и подтвердил надежность;
  • простой;
  • комплектующие недорогие по стоимости.

Практическое применение выявило многие недостатки, особенно по сравнению с электронной схемой подключения ЛДС:

  • потребляет на 15% больше электричества;
  • тяжелый осветительный прибор;
  • долго включается, особенно когда стареет лампа;
  • плохо работает на холоде;
  • гудит дроссель, звук нарастает со временем;
  • мерцает свет, что плохо сказывается на зрении.

    Схема для одной лампы

При монтаже вначале вставляют в гнездо стартер для соединения с нитями накаливания в колбе. К свободным контактам подключают дроссель. На сетевые провода параллельно устанавливают конденсатор.

Опытные электрики советуют на время, пока не купили стартер, вместо неработающего использовать кнопку от звонка или что-то похожее. Ее удерживают, пока лампа зажигается, затем отпускают.

3

Особенности электронной схемы – современный вариант

Основное преимущество такого способа – более продолжительная служба ЛДС. Устройство собрано на микросхемах, благодаря этому у него компактные размеры, низкое энергопотребление. Прибор работает на частоте 130 кГц, свет от этого ровный, не мерцает. С применением электроники также собирают современные люминесцентные лампы, у которых балласт расположен в стандартном цоколе.

Конструктивно это печатная плата, размещенная в небольшом корпусе. На обратной стороне имеется схема подключения, из которой понятно, как и сколько ламп подключается. Графическую информацию повторяют надписи. Имеются удобные контакты, куда требуется вставить провода.

ЭПРА выполняет те же функции, что и дроссель со стартером, но делает это более качественно. Электроды подогреваются плавно, что способствует большей эффективности и длительной работе. Светильники с электронной начинкой можно использовать вместе с диммером – устройством, которым плавно регулируют яркость освещения. Его нельзя применить, если пусковая аппаратура электромагнитная.

Схема подключения электронного балласта устроена так, что регулирующее устройство подстраивается под потребности лампы. Чем старее светильник, тем более высокое напряжение необходимо для пуска. ЭПРА это учитывает и обеспечивает качественную работу прибора.

По сравнению с ЭмПРА электронный балласт обладает большими преимуществами:

  • высокая экономичность и надежность;
  • бережно прогревает электроды и плавно включает лампочки;
  • малый вес, компактность;
  • самостоятельно адаптируется под светильник;
  • низкие температуры не влияют на работоспособность.

К недостаткам относят несколько усложненную схему подключения. Ошибки в монтаже недопустимы – не только не засветится лампочка, но и устройство выйдет из строя.

Полупроводниковый балласт можно установить вместо электромагнитного. Как это сделать, показывает видео.

4

Порядок последовательного подключения двух ламп

К одному дросселю можно подключить 2 лампы, понадобится такое же количество стартеров.

Работа выполняется в такой очередности:

  1. 1. На каждую лампочку параллельно подключают стартер. Они вставляются в штыревые гнезда на корпусе светильника.
  2. 2. К свободным контактам присоединяют сетевой провод. Способ последовательный, через дроссель.
  3. 3. Конденсатор включают параллельно на фазный и нулевой провод. Можно обойтись без него, но качество освещения будет хуже.

    Подключение двух ламп к одному ЭПРА

Важно использовать хороший выключатель. Дешевый с плохими контактами. Они быстро подгорают и залипают через повышенный ток при включении светильника. Поэтому для люминесцентных ламп требуются качественные электромеханические приборы.

Схема подключения люминесцентных ламп

Как известно, люминесцентные лампы уже давно получили широкое распространение в самых различных областях применения.

Прогресс зашел настолько далеко, что даже в быту стало возможным использование этого осветительного элемента, хотя люминесцентные лампы, начавшие свою историю в нашей стране в 30-е гг ХХ века, ранее использовались исключительно в целях освещения зданий какого-либо специализированного назначения, в которых требовалось круглосуточное снабжение светом.

Естественно, что и на рынке осветительных элементов люминесцентные лампы представлены в великом множестве, разнообразие моделей способно удовлетворить практически любые эксплуатационные назначения.

Вместе с этим появились и самые разнообразные схемы подключения этого устройства, каждый из которых отличается своей спецификой и подходит для определенного типа ламп.

 

Стоит сразу отметить тот факт, что работы по подключению люминесцентных ламп требуют куда большего внимания и знаний, чем аналогичные манипуляции с теми же привычными нам лампами накаливания.

 

Этот процесс отличается куда большим числом нюансов и тонкостей, соответственно, и уровень сложности возрастает в разы.

И, что немало важно, от правильности подключения зависит то, насколько эффективной и долговечной будет ее работа. И конечно, необходимо предварительно ознакомиться с устройством этого светильника.

Особенности и тонкости при подключении люминесцентных ламп

Как известно, люминесцентные лампы относятся к числу газозарядных устройств. А любая лампа такого типа отличается, пожалуй, самым важным для внимания качеством: напрямую подключить такое изделие в сеть никак нельзя.

На вопрос, почему нельзя этого сделать, ответ имеется в двух вариантах:

  • в состоянии, так сказать, «покоя» лампы имеют довольно высокий показатель сопротивления, для запуска ее механизма в работу нужен импульс, который будет отличаться высоким показателем напряжения;
  • люминесцентная лампа, получив импульс и образовав в себе разряд, получает довольно высокий показатель дифференциального сопротивления, соответственно, при таких условиях нельзя обойтись без сопротивления, иначе лампа просто сгорит.

Для решения этой проблемы был введен в систему элемент – балласт.

 

Балласт – это специализированный пускорегулирующий механизм, обеспечивающий происхождения правильного алгоритма процессов в люминесцентной лампе и обеспечивающий необходимые условия для ее работы.

 

На сегодняшний момент существуют две разновидности балластов. ЭмПРА и ЭПРА. Подключение с использованием каждого из вышеназванных элементов отличается своими тонкостями в работе.

К содержанию

Подключение люминесцентной лампы с использованием ЭмПРА: при помощи электронного дросселя

Аббревиатура ЭмПРА не слишком понятна пользователю, не отличающемуся широким диапазоном знаний в области электроники и электротехники. Тем не менее, расшифровывается она довольно просто.

ЭмПРА – это электромагнитный пускорегулирующий аппарат.

Он представляет собой катушку индуктивности, также известную как дроссель, обладающий индуктивным сопротивление. Сопротивление это должно быть в определенном размере.

Дроссель подключается с люминесцентной лампой последовательно, однако лампы тоже должны обладать определенной мощностью.

Далее требуется подключить стартер, делать это нужно тоже строго определенным способом: последовательно нитям накаливания.

Кстати, говоря о стартере, необходимо разъяснить, что именно представляет собой это устройство. Стартером называется неоновая лампа, оснащенная биметаллическими электродами, в сочетании с конденсатором.

 

Важно учесть тот факт, что подключены эти два устройства параллельно.

 

После того, как все вышеуказанные элементы подключены, происходит определенный процесс: дроссель подвергается самоиндукции. В результате этого он формирует импульс, который отвечает за запуск, причем, величина его, как правило, не превышает 1 кВ

.

Помимо этой функции дроссель еще и ограничивает ток, опираясь при этом на индуктивное сопротивление.

Если говорить о качественных характеристиках ЭмПРА, то здесь, пожалуй, можно выделить значительно число негативных сторон в то время, как положительных моментов наберется довольно мало.

ЭмПРА отличается довольно низким ценовым показателем, да и сама конструкция его довольно проста.

В перевес этому представлен ряд негативных сторон приобретения и использования этого балласта:

  • запуск осуществляется довольно долго;
  • дроссель, обязательно входящий в структуру ЭмПРА, потребляет сравнительно много электроэнергии;
  • коэффициент мощности очень низок
    ,
    и для увеличения его требуется применение компенсирующих конденсаторов;
  • пластины воспроизводят гудение, отличающиеся низкой частотой, и что самое неприятное, оно в последствие возрастает;
  • конструкция обеспечивает мерцание люминесцентной лампы, а это очень негативно влияет на восприятие света глазом и практически гарантирует возможные проблемы со зрением у потребителей;
  • габариты устройства слишком велики и неудобны;
  • отрицательные температурные показатели оказывают настолько сильное влияние на ЭмПРА, что при них он просто не осуществляет запуск, а значит, люминесцентные лампы на такой системе просто напросто не включатся.

Схема подключение люминесцентной лампы с использование ЭПРА

Помимо электромагнитного пускорегулирующего аппарата, который, как можно сделать вывод из вышесказанного, осуществляет свою работу не слишком качественно, существует и другой способ запустить все необходимые процессы в люминесцентной лампе.

Это ЭПРА, то есть, электронный пускорегулирующий аппарат.

По сравнению с ЭмПРА такой балласт намного безопаснее и оптимальнее для использования его потребителем.

К ряду достоинств такого устройства можно отнести, например, то, что люминесцентная лампа исключает мигание, которое отрицательно влияет на состояние сетчатки глаз пользователей.

Обеспечивается это следующей особенностью ЭПРА: лампы от него питаются не сетевым током, а обладающим высокой частотой.

Разница в показателях весьма значительна, соответственно, неприятное мигание удается нивелировать.

 

 

К числу достоинств ЭПРА можно отнести и следующие:

  • снижается потребление электроэнергии, что позволяет сэкономить на ее оплате;
  • электронные балласты представляют в своем ряду и устройства, позволяющие регулировать яркость освещения;
  • затраты на производство и ликвидацию отходов от такого устройства значительно ниже;
  • отлично подходят для централизованного освещения, оснащенных автоматической регулировкой, экономя электроэнергию;
  • при монтаже и установке ЭПРА не требуется специальный стартер, подключенный отдельно, система сама способна создать необходимые условия для совершения работы.

В настоящее время электронный балласт может быть представлен в двух моделях.

Основное их различие заключается в том, что каждая из их осуществляет запуск отличным от другого способом. Одним из них является холодный запуск, а другим – горячий.

Холодный запуск обуславливает свою работу следующей особенностью: лампа зажигается сразу, как только ее включают.

Правда, в этом случае есть и некоторый нюанс: этот способ хорошо подойдет только тем лампам, которые редко проходя процесс включения/выключения. При соблюдении такого условия сохраняется рабочее состояние электродов лампы, а значит, она не выйдет из строя раньше времени.

Горячий запуск
не зря получил такое название. Он сначала прогревает электроды, а потом уже дает пуск включению лампы. Интервал между этими действиями не слишком значителен – не более 1 секунды.

Состояние лампы при этом сохраняется идеальное даже при частом включении/выключении, а значит, она честно прослужит весь отведенный ей срок.

К содержанию

Подключение люминесцентной лампы: описание работы и схема

Работа с ЭмПРА подразумевает свой процесс подключения люминесцентной лампы, соответственно, ЭПРА тоже отличается своими особенностями установки.

Дроссель можно назвать пережитком советского периода, сейчас он используется довольно редко, поскольку со временем перестает отвечать всем возложенным на него требованиям.

Однако, так как они все же имеют место быть в нашей жизни, рассмотрим в данной статье и их. Выше мы упоминали некоторые этапы работы этого устройства, теперь рассмотрим их подробно.

ЭмПРА осуществляет свою работу по стартерной схеме.

 

После того как мы подключаем электрическое питание, в стартере происходит процесс замыкания. Распространяется он на биметаллические электроды и отличается коротким исполнением. Ток поступает внутрь цепи, образованной электродом и стартером.

 

Там его ничто не ограничивает, кроме дросселя, создающего внутреннее сопротивление, и он возрастает в несколько раз, преобразуясь в рабочую форму.

Благодаря этому процессу электроды в люминесцентной лампе разогреваются очень быстро, а биметаллические контакты наоборот, остывают, при этом, происходит процесс размыкания всей цепи.

Дроссель, тем временем, запускает импульс, который и обеспечивает свет, излучаемый лампой. Пока лампа дает свет, стартер не участвует в работе, а значит, контакты его останутся разомкнутыми до тех пор, пока лампа не будет выключена.

Учтите некоторую особенность: если вы подключаете последовательно две лампы, не планируемые к работе в одноламповой схеме, то стартеры следует брать более высокой мощности, например, на 220 Вольт. Без соблюдения этого условия ваша установка не будет работать.

ЭПРА имеет в своем составе трансформатор и  выходной каскад, работающий на транзисторном снабжении.

Схем подключения его довольно много, но приятно отметить тот факт, что они наносятся производителем непосредственно на саму поверхность корпуса.

Схемы довольно понятны и работа с ними не принесет особых сложностей. Все нюансы указываются, как правило, там же. Кроме того, в интернете можно найти видеоуроки по подключению практически всех схем ЭПРА, а значит, успех предприятия обеспечен.

Важно только не упускать из внимания некоторый нюанс: схему подключения необходимо соблюсти на каждую лампу с обеих сторон.

Механизм действия может происходить по-разному, опять же, это зависит от специфики схемы.

К примеру, балласт осуществляет подогрев катодов лампы, прикладывая далее напряжение, которого достаточно, чтобы зажечь лампу. Напряжение выше, чем в сети. Могут встретиться и комбинированные варианты запуска.

Опытные пользователи люминесцентных ламп советуют обратить свое внимание в пользу именно ЭПРА. Ознакомившись с перечнем положительных сторон, не трудно догадаться, почему выбор большинства обращен именно в его пользу.

Вывод

В данной статье мы постарались собрать всю необходимую информацию о принципах подключения люминесцентных ламп.

 

Внимательно отнеситесь к рекомендациям производителей ламп, которые вы решите купить. Ведь именно это обеспечит наиболее эффективную работу всей установки.

 

И, все же, если вы сомневаетесь в своих силах и знаниях принципов физики и электроники, лучше доверьте подключение люминесцентной лампы профессионалам. Так вы сможете гарантировать, что установка не сгорит и прослужит вам долго, а цена на данную услугу окупается в несколько раз.

А ведь именно ради долговременной службы и выбираются люминесцентные лампы.

К содержанию

Расскажите друзьям!

Понравилась статья? Подписывайтесь на обновления сайта по RSS, или следите за обновлениями В Контакте, Одноклассниках, Facebook, Twitter или Google Plus.

Подписывайтесь на обновления по E-Mail:

Если вы нашли неточность или у вас есть вопрос, напишите в форме комментария ниже:

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 %. Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц. В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

Принципиальная схема эконом лампы

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003. Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Преобразователь лампы

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности.

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью.

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Колба лампы

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Лампа с электронным балластом

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

Схема включения позистора в люминесцентной лампе

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как подключить люминесцентную лампу с традиционным электромагнитным дросселем, с электронным дросселем, с перегоревшими нитями разогрева, а также полезные советы для увеличения срока эксплуатации ламп

Схема подключения люминесцентных ламп — это графическое изображение соединения различных деталей, совместная работа которых обеспечивает излучение света осветительным прибором.

Правильно выполненное подключение обеспечит максимально возможное время эксплуатации ламп, снизит создающее некомфортность гудение электромагнитного балласта, но и обеспечит существенную экономию электроэнергии по сравнению с лампами накаливания – более пятнадцати процентов. Люминесцентные  лампы при работе излучают намного меньшее количество тепла, чем традиционные лампы накаливания. Это дает возможным применять для дизайнерского оформления светильников даже те материалы, которые представляют опасность с позиций легкой возгораемости.

Подключить люминесцентную лампу намного сложнее, чем обычную лампу накаливания. Это вызвано характером получения видимого света, используемого для освещения.

Устройство люминесцентной лампы

 

Как происходит процесс включения лампы дневного света

Люминесцентная лампа — это своеобразный трансформатор, преобразующий частоты света – недоступного зрению ультрафиолетового излучения в видимый свет, излучаемый атомами вещества, из которого изготавливается слой внутреннего покрытия лампы.

Принцип работы люминесцентной лампы

Как происходит включение люминесцентной лампы

Конструкционно люминесцентная лампа выполнена как герметичнаф стеклянная колба, внутрь которой закачена специальная смесь газов. Состав смеси подбирается так, чтобы потребность в электроэнергии для процесса ионизации атомов газовой смеси требовалось значительно меньше, чем для обеспечения работы лампы накаливания такой же мощности.

Для того, чтобы люминесцентная лампа служила постоянным источником света необходимо постоянная ионизация. Для этого в системе постоянно поддерживается тлеющий разряд с помощью непрерывной подачи необходимого напряжения на ламповые электроды.

Отличается от ламп накаливания и процесс, в результате которого начинают светиться люминесцентные лампы. Чтобы начался процесс ионизации требуется высоковольтный разряд, который происходит после прогрева смеси газов вокруг электродов. Чтобы обеспечить протекание этого процесса в лампе имеются две тонкие спирали подогрева. При подаче на спирали электрического тока они разогреваются и этот разогрев делает более легким выход анионов – отрицательно заряженных частиц. Напряжение в сети, то есть 220 вольт, поданное непосредственно на спирали, вызовет их перегорание, поэтому используют схемы запуска через индуктивный дроссель. В этом элементе при подаче переменного напряжения начинают возникать электромагнитные процессы, ограничивающие силу тока, который протекает по цепи, в результате чего достигается ограничение сетевого напряжения. Для протекания этого процесса на электроды подается высоковольтный импульс.

Индуктивный дроссель также служит генератором импульса высоковольтного напряжения благодаря которому  осуществляется пробой газовой смеси в внутреннем пространстве люминесцентной лампы. Высокая электродвижущая сила возникает в результате внутренней самоиндукции дросселя. Для получения импульса требуется включение в схему элемента, который обеспечит в цепи кратковременное прерывание. Такую функцию выполняет электрический стартер.

Таким образом в целом схематически протекание электрического тока в включаемой люминесцентной лампе можно представить следующим образом:

  • сетевое напряжение подается на индуктивный дроссель;
  • пройдя через индуктивный дроссель ток подается на первую разогревающую спираль лампы;
  • пройдя первую разогревающую спираль ток идет на стартер – его контакты разогреваясь замыкаются и ток разогревает спирали нагрева до 900˚С, a затем размыкаются вызывая высоковольтный импульс дросселя;
  • импульс подается на ламповые электроды и вызывает пробой и инициирование работы лампы.

Изображение последовательности включения в схему её элементов

Чтобы обеспечить такое прохождения тока создаются различные схемы для подключения люминесцентных ламп.

Классическая схема c использованием электромагнитного балласта

Совокупность дросселя и стартера также называют электромагнитным балластом. Схематически такой вид подключения можно представить в виде нижерасположенного рисунка.

Элементы, необходимые для включения лампы

Неисправность дросселя легко можно проверить при помощи обычной лампы накаливания. Один провод подсоединяют непосредственно к патрону лампы, а второй провод – через проверяемый дроссель. Если дроссель исправен, то при включении цепи в сеть лампочка должна гореть.

Для увеличения коэффициента полезного действия,a также уменьшения реактивных нагрузок в схему вводятся два конденсатора – они обозначены С1 и С2.

  • Обозначение LL1- дроссель, иногда его называют балластником.
  • Обозначение Е1 – стартер, как правило он представляет собой небольшую лампочку тлеющего разряда c одним подвижным биметаллическим электродом.

Изначально, до подачи тока эти контакты разомкнуты, поэтому ток в схеме напрямую на лампочку не подается, а нагревает биметаллическую пластину, которая нагреваясь выгибается и замыкает контакт. В результате возрастает ток, нагревающий нити нагрева в люминесцентной лампе, а самом стартере ток уменьшается и электроды размыкаются. В балласте начинается процесс самоиндукции, приводящий к созданию высокого импульса напряжения, обеспечивающего образование заряженных частиц, которые взаимодействуя с люминофором покрытия, обеспечивают возникновение светового излучения.

Такие схемы с использованием балласта имеют ряд достоинств:

  • небольшая стоимость требуемого оборудования;
  • простота в использовании.

К недостаткам таких схем можно отнести:

  • «мерцающий» характер светового излучения;
  • значительный вес и крупные габариты дросселя;
  • долгое зажигание люминесцентной лампы;
  • гудение работающего дросселя;
  • почти 15% потерь энергии.
  • невозможно использовать совместно с устройствами, которые плавно регулируют яркость освещения;
  • на холоде включение значительно замедляется.

Для того, чтобы снизить потери энергии, в цепь схемы можно включить конденсатор ёмкостью до 5 мкФ. Включение выполняют параллельно сети.

Дроссель выбирают строго в соответствии c инструкцией к конкретному виду люминесцентных ламп. Это обеспечит полноценное выполнение им своих функций:

  • ограничивать в требуемых значениях величину тока при замыкании электродов;
  • генерировать достаточное для пробоя газовой среды в колбе лампы напряжение;
  • обеспечивать поддержку горения разряда на стабильном постоянном уровне.

Несоответствие выбора приведет к преждевременному износу ламп. Как правило, дроссели имеют ту же мощность, что и лампа.

Среди наиболее распространенных неисправностей светильников, в которых используют люминесцентные лампы, можно выделить такие:

  • отказ дроселля, внешне это появляется в почернении обмотки, в оплавлении контактов: проверить его работоспособность можно самостоятельно, для этого понадобится омметр – сопротивление исправного балласта составляет порядка сорока Ом, если омметр показывает менее тридцати Ом – дроссель подлежит замене;
  • отказ стартера – в этом случае лампа начинает светиться только по краям, начинается мигание, иногда лампочка стартера светится, нол сам светильник не зажигается, устранить неисправность можно только заменой стартера;
  • иногда все детали схемы исправны, но светильник не включается, как правило, причиной является потеря контактов в ламподержателях: в некачественных светильниках они изготавливаются из некачественных материалов и поэтому плавятся – устранить такую неисправность можно только заменой гнезд ламподержателей;
  • лампа мигает по типу стробоскопа, по краям колбы наблюдается почернение, свечение очень слабое – устранение неисправности замена лампы.

При использовании электромагнитного балласта вместо стартера можно применить обычную кнопку для входного звонка. Он включается в схему так, чтобы после его нажатия происходила подача электроэнергии, а после того как люминесцентная лампа засветится, можно прекратить удержание кнопки.

Схема для подключения нескольких ламп

Преимущественно во всех светильниках используют не одну люминесцентную лампу, а несколько, минимум две. B этом случае элементы соединяют в схеме последовательно: А между проводами фазы и ноля устанавливается конденсатор. Их включают в схемы для предотвращения помех в общей электросети, а также для компенсирования возникающей реактивной мощности.

Недостаток такой схемы – параллельность подключения. Если испортится один элемент схемы – все остальные также не будут работать.

Подключение двух ламп на один дроссель

Использование электронного балласта для подключении люминесцентных ламп

На сегодняшний день подобные схемы подключения светильников c лампами дневного света наиболее распространены. Они лишены тех недостатков, которые присущи работе светильников c применением электромагнитного балласта. Среди преимуществ – такие схемы не требует наличия стартера.

Выбирая светильник с люминесцентными лампами нужно уделять внимание качеству выключателей – повышенные стартовые токи могут стать причиной «залипания» контактов.

Современные электронные балласты дают возможность экономить электроэнергию, увеличить срок работы светильников. При этом свет при таких схемах подключения в отличие от схем с использованием дросселей, не мигающий эффект стробоскопа отсутствует. Это достигается благодаря тому, что рабочее напряжение для ламп имеет частоту, отличную от частоты в сетях – до 133 kGz.

Применение микросхем позволило значительно снизить вес пусковых устройств, уменьшить их габариты. Это дало возможность непосредственно встраивать балласт непосредственно в цоколь лампы, предложить потребителям люминесцентные лампы, которые можно прямо вкручивать в обычный патрон подобно лампочке накаливания.

Цокольная люминесцентная лампа

Использование микросхем дало возможность обеспечить плавный нагрев электродов в лампах, а это не только повышает эффективность их работы, но и значительно удлиняет время эксплуатации.

Электронный балласт дает возможность применять люминесцентные лампы совместно c устройствами, которые предназначены для плавной регулировки освещенности – диммерам.

К достоинствам светильников, в которых применяется такая схема можно отнести нанесение изображения порядка подключения контактов на устройство, что делает такие приборы очень удобными для пользователей, которые не являются электриками-профессионалами.

Устройство электронного балласта

Как видно из принципиальной схемы, пускатель в виде электронного баласта является своеобразным преобразователем напряжения. Миниатюрный инвертор преобразует постоянный ток в переменный высокой частоты. Этот ток подается на электроды-нагреватели. Интенсивность нагревания этих электродов повышается. Включение преобразователя сделано так, что на первых этапах частота тока имеет высокую частоту. Сама люминесцентная лампа включена в контур, у которого резонансная частота меньше, чем начальная частота преобразователя. B дальнейшем частота уменьшается, a напряжение, a напряжение на колебательном контуре и на лампе растет,  в результате чего контур начинает приближаться к резонированию. Одновременно увеличивается степень нагрева электродов. Это приводит к созданию условий возникновения разряда в газовой смеси и люминофорное покрытие колбы начинает светиться.

Схема электронного балласта

Электронный балласт составляется таким образом, чтобы регулирующее устройство могло подстраиваться под те характеристики, которые имеет люминесцентная лампа. Это дает возможность сохранять изначальные световые характеристики осветительного прибора в течение продолжительного времени. По мере износа люминесцентные лампы требуют все большего напряжения для достижения момента начального разряда. Электронный балласт самостоятельно подстраивается под произошедшие изменения и качество освещения остается прежним.

По сравнению с дроссельным, электронный балласт имет несколько достоинств:

  • он обеспечивает большую экономичность при эксплуатации;
  • дает возможность создать условия для бережного нагревания электродов;
  • обеспечивает плавное включение лампы;
  • использование электронного баланса дает возможность преодолеть такой недостаток люминесцентного освещения, как мерцание;
  • дает возможность применять люминесцентные лампы в условиях холода;
  • увеличивает временные эксплуатационные характеристики;
  • имеет намного меньший вес и размеры.

К недостаткам электронного балласта можно отнести высокие требования, предъявляемые к качеству комплектующих,a также точности выполнения монтажа, усложненность схемы подключения.

Как подключают люминесцентную лампу, у которой сгорели нити накала

Существуют схемы включения, которые позволяют пользоваться светильником даже в тех случаях, когда лампа не горит при использовании умножительного устройства.

Чтобы вернуть такую лампу к жизни достаточно включить в цепь перед стартером включают конденсатор мощностью в 4 Мкф.

Опытные электрики советуют раз в год переворачивать лампу дневного света, меняя местами контакты подключения – такая маленькая хитрость значительно увеличивает эксплуатационный срок люминесцентных ламп.

Такое изменение возобновит свечение, но устранить мерцание по краям оно не сможет.

Существуют схемы для включения люминесцентных ламп, у которых вышли из строя нити накала, которые не только восстанавливают осветительный прибор, но и устраняют такой недостаток, как гудение электромагнитного дросселя.

Как включают люминесцентные лампы без стартера и с перегоревшей нитью накала можно узнать из видеоролика

Схема подключения эпра 4х18 пошагово. Подключение люминесцентных ламп

Лампы дневного света уже достаточно прочно и давно вошли в жизнь большинства людей. Сейчас они становятся все более популярными, ведь постоянно дорожает электроэнергия и пользованием обычными лампами накаливания слишком дорогое удовольствие. Также известно, что компактные энергосберегающие лампы могут приобрести далеко не все, кроме того, большинство современных люстр нуждаются в большом количестве подобных ламп, из-за чего возникают сомнения в их экономичности. Именно поэтому во многих современных квартирах устанавливают люминесцентные дневного света, в чем помогает схема лампы дневного света, на которой можно увидеть принципы ее работы.

Устройство люминесцентных ламп

Для понятия принципов работы лампы дневного света необходимо изучить ее устройство. Она состоит из тонкой цилиндрической колбы из стекла, которая имеет разные формы и диаметры. Люминесцентные лампы бывают нескольких видов:

  • U-образные;
  • прямые;
  • кольцевые;
  • компактные (со специальными цоколями Е14, а также Е27).

Все они имеют разный внешний вид, однако их объединяет наличие электродов, люминесцентного покрытия и закачанного инертного газа с парами ртути внутри. Электроды являются небольшими спиралями, раскаляющимися на небольшой временной промежуток, зажигая, таким образом, газ, благодаря которому тот люминофор, который нанесен на стенки лампы светиться. Известно, что спирали для розжига небольшого размера, поэтому стандартное напряжение, которое есть в домашней электросети, не подходит для них. Поэтому, в этих целях пользуются специализированными приборами под названием дроссели, с их помощью ограничивается сила тока до нужного значения, благодаря их индуктивному сопротивлению. Кроме того, чтобы спираль сумела быстро разогреться, однако не перегореть, схема лампы дневного света показывает еще и стартер, отключающий накал электродов после того, как газ в трубках лампы зажигается.

Принципы работы ламп дневного света

Во время работы на клеммы подается напряжение 220В, проходящее через дроссель прямо на первую спираль данной лампы. Потом она переходит на стартер, срабатывающий, а также пропускающий ток на спираль, которая подключена к сетевой клемме. Это демонстрирует схема подключения ламп дневного света.

Достаточно часто на входных клеммах может устанавливаться конденсатор, который играет роль специализированного сетевого фильтра. Именно благодаря его работе, частица реактивной мощности, вырабатываемой в процессе работы дросселем, гасится. В результате получается, что лампа потребляет меньшее количество электроэнергии.

Проверка ламп дневного света


Если ваша лампа перестала зажигаться, вероятная причина данной неисправности – обрыв вольфрамовой нити, разогревающей газ и заставляющей светиться люминофор. Во время работы вольфрам со временем испаряется, начиная оседать на стенках лампы. В процессе, стеклянная колба на краях имеет темный налет, который предупреждает о возможном выходе из строя данного устройства.

Проверить целостность вольфрамовой нити очень просто, нужно взять обычный тестер, измеряющий сопротивление проводника, после чего надо прикоснуться щупами к выводным концам данной лампы. Если прибор покажет, например, сопротивление, составляющее 9.9 Ом, тогда это будет значить, что нить цела. Если же во время проверки пары электродов тестер покажет полный ноль, данная сторона имеет обрыв, поэтому включение ламп дневного света не совершиться.

Спираль может оборваться из-за того, что на протяжении времени ее использования нить истончается, поэтому постепенно возрастает напряжение, которое сквозь нее проходит. Благодаря тому, что напряжение постоянно возрастает, стартер выходит из строя, что можно увидеть по характерному «морганию» данных ламп. После того, как будут заменены сгоревшие лампы и стартеры, схема будет работать без наладок.

Если же во время включения ламп слышны посторонние звуки либо же ощутим запах гари, тогда необходимо сразу же обесточить светильник, проверив работоспособность его элементов. Может быть, что на самих клеммных соединениях появилась слабина и подключение проводов прогревается. Кроме этого, в случае некачественного изготовления дросселя, может случиться витковое замыкание обмоток, что приведет к выходу ламп из строя.

Как подключить люминесцентную лампу?

Подключение лампы дневного света является очень простым процессом, схема его предназначается для розжига только одной лампы. Чтобы подключить пару ламп дневного света, нужно слегка изменить схему, действуя при этом по единому принципу последовательного соединения элементов.

В подобном случае необходимо пользоваться парой стартеров, по одному на лампу. Во время подключения пары ламп к единому дросселю, необходимо обязательно учитывать его номинальную мощность, указанную на корпусе. К примеру, если его мощность составляет 40 Вт, тогда есть возможность подключить к нему пару одинаковых ламп, максимальная нагрузка которых равна 20 Вт.

Кроме того, бывает подключение лампы дневного света, в котором не используются стартеры. Благодаря применению специализированных электронных балластных устройств, лампа разживается мгновенно, при этом не «моргая» стартерными схемами управления.

Подключение люминесцентной лампы к электронному балласту

Подключать лампу к электронным балластам очень просто, ведь на их корпусе есть детальная информация, а также схематически показано соединение контактов лампы с соответственными клеммами. Однако, чтобы было более понятно, как же подключить лампу дневного света к данному устройству, можно просто тщательно изучить схему.

Главное преимущество данного подключения – отсутствие дополнительных элементов, которые нужны для стартерных схем, управляющих лампами. Кроме того с упрощением схемы значительно увеличивается надежность работы всего светильника, ведь исключаются дополнительные соединения со стартерами, которые достаточно ненадежные устройства.

В основном, все провода, которые нужны для сборки схемы, идут в комплекте с самим электронным балластным устройством, поэтому отпадает необходимость изобретать велосипед, что-нибудь придумывать и нести при этом дополнительные расходы на приобретение недостающих элементов. В этом видео-ролике Вы сможете Более подробно ознакомиться с принципами работы и подключения люминесцентных ламп:

Навигация по записям

Электромагнитный или электронный балласт для люминесцентных ламп нужен для нормальной работы этого источника освещения. Главная задача пускорегулирующего аппарата – преобразовывать постоянное напряжение в переменное. У каждого из них есть свои плюсы и минусы.

Как работает ЛЛ с электромагнитным балластом?

Схема подключения балластника к ЛЛ

Обратите внимание на эту схему подключения. Маркировка LL1 – это балластник. Внутри ламп дневного света находится газовая среда. С увеличением тока напряжение между электродами в лампе постепенно падает, а сопротивление отрицательное. Балласт используется как раз для того, чтобы ограничивать ток, а также создает повышенное кратковременное напряжение зажигания ламп, так как в обычной сети его не хватает. Этот элемент еще называют дросселем.

В подобном устройстве используется стартер – небольшая лампа тлеющего разряда (Е1). В ней находятся два электрода. Один из них – биметаллический (подвижный).

В исходном положении они разомкнуты. Замыкая контакт SA1 и подавая напряжение на схему, ток сначала не проходит через источник освещения, а вот в стартере между двумя электродами появляется тлеющий разряд. Происходит нагрев электродов, и биметаллическая пластина в результате выгибается, замыкая контакт. Проходящий через балласт ток возрастает, нагревая электроды люминесцентной лампы.

Далее электроды в стартере размыкаются. Возникает процесс самоиндукции. Дроссель создает высокий импульс напряжения, который и зажигает ЛЛ. Через нее проходит номинальный ток, но затем он падает в два раза из-за снижения напряжения на дросселе. Электроды стартера остаются в разо

Схема подключения люминесцентного светильника


Люминесцентные светильники (светильники с люминесцентными лампами) являются сложными высокотехнологичными осветительными приборами. Принцип работы ламп дневного света серьезно отличается от стандартных, привычных нам ламп накаливания. Так, например, для работы люминесцентных ламп требуются дополнительные компоненты – балласты (пускорегулирующие аппараты).

Но не стоит этого пугаться. Производители светильников для люминесцентных ламп позаботились о нас и изначально оснастили свои изделия всеми необходимыми компонентами. Более того, светильники с пускорегулирующими аппаратами разного типа имеют одинаковую схему подключения, поэтому, зная её, выполнить монтаж люминесцентного светильника сможет практически каждый.

Кстати, обязательно посмотрите схему устройства таких ламп, а так же способ замены ламп дневного света на светодиодные.

 

Общая схема подключения люминесцентных светильников выглядит следующим образом:


Схема подключения люминесцентных светильников
 

Как видите, схема ничем не отличается от схемы подключения обычных светильников. Для удобства монтажа электропроводки под такие светильники, а также для лучшего понимания общего принципа работы, ниже представлены более подробные схемы, в том числе показывающие порядок соединения проводов в распределительной коробке.

Схема подключения люминесцентных светильников с управлением одноклавишным выключателем:

 

Подключения люминесцентного светильника к одноклавишному выключателю
 

Схема подключения двух групп люминесцентных светильников с управлением двухклавишным выключателем:


Схема подключения люминесцентных светильников к двухклавишному выключателю

 
Обычно знания данной схемы более чем достаточно для правильного подключения люминесцентных светильников к сети освещения.

Если же у вас появились какие-то вопросы, возникли трудности при монтаже светильников с люминесцентными лампами, обязательно пишите в комментариях к статье, постараемся помочь.