Содержание

силикатного, керамического, пустотелого и др.

Одной из основных физико-технических характеристик кирпича является его плотность. Она влияет не только на его объемную массу, но и на степень теплопроводности. Данный параметр отражает содержание массы материала в единице объема.

Плотность керамического кирпича

Производится данный стройматериал из глины с последующим обжигом. Исходя из того, что процент пустот в полнотелом кирпиче менее 13%,  плотность его — не менее 2000 кг/м3, для пустотелого данный показатель равняется 1100-1400 кг/м3.

Полнотелый вариант используют в возведении несущих элементов конструкции, колонн, внутренних и внешних стен, пустотелый — применяют в строительстве облегченных стен, а также в качестве заполнителя каркасов.

Плотность силикатного кирпича

Производится из извести (почти 90%)и песка (10%), масса добавок незначительна и делится на два вида:

  • пустотелый,
  • полнотелый.

Плотность кирпича силикатного полнотелого варьирует в пределах 1800-1950 кг/м3, пустотелого (с содержанием керамзитового песка) – 1100-1600 кг/м3.

К преимуществам данного стройматериала можно отнести дешевизну и возможность получения разных оттенков, к недостаткам — большой вес, низкую прочность и высокую теплопроводность. Поэтому его не используют в возведении несущих стен и перегородок. Также не рекомендуется строить из данного материала печи – при нагревании происходит деформация. Из силикатного кирпича строят перегородки и внутренние стены.

Согласно ГОСТ 379-79 его марка прочности составляет М125-150, морозостойкости – F15-35, теплопроводности – 0,38-0,70 Вт/м°С.

Пустотелый вариант имеет 33%-ую пустотность, которая позволяет снизить вес блока до 2,5 кг, при этом снижается и теплопроводность возводимого здания.

Плотность полнотелого кирпича

Известен данный материал под названиями строительный или рядовой.

Применяется он в возведении внешних и внутренних стен, колонн, столбов, несущих конструкций. Обладает высокой прочностью (до М300) и морозостойкостью (до F75). Плотность кирпича полнотелого – 1600-1900 кг/см3, при этом пористость составляет в среднем 8%, теплопроводность 0,7 Вт/м°С. Стены, выполненные полностью из полнотелого стройматериала, нуждаются в дополнительном утеплении. Красный полнотелый кирпич имеет плотность 2100 кг/см3. Благодаря высокой прочности его используют в строительстве несущих стен, опорных колон, цокольных этажей домов, прочих сильно нагруженных конструкций.

Плотность пустотелого кирпича

Данный материал имеет пустоты до 13-50% от внутреннего объема, что делает его менее прочным. Пустотелый кирпич используют в кладке наружных облегченных стен и перегородок, в качестве заполнителя каркасов зданий. Еще одним вариантом обеспечения легкости стройматериала является поризация.

Поризованный кирпич обладает отличной тепло-и звукоизоляцией. Его плотность сотсавляет 1000-1450 кг/см3, морозостойкость – F15-F50, пористость — 6-8%, теплоизоляция – 0,3-0,5 Вт/мoС, прочность — M50-150.

Плотность облицовочного кирпича

Данный стройматериал также называют фасадным или лицевым. Основное его предназначение – кладка внешний стен с высокими требованиями, предъявляемыми к поверхности. Форма такого кирпича ровная, поверхность глянцевая. Это пустотелый материал с высокими теплоизоляционными и прочностными свойствами. Разные оттенки материала достигаются за счет подбора определенных составов глиняных масс, изменения температур и срока обжига. Плотность кирпича облицовочного – 1300-1450 кг/см3, морозостойкость – F25-75, теплопроводность — 0,37 Вт/м°С, прочность – М75-250, пористость – 6-14%.

Плотность клинкерного кирпича

Используется этот стройматериал в мощении дорог, облицовке фасадов и цоколей домов. Создается он из красной сухой глины путем обжигания при повышенных температурах, что наделяет его такими свойствами как изностойкость и высокая плотность – 1900-2100 кг/см3. При этом пористость материала составляет 5%, теплопроводность 1,16 Вт/мoС, морозостойкость может достигать F100, максимальная прочность – М1000. К недостаткам клинкерных блоков относят высокую стоимость и теплопроводность.

Плотность шамотного кирпича

Данный материал среди прочих выделяется своей способностью выдерживать воздействие повышенных температур – до +1600°С. Его еще называют огнеупорным или печным (производится из огнеупорной глины). Плотность шамотного кирпича составляет 1700-1900 кг/см3, при этом пористость достигает 8%, морозостойкость — F50, прочность — М75-250, теплопроводность — 0,6 Вт/м

oС. Производят данный материал классической, арочной, клиновидной и трапециевидной формы. Цвет варьирует от светло желтого до насыщенного темно-красного.

Плотность кирпича. Плотность популярных видов кирпича

Кирпич – строительный материал, представляющий собой искусственный камень стандартной формы, обладающий прочностью и толерантностью к погодным условиям. Главными характеристиками кирпича являются теплопроводность, плотность, водопоглощение.

Но основной характеристикой, на которой основывается выбор использования того или иного вида кирпича можно назвать его плотность, то есть его объемная масса, которая влияет на теплопроводность.

Плотность кирпича керамического

Кирпич керамический изготавливается из глины с последующим его обжигом. По Госстандарту плотность керамического полнотелого кирпича составляет не менее 2000 кг/м3, плотность пустотелого же керамического кирпича колеблется в пределах 1100–1400 кг/м3. Исходя из этого, полнотелый кирпич обладает большей плотностью, а процентность пустот у него менее 13-и, поэтому его используют в кладке несущих элементов здания, внутренних и внешних стен, колонн.

Пустотелый же кирпич, благодаря своей небольшой плотности, применяют в возведении облегченных наружных стен, для заполнения каркасов, можно сказать в некотором роде заменяет свойства пенопласта.

Плотность силикатного кирпича

Силикатный кирпич изготовляется из извести, песка и воды, правильными пропорциями раствора. По своим характеристикам он, как и керамический, делится на виды – полнотелый и пустотелый.

Плотность полнотелого силикатного кирпича колеблется в пределах 1800-1950 кг/м3. Плотность пустотелого силикатного кирпича зависит от добавления керамзитового песка и составляет 1100-1600 кг/м3.

Этот вид кирпича уступает керамическому только по своей степени водостойкости, поэтому возводить из него несущие стены и перегородки крайне нежелательно. Также он не подходит в строительстве печей, так как при нагревании деформируется тело кирпича.

Плотность кирпича полнотелого

Объемная масса полнотелого кирпича — 1670-1730 кг/м3. Используется он, как отмечалось ранее, для возведения несущих конструкций, наружных стен, колонн из-за своего большого уровня прочности на сжатие, а также из-за своей невосприимчивости к температурным колебаниям, огнеупорности и большого показателя поглощения влаги.

Плотность кирпича одинарного

Кирпич одинарный имеет плотность 1600 кг/м3. Этот вид кирпича в свою очередь делится на высокопрочный, рядовой и облицовочный исходя их своих характеристик, так же его нужно знать где использовать, как и в плотности стекла(в зависимости от плотности разное применение). Высокопрочный используется в кладке несущих стен, рядовой для внутренних работ, возведения перегородок и стен, облицовочный для наружной облицовки зданий.

Рассмотрев все современные виды кирпича можно подвести следующие итоги: при выборе данного строительного материала необходимо руководствоваться в первую очередь пониманием, для какого вида работ подбирается кирпич, чтобы корректно выбрать его главную характеристику – плотность кирпича, а также его вид, что будет гарантией долговечности и прочности конструкции.

Разновидности кирпича

Полнотелый кирпич

Полнотелый кирпич — это обычный рядовой кирпич, который применяется для строительства несущих стен, колонн, столбов, цокольных этажей и иных конструкций с дополнительной нагрузкой. Он обязан иметь высокую прочность и хорошую устойчивость к морозам. По государственному стандарту самой высокой морозостойкостью должен обладать кирпич F50, но современные производители выпускают и F75. В большинстве случаев для строительства используется полнотелый кирпич с маркой прочности 75–300, по морозостойкости 15–50, пористостью 8%, плотностью 1600–1900 кг/м3 и коэффициентом теплопроводности 0,6–0,7 Вт/мС. Из-за последнего показателя внешние стены сооружения требуют дополнительной теплоизоляции. Масса кирпича стандартного размера колеблется от 3,5 до 3,8 кг. В 1 м³ хранится 480 кирпичей.

Пустотелый кирпич

Пустотелый (щелевой) кирпич, в отличие от полнотелого, имеет внутренние пустоты с различными формами (круглыми, овальными, квадратными и прямоугольными), объемами (13% до 50% внутреннего объема) и ориентациями (вертикальными или горизонтальными). За счет этих пустот кирпич становится более легким и теплым, но менее прочным. Также он требует меньше сырья для производства и используется для строительства облегченных конструкций.

Пустотелый (щелевой) кирпич имеет плотность 1000–1450 кг/м3, морозостойкость 10–15 циклов, пористость 6–8%, коэффициент теплопроводности 0,3–0,5 Вт/Мс. По прочности выделяют марки от М75 до М250. Цветовая гамма различна.

Поризация — это второй способ изготовления пустотелого кирпича, при котором из готовой смеси во время обжига исчезают легкосгораемые элементы (торф, опилки, уголь, солома) и образуются маленькие пустоты. Произведенный кирпич не только легок по весу, но и имеет отличные тепло- и звукоизоляционные свойства. Применяется в основном для строительства наружных и внутренних стен. Из-за наличия пяти рядов пустот снижается расход кладочного материала на 20%. Также увеличивается скорость кладки и уменьшается количество растворных швов. Маленькая плотность помогает снизить нагрузку на фундамент. Для соответствия всем требованиям по теплопроводности, достаточно возвести стену в 640 мм из поризованной керамика (для примера, стена из обычного кирпича должна быть не менее 700 мм).

Пустотелый поризованный кирпич имеет плотность 1100–1150 кг/м3, морозостойкость 15–50 циклов, пористость 6–10%, коэффициент теплопроводности 0,25–0,25 Вт/Мс. По прочности выделяют марки от М50 до М150. В основном красных оттенков.

Облицовочный кирпич

Облицовочный кирпич — это кирпич правильной формы с ровной глянцевой поверхностью. Используется для кладки наружных и внутренних стен с высокими требованиями к поверхности. Фасадный кирпич обычно является пустотелым, поэтому обладает высокими теплоизоляционными характеристиками. Разнообразная цветовая гамма получается за счет правильно подобранных глиняных смесей, сроков и температуры обжигания. В связи с этим рекомендуется закупать кирпичи из одной партии сразу же, иначе могут не совпасть цвета.

Высокая цена оправдывается долговечностью нового фасада. При декорировании внутренних стен стоит обращать большое внимание на обрабатывание швов. Размеры обычного фасадного кирпича соответствуют размерам полнотелого — 250×120×65 мм.
Облицовочный кирпич имеет плотность 1300–1450 кг/м3, морозостойкость 25–75 циклов, пористость 6–14%, коэффициент теплопроводности 0,3–0,5 Вт/Мс. По прочности выделяют марки от М75 до М250. Цветовая гамма разнообразна.

Цветной фигурный кирпич

Цветной фигурный кирпич — это вид облицовочного кирпича с особой формой, неровной поверхностью и особенным цветом. Форма камня может иметь криволинейные грани, округленные или срезанные углы и ребра. Рельеф поверхности либо повторяющийся, либо обработан под другой материал (мрамор, антик, дерево и прочее). Именно за эти свойства фигурный кирпич ценится при строительстве таких сложных элементов, как арки и круглые колонны. Также им выполняется декор наружных стен.

Крупноформатный блок

Крупноформатный блок обладает отличными тепло- и звукоизоляционными свойствами, поддерживает благоприятный микроклимат в помещении и повышает производительность труда. При толщине стены в 640 мм тепло сохраняется так же, как и в стене из обычного кирпича в 770 мм. Плотность поризованной керамики на 30% ниже, чем плотность пустотелого кирпича, что позволяет значительно снизить нагрузку на фундамент. Из-за больших размеров блока увеличивается скорость возведения здания, сокращается количество кладочных швов и расход раствора. Успешно применяется в малоэтажном строительстве для сооружения внешних и внутренних перегородок.

Силикатный кирпич

Силикатный кирпич — это кирпич, вырезанный из силикатного автоклавного бетона. При его производстве в состав добавляют 89% извести, 10% песка и незначительное количество различных добавок. Главными достоинствами силикатного кирпича считается низкая цена и разнообразная цветовая гамма. А к недостаткам можно отнести большой вес, маленькую прочность, плохую водостойкость и теплопроводность. Используется в основном для строительства внешних и внутренних стен. По своей универсальности намного уступает керамическому кирпичу.

Силикатный кирпич имеет коэффициент теплопроводности 0,38–0,70 Вт/мС, морозостойкость 15–35 циклов.

По прочности выделяют марки от М125 до М150.

Клинкерный кирпич

Клинкерный кирпич используется для облицовки фасадов, цоколей, покрытия дорог, улиц и дворов. В качестве преимуществ можно отметить долговечность материла, так как инородным телам очень сложно проникнуть в состав материала, высокую плотность и разнообразие расцветок. Но и есть и минусы — это плохая теплопроводность и высокая цена. Производство кирпича включает в себя процессы прессования сухой красной глины и обжига до спекания.

Клинкерный кирпич имеет плотность 1900–2100 кг/м3, морозостойкость 50–100 циклов, пористость до 5%, коэффициент теплопроводности 1,16 Вт/мС. По прочности выделяют марки от М400 до М1000. Цветовая гамма различна.

Плотность кирпича.

Такой показатель как плотность кирпича керамического представляет собой особую физическую величину, что определяется массой кирпича на единицу его объема. Вычисляется средняя плотность отношением массы (в килограммах) ко всему объему (в метрах), сюда также входят и имеющиеся в нем поры и пустоты. Средняя плотность кирпича, как и теплопроводность, бывает обратно пропорциональной пористости, что означает, что плотность способна говорить нам о теплопроводности.

В результате этот показатель применятся в качестве основного (или по-другому марки) теплопроводности стройматериала. Когда вы хотите купить кирпич, на плотность материала следует обращать повышенное внимание.

Плотность кирпича полнотелого 1600 — 1900 килограмм/метр.

Такая плотность гарантирует неплохие теплоизолирующие свойства, по-настоящему качественное сцепление материала с раствором, а кроме того, возможность впитывать влагу при смене погоды. У такого керамического кирпича водопоглощение находится на уровне 8%. Теплопередача же кирпича полнотелого довольно высока, потому если из него возводятся наружные стены, требуется устройство дополнительного утепления. Цена на кирпич полнотелый.

Плотность кирпича пустотелого (щелевого) составляет около 1000 — 1450 килограмм/метр.

Такая плотность говорит о том, что кирпич пустотелый является намного легче керамического кирпича строительного, а кроме того, выделяется своей довольно низкой теплопроводностью. В результате, при помощи дырчатого кирпича можно создать стены гораздо более тонкими и легкими, но при этом на должном уровне сохраняются все теплопоглощающие и звукопоглощающие показатели.

По своей прочности стены из пустотелых кирпичей не уступают возведённым из полнотелого стройматериала. На рынке можно встретить и «сверхэффективный» пустотелый кирпич, обладающий плотностью 1100-1150 килограмм/метр. Купить пустотелый кирпич.

Кирпич глиняный облицовочный имеет плотность от тысячи трёхсот до тысячи четырёхсот пятидесяти килограмм/метр.

Главным образом в его роли выступает пустотелый кирпич, потому теплотехнические свойства его довольно высоки. Облицовочный стройматериал наделен по-настоящему отличной стойкостью к морозам, при этом обладает ещё и поистине выдающимся видом. Выпускается также и необычно сверэффективный лицевой материал, чья плотность составляет 1100 — 1150 килограмм/метр.

Кирпич глазурованный (ангобированный), служащий для облицовки, обладает плотностью 1300 — 1450 килограмм/метр.

Получают такой кирпич, нанося на обожженную глину глазурь, после чего снова производится обжиг, но на этот раз при более низкой температуре. В результате, образуется стекловидный непроницаемый для воды слой, заметно повышающий сцепление кирпича с остальной массой и увеличивает морозостойкость.

Кирпич клинкерный обладает плотностью на уровне 1900 — 2100 килограмм/метр.

Подобная плотность достигается особенным видом спекания, по результатам которого исключается возможность появление всяческих пустот и включений, благодаря чему гарантирована эффективнейшая долговечность и прочность. Клинкерный кирпич наделен поистине выдающимися характеристиками. Морозоустойчивость такого кирпича является одной из наиболее высоких, число пор низкое (в результате исключается возможность начала разрушения при повышенной влажности), а его износоустойчивость вас поразит. Клинкерный кирпич практически не подвергается вредным воздействиям кислот, солей, щелочей и бывает в состоянии выдерживать даже очень большие давления.

Плотность кирпича шамотного от 1700 до 1900 килограмм/метр.

В промышленности, а точнее, там, где температуры доходят до 1500 градусов Цельсия (а то и до тысячи восьмисот), такой огнеупорный кирпич не имеет конкурентов и однозначно занимает лидирующую позицию, к примеру, при постройке металлургических комбинатов (он становится безусловным фаворитом). Чтобы кирпичи огнеупорные при обжиге не давали трещин, их внутренний состав оснащают шамотом до 70-ти % (это огнеупорная обожженная глина).

Плотность кирпича разных видов

Залогом прочности кирпича является высокая плотность. Благодаря ей кирпичные стены не разрушаются под воздействием осадков, резких перепадов температур и механических повреждений. Именно плотность строительного материала определяет теплопроводность, итоговую массу и прочность здания.

Плотность — главная технологическая характеристика кирпича, влияющая на результирующую объёмную массу материала во всём здании, а также определяющая показатель теплопроводности стен.

Любой вид кирпича имеет два значения плотности:

  • Истинная плотность представляет собой массовую долю твёрдого вещества. Для её определения проводят лабораторные испытания, в ходе которых кирпич измельчают, смешивают с водой и нагревают. Как правило, данный показатель используется технологами на заводах по производству.
  • Средняя плотность представляет собой отношение массы одного кирпича (в килограммах) к его объёму (в кубических метрах).

Чем выше величина средней плотности, тем больше его способность проводить тепло. Таким образом, второй из указанных показателей является основой для выбора той или иной разновидности кирпича.

Глиняный кирпич

Традиционный кирпич красного цвета производят путём обжигания подготовленной глиняной смеси в промышленных печах. Плотность зависит от разновидности:

  1. Полнотелый глиняный кирпич представляет собой брусок обожжённой глины правильной прямоугольной формы. Такой материал очень долговечен и хорошо проводит тепло, плотность составляет 2000 кг/м3. Надёжный полнотелый кирпич весьма дорог в производстве, поэтому используется только для строительства несущих конструкций.
  2. Пустотелый кирпич представляет собой бруски с отверстиями внутри, которые уменьшают вес и стоимость, при этом падает и его прочность. Средняя плотность керамических кирпичей с пустотами не превышает 1400 кг/м3. Таким образом, материал подходит для создания перегородок, облегчённых стен и заполнения каркаса зданий. Достоинствами пустотелого кирпича являются его лёгкость, а также высокий уровень тепло- и звукоизоляции.

Силикатный кирпич

Строительный материал, созданный из смеси извести и кварцевого песка, является более хрупким и тяжёлым аналогом глиняного кирпича. Благодаря добавленным в состав силикатного кирпича пластификаторам и высокому содержанию песка, готовые стены подвержены воздействию влаги и перепадов температур. Плотность полнотелого силикатного кирпича составляет до 1950 кг/м3, силикатных кирпичей с пустотами — до 1600 кг/м3.

Основная сфера применения — возведение внутренних перегородок и заполнение пустых участков в монолитно-бетонных конструкциях. Более подробно про силикатный кирпич.

Клинкерный кирпич

Стойкий, огнеупорный строительный и облицовочный — изготавливают из смеси шамота (огнеупорной глины), полевого шпата и природных пластификаторов. Сырые клинкерные кирпичи обжигают при температуре 1200 градусов, что позволяет получить исключительно износостойкий материал с показателем пористости не более 5%.

Совет! Клинкерным кирпичом можно отделывать не только трубу дымохода, но и возводить печи.

Подходит для интенсивной эксплуатации, поэтому его используют для мощения дорог, постройки цокольных этажей зданий, облицовки жилых и промышленных построек. Плотность составляет 1900 – 2100 кг/м3, поэтому клинкерный кирпич имеет высокий показатель теплопроводности, а готовые стены получаются тяжёлыми.

Шамотный кирпич

Различные формы шамотного кирпича

Данный вид кирпича получают из каолина — огнеупорной глины, путём обжига до состояния полной потери пластичности и содержащейся в составе влаги. Готовые кирпичи выдерживают воздействие температуры до 1600 градусов, поэтому их применяют для оформления печей, каминов и дымоходов.

В зависимости от назначения, шамотный кирпич изготавливается в диапазоне плотности 1700-1900 кг/м3. Благодаря частому использованию материала для отделки декоративных элементов, в продаже существуют кирпичи арочной, прямоугольной, клиновидной и трапециевидной формы.

Облицовочный кирпич

Различные оттенки облицовочного кирпича

Широко применяется для декоративного оформления зданий, а также повышения их теплоизоляционных свойств. Как правило, облицовочный кирпич изготавливают пустотелым в целях уменьшения веса. Материал должен быть морозостойким, а также ровным и гладким, на рынке представлены разнообразные формы и размеры такой облицовки.

Совет! На современном рынке широко представлены глазированные облицовочные кирпичи, позволяющие создать глянцевый фасад.

Благодаря различным технологиям обжига и разнообразию глиняных составов, изделия представлены во множестве различных оттенков. Готовый облицовочный кирпич имеет плотность 1300-1450 кг/м3, пористость достигает 14%, что позволяет обеспечить прочный теплоизоляционный слой.

Рядовой кирпич

Усовершенствованная версия глиняного кирпича с пористой внешней поверхностью, на которую удобно наносить отделочные составы, например — штукатурные смеси. В зависимости от назначения, выделяют три основных размера:

  1. Одинарный кирпич габаритами 250х120х65 мм используется для возведения внутренних перегородок, цокольных помещений и фундаментов.
  2. Полуторная модификация имеет размеры 250х120х88 мм, и применяется для строительства несущих стен в домах небольшой этажности.
  3. Двойной кирпич имеет размеры 250х120х138 мм, и подходит для создания несущих стен и перекрытий с большим уровнем нагрузки.

Совет! Использование габаритного кирпича поможет уменьшить количество швов, что повысит теплоизоляционные свойства готовой стены.

Независимо от габаритов, плотность материала составляет 1600 кг/м3, при этом пустотелый рядовой кирпич может иметь 15-45% пустот. Вес таких кирпичей колеблется от 4 кг (полнотелые модификации) до 2,5 кг (пустотелый рядовой кирпич).

Трепельный кирпич

Данная разновидность рядового кирпича применяется для возведения зданий высокой этажности. Высокопрочный материал, изготовленный из смеси кварцевого песка, полевого шпата, минералов и органических пластификаторов.

Габариты трепельного кирпича 250х120х140 мм, при этом плотность изделия составляет 1400-2000 кг/м3. Высокие водопоглощающие свойства предполагают обязательную обработку готовых стен гидроизоляцией.

Поделиться

Твитнуть

Запинить

Нравится

Класс

WhatsApp

Viber

Телеграмка

Плотность кирпича: силикатного, полнотелого, керамического

Для определения теплопроводности и прочности кирпичной кладки следует знать плотность кирпича. Такая физико-техническая характеристика отражает массу материала в единице объема. Показатель является переменным из-за гигроскопичной поверхности изделия, поэтому для расчетов используют значение сухой массы. Плотность строительного материала подбирают исходя из предназначения возводимого сооружения.

Факторы, влияющие на плотность

Существует несколько причин, определяющих характеристику изделия:

  • Влага. Ее основной объем вбирается материалом на этапе кладки. Степень влажности определяется паровой проницаемостью. Легче пропускается воздух тем строительным изделием, в котором влага не задерживается. Для строительства подвальных помещений используют удерживающий влагу кирпич.
  • Наличие трещин. Они обязательно присутствуют в материалах из глины. При этом современные разработки смесей позволяют их избежать, увеличивая плотность.
  • Виды исходного материала. Сырье, из которого изготавливается изделие (глина, песок), отличается по массе на единицу объема из-за места добычи.
Вернуться к оглавлению

Средняя плотность

Такую характеристику применяют для определения пористости и теплопроводности изделия. Чем меньше его плотность, тем ниже уровень теплопроводности. Индивидуальный показатель рассчитывается в лабораторных условиях. Средняя плотность определяется по формуле: p=m/v, где m — масса, v — объем, единицы ее измерения — кг/м3. Этапы расчета такой характеристики включают:

Для определения параметра готовый материал нужно взвесить.
  1. В сушильном шкафу выдержать кирпич при температуре чуть выше 100 ̊С.
  2. Определить объем материала, умножив параметры высоты, длины и ширины.
  3. Очищенный материал взвесить на весах, которые утверждены стандартом.
  4. Рассчитать величину, подставив значения в формулу. Рекомендуется проводить измерения сразу нескольких экземпляров для получения достоверного среднего арифметического индекса.
Вернуться к оглавлению

Виды кирпича и их плотность

Физико-технические характеристики внешне похожих материалов определяются свойствами сырья, из которого они изготовлены. Разные виды строительных камней отличаются по стоимости производства и устойчивости к воздействию внешней среды. Выбор материалов широк, но прежде всего необходимо сопоставить требования к будущей конструкции и надежность кирпича.

Вернуться к оглавлению

Плотность керамического кирпича

На значение этой величины влияет место производства материала.

Производится из глины. Керамический кирпич отличается по значению массы в зависимости от места изготовления. Применяется для несущих, внешних и внутренних стен. Вес керамического облицовочного экземпляра будет больше за счет укрепления поверхности, его быстро обжигают при высокой температуре. В результате изменяется уровень паропроницаемости, поэтому в жилых домах из таких материалов должна быть хорошая вентиляция. Плотность керамического кирпича:

  • пустотелого — до 1400 кг/м3;
  • полнотелого — до 2000 кг/м3.
Вернуться к оглавлению

Клинкерный

Разновидность керамического вида. Производят из красной глины, обжигая ее при высоких температурах. Применяется в строительстве дорог, отделке цоколей и фасадов. Высокий уровень устойчивости к перепадам температур и воздействию повышенной влажности. Плотность достигает значения 2100 кг/м3, из-за чего такому материалу характерен большой показатель теплопроводности. Он относительно дорогой.

Вернуться к оглавлению

Особенности шамотного кирпича

Его делают из огнестойкой глины. Изготовляют материалы разного цвета и формы. Отличительное свойство — устойчивость к воздействию температуры до 1600 °C. Незаменим для строительства огнеупорных конструкций: печек, каминов. Огнеупорный камень применяется на производстве. Часто используют как элемент декора. Плотность шамотного кирпича достигает значения 1900 кг/м3.

Вернуться к оглавлению

Плотность силикатного кирпича

Такой материал хорошо проводит тепло.

В состав такого изделия входит песок, известь, небольшое количество добавок. Он производится под давлением автоклавного пресса. Марка прочности варьируется от М 125 до М 150, что свидетельствует о низком показателе. Он обладает высокой теплопроводностью, поэтому не рекомендуется такое изделие для строительства несущих конструкций или внешних стен. Его применяют для возведения внутренних стен и перегородок, он относительно доступный. Обыкновенный полнотелый материал имеет плотность до 1950 кг/м3, пустотелый — 1600 кг/м3.

Силикатный кирпич уступает керамическому по водостойкости.

Вернуться к оглавлению

Плотность полнотелого кирпича

Производится путем обжигания глины. Глазурованный частично с целью обеспечения паропроницаемости. Характерна большая прочность и устойчивость к воздействию низких температур. Полнотелый кирпич обладает высокой теплопроводностью. Используют для кладки стен, опорных сооружений. Плотность обыкновенного полнотелого кирпича достигает 1600 кг/м3, значение показателя для красного кирпича составляет 2100 кг/м3.

Вернуться к оглавлению

Пустотелый

Почти половина материала составляет пустоты.

Пустоты могут составлять половину объема изделия, из-за чего значительно уменьшается его объемный вес. Для материала характерен невысокий уровень прочности и небольшая теплопроводность. Плотность кладки из пустотелого кирпича — 1450 кг/м3. Его применяют для строительства легких внешних стен и перегородок. Часто используется при возведении жилых домов, поскольку нет необходимости в добавочном утеплении.

Вернуться к оглавлению

Облицовочный

Лицевой камень применяют для внешней отделки фасадов. Кирпич пустотелый с высоким уровнем звукоизоляции. Из-за гладкой блестящей поверхности похож на плитку. Яркий эффект обеспечивает наличие разнообразной палитры цветов, которые получаются в результате смешивания разной глины и изменения условий обжига. Обладает небольшой теплопроводностью и влагостойкостью. Плотность кирпича составляет до 1450 кг/м3.

Вернуться к оглавлению

Заключение

Тип кирпича подбирается под требования к возводимой конструкции. На каждом этапе строительства учитывают технические характеристики материалов. Показатель плотности не должен быть большой, если речь идет об утеплении сооружения. Но показатель нужен высокий, когда важно обеспечить прочность здания или повысить уровень огнеупорности. Важно учитывать метод кладки и распределение нагрузки.

Вес и плотность кирпича, технические характеристики и преимущества

При ведении кладочных работ важно знать, сколько весит кирпич и какова его плотность и структура. Эти параметры напрямую влияют на прочностные и изоляционные качества, в свою очередь учитываемые при расчете нагрузок и теплового сопротивления возводимых конструкций. Усредненные величины для каждого типа стандартные, но точное значение зависит от завода-изготовителя и указывается в сертификате к продукции.

Вес разных видов

Плотность разделяется на истинную и среднюю, первая определяется опытным путем и не важна для потребителей. Второй показатель характеризует отношение массы одного изделия к его объему и зависит от сырья, доли пустот и щелей и поризованности. Обе величины измеряются в кг/м3. Значение средней плотности и вес одного кирпича у разных марок будут отличаться, минимум наблюдается у теплой высокоэффективной керамики, максимум – у силикатного и гиперпрессованного искусственного камня.

Элементы, изготавливаемые из глины с последующим обжигом, разделяются на сплошные и пустотелые, вторая группа может иметь как сквозные отверстия разной формы, так и скрытые пустоты и поры. Утвержденная стандартом плотность полнотелого красного кирпича достигает 2000 кг/м3, но диапазон у большинства производителей варьируется в пределах 1600-1900. Наружные стены нуждаются в дополнительном утеплении. Вес у полнотелых блоков форматом 1НФ достигает 3,45-3,8 кг.

Пустотелые типы имеют плотность от 1200 до 1500 кг/м3, с учетом доли щелей до 37 % стандартный 1НФ – не более 2,9 кг. Удельный вес некоторых марок достигает 1700, но это исключение. Средняя плотность керамического камня облегченного вида (поризованные теплоэффективные) составляет 1100-1150 кг/м3, продвинутые производители опустили этот показатель до 800.

Шамотные и огнеупорные имеют удельный вес в пределах 1700-1800 кг/м3. Являются полнотелыми и оказывают существенную нагрузку на основание, их формат и масса могут отличаться от номинальных. Помимо вытянутых прямоугольных блоков они включают арочные, клино- и трапециевидные. Плотная структура позволяет шамоту выдерживать нагрев до 1600 °C, рекомендуют приобрести для кладки дымоходов, топочных конструкций и банных печей.

Силикат имеет самый большой удельный вес (1800-1900 кг/м3 у полнотелых). Этот обусловлено его составом (продукты дробления известняка и песок) и низкой пористостью. Масса сплошного 1НФ равняется 4,1 кг, у некоторых марок она достигает 5 (вес красного кирпича с тем же форматом не превышает 4). В отличие от керамических типов водонепроницаемость и теплоемкость не улучшаются с повышением прочности. Пустотелые крупнощелевые весят меньше, точная масса зависит от размера и числа отверстий.

На вес облицовочного блока влияют материал основы и доля пустот. К отличительным особенностям относят наличие однородной и плотной стенки толщиной не менее 2 см и повышенную стойкость к внешним воздействиям. Эта группа представлена изделиями 0.7НФ, 1НФ утолщенного и нестандартного формата с гладкой, рутсрированной или глазурованной поверхностью. Особенностью последних является наличие стекловидного и непроницаемого для влаги декоративного слоя, эти варианты обходятся дороже. В отличие от рядовых элементов облицовочные чаще имеют нестандартных и утонченный формат, некоторые типы практически неотличимы от плитки.

Кирпич плотностью 1450 кг/м3 с размером 0.7Нф весит около 1,6 кг и оказывает минимальную нагрузку на фундамент и рабочие поверхности.

К отдельной группе относят клинкер, получаемый при медленном высокотемпературном обжиге спрессованных составов из тугоплавкой глины. При плотности в 1900-2100 кг/м3 изделия на его основе весят не более 3,3 кг за счет большой доли пустот и отклонений от стандартных размеров. Клинкер – элитная облицовочная разновидность, его рекомендуют приобрести при особых требованиях к долговечности фасадов, ограждений, тротуаров и других конструкций, включая часто эксплуатируемые. Обладая довольно высоким коэффициентом теплопроводности, хорошо поглощает шум из-за наличия внутренних пустот. Преимущества высокоплотной структуры – сверхнизкое водопоглощение, хорошая механическая прочность и морозостойкость.

Учитываемым при расчетах нагрузок на фундамент показателем является удельный вес кладки, определяемый путем сложения массы используемых изделий и соединительного раствора, расходуемого на 1 м3. Стандартный диапазон варьируется в пределах 1400-1900 кг/м3 (для сравнения – у бутовых 2400-2600), отличия наблюдаются только у облегченных вариантов, собранных из поризованного камня. При исключении влияния раствора находится масса элементов в чистом виде. Знание веса поддона требуется при расчете стоимости транспортировки.

Влияние плотности на остальные характеристики кирпича

Взаимосвязь между основными рабочими параметрами отражена в таблице:

ТипПусто-телость, %Средняя плотность, кг/м3Вес 1НФВодонепро-ницаемость, %Коэффи-циент теплопро-водности Вт/м·°СМарка прочности/ Морозо-стойкость
Красный керамический полнотелый01600-19003,5-3,880,5-0,8М75-М300/ до F50
Пустотелый керамическийДо 371000-15002,3-2,96-80,3-0,5М75-М250/ F15-F50
Поризованная керамикаДо 50800-1100Выпускается в формате 2,1 – до 3,9 кг6,5-120,16-0,22М125-М175/ F35
Силикат01800-20004,18-140,38-0,7М125-М200/ F15-F35
КлинкерДо 301900-21001,6-3,3Не более 61,15От М300 /от F100

Значение данного показателя напрямую влияет на механическую прочность, водопоглощение, коэффициент теплопроводности и способность к шумозащите, косвенным образом от него зависит огнеупорность. Полнотелые кирпичи с плотностью выше 1600 кг/м3 выдерживает максимальные нагрузки на сжатие, их рекомендуют купить для возведения несущих вертикальных стен, колонн, печей. Щелевые и поризованные блоки используются при строительстве облегченных кладок. Обе разновидности подходят для несущих конструкций, выдерживаемая нагрузка и допустимая этажность у них будет разной.

Пустотелый тип однозначно выигрывает в тепло- и звукоизоляции, его применение позволяет снизить вес и толщину при равном энергосбережении. Именно по этой причине большинство современных строительных технологий направлено на выпуск облегченных марок. Плотность высокоэффективного пустотелого красного кирпича не превышает 1150 кг/м3 при коэффициенте теплопроводности не выше 0,22 Вт/м·°С. Лучшие способности к шумопоглощению наблюдаются у этих же блоков и у облицовочных.

Тип фактуры поверхности на вес практически не влияет, главным фактором является доля пустот. Требования к форме и размеру сквозных отверстий регламентированы строительными стандартами, существует прямая связь между соотношением влаги и посторонних испаряемых веществ в сырьевом растворе и итоговой плотностью. В случае керамического кирпича она особенно заметна, высокоэффективные блоки получают путем закладки в смеси выгораемых в ходе обжига опилок. Еще один яркий пример – клинкер, при минимальной доле воды в составе изделия на его основе практически не поглощают ее после температурной обработки.

керамика, шамот, красный, коэффициент, коэффициент изоляции воздушного шума кирпичной кладки, дерева и пеноблока, видео инструкция по монтажу своими руками, фото и цена. Теплопроводность силикатного кирпича. Плотность, вода

Современный строительный рынок все больше пополняется новыми материалами, которые радуют потребителя качественным исполнением, улучшенными свойствами, обновленными характеристиками. Их преимущества перед традиционными неоспоримы благодаря преобладанию сразу нескольких характеристик по многим значимым параметрам.

С появлением новых технологий в строительной отрасли нельзя забывать и о хорошо зарекомендовавших себя строительных материалах. Например, кирпичные материалы во все времена были востребованными, и никакие факторы не могли повлиять на уровень их популярности. Из них большинство построек было возведено, так как они обладают способностью противостоять различным климатическим условиям.

С давних времен и до наших дней это строительное изделие выдерживает большие нагрузки, оно проходит долгую проверку временем. Прочность, долговечность, экологические свойства, водостойкость, морозостойкость, звуко- и теплоизоляционные характеристики относят его к лучшим строительным материалам.

Что такое теплопроводность?

Тем не менее, одним из мощных свойств кирпича является теплопроводность (Т) — способность пропускать тепло через себя, несмотря на разные температуры. Он показывает, насколько теплая кирпичная стена, насколько этот материал способен проводить и передавать тепло.

Керамические изделия используются при возведении несущих стен, перегородок между комнатами, облицовки — дают возможность придать дому и прилегающему забору аккуратный и достойный вид, презентабельный вид, создать неповторимый стиль, а также увеличить тепло в доме. .При выборе строительных материалов для возведения полов, стен и полов это самые важные факторы.


На вопрос: «Как определить значение тепловых характеристик?», Отвечают специалисты с богатым и многолетним опытом работы. Они авторитетно настаивают на том, что многочисленные виды кладки детально изучены в лабораторных условиях. В соответствии с полученными данными устанавливается определенный коэффициент теплопроводности кирпича.

Индикаторы указывают на разные температуры, так как тепловая энергия имеет способность постепенно переходить из горячего состояния в холодное. При достаточно высоких температурах этот процесс можно увидеть открыто. Высокая интенсивность теплопередачи за счет изменения температуры.

Коротко о законе Фурье

Для более глубокого изучения теплопроводности и теплового потока с учетом площади поперечного сечения ученые Фурье вывели специальный закон, показывающий, как существующие материалы отлично сохраняют тепло и улучшают их изоляцию.

Величина степени теплоотдачи обозначается специальным коэффициентом (QD) — λ, а тепловая энергия измеряется в ваттах. Последний снижает свой уровень при прохождении расстояния 1 мм с перепадом температур в 1 градус. В результате меньшая потеря энергии более выгодна, а строительный материал с небольшой КТ относится к более теплым.

Параметр теплопроводности во многом обусловлен плотностью, с уменьшением его уровня уменьшается и тепловой показатель.То есть плотные тяжелые образцы имеют более высокое значение Т, а меньший вес и меньшая прочность указывают на маленькую Т. Для увеличения Т они влияют на состав материала, его плотность, соблюдение способа изготовления, влагостойкость.

Теплопроводность кирпича разных типов

По справочным данным теплопроводность силикатного кирпича (сухой) составляет 0,8 Вт / м * К, Т кладки из него — 0,7 Вт / м * К. Значение этого параметра у керамического кирпича вверху, Т кладки из него — 0. .9 Вт / м * К. Следовательно, тепловой показатель передачи энергии у силиката меньше, чем у керамики, то есть первый дольше сохраняет тепло, поэтому его применяют для отделочных работ на фасадах зданий за счет лучшего обеспечения теплоизоляционных характеристик. .


Теплопроводность пустотелого кирпича составляет 0,3-0,4 Вт / м * К, то есть теплопотери увеличиваются почти вдвое. В результате такие постройки требуют дополнительного утепления.

Величина облицовки кирпича по этой характеристике зависит от вида, так как он делится на керамический, силикатный и клинкерный.Самый высокий уровень Т у клинкера, самый низкий — у керамики. Силикат намного холоднее керамики, и наиболее популярным в этом плане является гиперпрессованный. Чем плотнее и прочнее строительный материал, тем выше уровень его Т.

.

Красный кирпич имеет коэффициент теплопроводности в зависимости от технологии его производства. За счет достаточной плотности и пустотности от 40% до 50% Т составляет 0,2 — 0,3 Вт / м * К. При таком значении толщина стен может быть значительно меньше, чем в здании из силиката.


Уровень тепловых характеристик шамотного кирпича очень важен из всех остальных показателей. Самое главное учитывать этот фактор при строительстве печей, а также каминов. Умение быстро отдавать тепло просто незаменимо, если вы хотите иметь такие виды отопления в своем доме.

Как известно, степень передачи тепловой энергии формируется такими различными качественными свойствами: вес, объем, влажность, пористость, плотность, влажность, виды добавок.Большое количество пор, содержащих воздух, создает низкий уровень теплопроводности. Для обеспечения тепла в жилище следует выбирать стройматериалы с низким значением СТ, так как это напрямую влияет на выбор технологии утепления стен и системы отопления.

Итак, каждый тип кирпича имеет свой коэффициент теплопроводности (КТ), измеряемый в Вт / м ° C или в Вт / м * К. Для силикатных, керамических, полнотелых и пустотелых данные приведены выше. Облицовочная (лицевая) керамика имеет довольно низкий уровень — 0.3 — 0,5, а гиперпрессия, наоборот, — 1,1. Красная пустота — всего 0,3 — 0,5, «сверхэффективная» — от 0,25 до 0,26, полнотелая — от 0,6 до 0,7, глина — 0,56.

Кирпичные изделия разных производителей имеют разные физические характеристики. Поэтому строительные работы необходимо вести с учетом значений указанных коэффициентов, указанных в документации от производителя. Перед началом работ следует изучить всю сопутствующую информацию, прислушаться к рекомендациям опытных профессиональных строителей и только после этого быть готовым приступить к намеченному строительству.

Учитывается теплопроводность кирпича различных типов (силикатный, керамический, облицовочный, огнеупорный). Произведено сравнение кирпича по теплопроводности; Коэффициенты теплопроводности огнеупорного кирпича представлены при разных температурах — от 20 до 1700 ° С.

Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпич с меньшей плотностью имеет меньшую теплопроводность, чем с высокой.Например, пенобетонный, диатомовый и изоляционный кирпич плотностью 500 … 600 кг / м 3 имеют низкое значение теплопроводности, которое находится в диапазоне 0,1 … 0,14 Вт / (м · град). .

Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Величина теплопроводности кирпича этих типов может существенно различаться.

Кирпич керамический. Изготовлен из высококачественного красного цвета, составляющего около 85-95% его состава, а также других компонентов.Этот кирпич изготавливается методом формования, сушки и обжига при температуре около 1000 градусов по Цельсию. Теплопроводность керамического кирпича различной плотности составляет 0,4 … 0,9 Вт / (м · град).

Сфера применения керамического кирпича делится на рядовой строительный, огнеупорный и облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность, однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича составляет 0,37 … 0,93 Вт / (м · град).

Кирпич силикатный. Изготовлен из очищенного песка и отличается от керамики по составу, цвету и теплопроводности. Теплопроводность силикатного кирпича несколько выше и составляет от 0,4 до 1,3 Вт / (м · град).

Сличение кирпичей по теплопроводности при 15 … 25 ° С
Кирпич Плотность, кг / м 3 Теплопроводность, Вт / (м · град)
Пеношамотный 600 0,1
Диатомит 550 0,12
Изоляция 500 0,14
Кремнезем 0,15
Бурли 700… 1300 0,27
Облицовка 1200… 1800 0,37… 0,93
Силикатная щель 0,4
Керамика красная пористая 1500 0,44
Керамический полый 0,44… 0,47
Силикат 1000… 2200 0,5… 1,3
Шлак 1100… 1400 0,6
Керамика красная плотная 1400… 2600 0,67… 0,8
Силикат из тех.по voids 0,7
Клинкер полнотелый 1800… 2200 0,8… 1,6
Шамот 1850 0,85
Динас 1900… 2200 0,9… 0,94
Хромит 3000… 4200 1,21… 1,29
Хромомагнезит 2750… 2850 1,95
Хром-магнезит жаропрочный 2700… 3800 4,1
Магнезит 2600… 3200 4,7… 5,1
Карборунд 1000… 1300 11… 18

Теплопроводность кирпича зависит также от его структуры и формы:

  • пустотелый кирпич — изготавливается с пустотами, сквозными или глухими и имеет более низкую теплопроводность по сравнению с сплошным изделием.Коэффициент теплопроводности пустотелого кирпича составляет от 0,4 до 0,7 Вт / (м · град).
  • полнотелый — используется, как правило, при основном возведении несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич проводят тепло лучше пустотелого в 1,5-2 раза.

Печной или огнеупорный кирпич. Предназначен для использования в агрессивных средах, применяется для закладки печей, каминов или теплоизоляции помещений, находящихся под воздействием высоких температур.Огнеупорный кирпич обладает хорошей термостойкостью и может использоваться при температуре до 1700 ° С.

Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значений 6,5 … 7,5 Вт / (м · град). Более низкая теплопроводность по сравнению с различными пенобетонными и диатомитовыми кирпичами. Теплопроводность такого кирпича при максимальной температуре применения (850 … 1300 ° С) составляет всего 0,25 … 0,3 Вт / (м · град). Следует отметить, что коэффициент теплопроводности шамотного кирпича, который традиционно используется для кладки печей, выше и равен 1.44 Вт / (м · град) при 1000 ° C.

Теплопроводность огнеупорного кирпича в зависимости от температуры
Кирпич Плотность, кг / м 3 Теплопроводность, Вт / (м · град) при температуре, ° С
20 100 300 500 800 1000 1700
Диатомит 550 0,12 0,14 0,18 0,23 0,3
Динас 1900 0,91 0,97 1,11 1,25 1,46 1,6 2,1
Магнезит 2700 5,1 5,15 5,45 5,75 6,2 6,5 7,55
Хромит 3000 1,21 1,24 1,31 1,38 1,48 1,55 1,8
Пеношамотный 600 0,1 0,11 0,14 0,17 0,22 0,25
Шамот 1850 0,85 0,9 1,02 1,14 1,32 1,44

Источники:

  1. Физические величины.Справочник. А. П. Бабичев, Н. А. Бабушкина и другие; автор: ed. ЯВЛЯЕТСЯ. Григорьева — М .: Энергоатомиздат, 1991 — 1232 с.
  2. Таблицы физических величин. Справочник. Эд. Акад. И.К. Кикоин. М .: Атомиздат, 1976. — 1008 с. Строительная физика, 1969 — 142 с.
  3. Духовки промышленные. Справочное руководство по расчетам и проектированию. 2-е издание, дополненное и переработанное, Казанцев Э. И. М .: Металлургия, 1975 — 368 с.
  4. Х. Вонг. Основные формулы и данные по теплопередаче для инженеров.Справочник. М:. Атомиздат 1979 — 212 с.

Кирпич в строительстве используется везде, как для крупногабаритных построек, так и для частных построек. Такая популярность оправдана, ведь этот строительный материал имеет множество параметров, в том числе прочность, долговечность и относительно хорошую звуко- и теплоизоляцию. Основным конкурентом в частном строительстве здесь является древесина, поэтому сравним теплопроводность кирпича и дерева.

Для начала разберемся, что такое кирпич, какие бывают его разновидности, что, где и когда используют.После этого вам будет представлен обзор деревянных строительных материалов с описанием их качеств и недостатков. Ну и в заключение делаем вывод, какой материал лучше и как его правильно применять в строительстве.

Конечно же, мы уделим много внимания теплопроводности, и опишем этот параметр для всех рассматриваемых здесь видов стройматериалов. Сравнение даст вам возможность сделать правильный выбор.

Виды кирпича

Клинкер

Эта разновидность имеет самую высокую теплопроводность.Именно поэтому, несмотря на прекрасные качественные показатели прочности, при возведении стен этот материал используется редко. Его чаще всего используют для мощения дорог и устройства полов в производственных помещениях.

Коэффициент (λ) равен значению — 08 — 09 Вт / (м * К). Это очень большой показатель, который делает бессмысленным использование клинкера для строительства утепленных конструкций. Для этих целей есть другие строительные материалы.

Силикат

Далее идет строительный материал из силиката.Разновидностей этого строительного продукта много, и уровень теплопотерь здесь напрямую зависит от веса агрегата. То есть, чем меньше весит силикатный брикет, тем меньше потерь тепла будет у построенного из него здания.

Таким образом, твердый брикет, например, двойной силикатный кирпич М 150, будет значительно терять тепло (λ — 0,7 — 0,8). Но уже щелевой силикат будет иметь коэффициент равный значению — 0,4, что почти вдвое эффективнее.

Однако силикат, будучи дешевым продуктом, требует качественной дополнительной изоляции.Да и по показателям прочности и долговечности он довольно посредственный.

Керамика

Сюда входят:

  • Полнотелый
  • Пустотелый.
  • Огнеупор.
  • Щелевой.
  • Теплая керамика.

Все эти материалы используются при кладке. У каждого из них своя ценность сохранения и теплопотерь. Логично, что у полнотелого материала самый слабый показатель сохранения тепла — 05-0.8 Вт / (м * К). Это связано с его весом.

Отдельно стоят огнеупорные керамические строительные материалы. Например, теплопроводность шамотного кирпича принимает значение 06-08 Вт / (м * К). Этот индикатор практически идентичен индикатору.

Это совпадение неудивительно, ведь шамот — это брусок из обожженной глины с улучшенными огнеупорными качествами.

Прочие виды

Следует отметить, что теплопроводность керамического кирпича самая низкая среди всех видов строительных материалов такого типа.Понятно, что дело в том, что не вся керамика не теплопроводна, как было отмечено выше, многое зависит от веса строительного брикета.

Итак, наиболее токонепроводящей является керамика, а теплая керамика мы отмечали ранее. Пористый брус, изготовленный таким образом, что помимо имеющихся трещин, он также имеет особую структуру, уменьшающую собственный вес. Этот фактор дает возможность экономить тепло.

Или, может быть, дерево

Дерево — тоже вариант.

Преимущества деревянных конструкций

Как уже упоминалось в начале, мы сравниваем теплопроводность кирпичной кладки и деревянных конструкций.Естественно, у нас ничего не получится без обзора свойств самого этого дерева. Сравниваем не только теплопроводность, но и другие важные характеристики.

Итак, начнем с показателя сохранения тепла. Деревянные конструкции здесь лучше многих кирпичных аналогов. Дерево в силу своих особенностей имеет гораздо меньший коэффициент λ.

Но обо всем по порядку. Сравнивая теплопроводность дерева и кирпича, нужно понимать, что древесина бывает разной.

Вот наиболее часто используемые породы деревьев, а также изделия из них:

  • Массив дуба.
  • Хвойные породы.
  • ДСП и аналогичные плиты.

Все они имеют коэффициент теплопроводности, который значительно меньше, чем у кирпичных строительных материалов. Самый низкий показатель древесины, которая разрезается вдоль волокон. Там λ равно 0,1.

Но даже для древесины, распиленной поперек волокон, показатель теплопотерь минимален — 0,18 — 0.23 Вт / (м * К). DSP имеет это значение в диапазоне 0,15 Вт / (м * К).

Недостатки деревянных конструкций

Становится ясно, что древесина больше подходит для возведения стен в зданиях, так как она обладает лучшими свойствами, необходимыми для экономии тепла. Но почему кирпичная кладка все же более распространена?

Ответ прост. Несмотря на то, что коэффициент теплопроводности кирпича выше, чем у деревянной конструкции, последняя имеет ряд недостатков, которые подталкивают строителей в пользу кладки.

К этим недостаткам относятся:

  • Цена. Качественная древесина, особенно цельная (а другая для возведения стен и не подходит) стоит довольно больших денег.
  • Прочность. Несмотря на свою стоимость, дерево недолговечно, подвержено таким неприятностям, как усадка, образование посинения, гниль и т. Д. Чтобы всего этого избежать и продлить срок службы, деревянные конструкции необходимо дополнительно обрабатывать специальными веществами. .
  • Пожарная опасность Дерево горит.И горит очень хорошо. Кирпичная кладка, а тем более шамот, во много раз пожаробезопасна, чем деревянная конструкция.
  • Воздействие факторов окружающей среды. Дерево очень боится солнца, осадков и прочего.

Понятно, что наличие столь существенных недостатков, устранение которых требует больших денежных затрат, отпугивает потенциального потребителя. Отличная теплопроводность деревянных конструкций не способна спасти положение, и большее количество потребителей отдают предпочтение кирпичным конструкциям.

В основном из дерева строят элитное жилье, на котором никто не думает экономить. Для обычных построек используется старый добрый строительный кирпич.

Приступаем к делу

Итак — выбор очевиден.

Что построить

Итак, мы решили, что лучшим вариантом для возведения стен будут керамические стройматериалы. Хотя эти изделия не блещут низкими теплопроводными свойствами, однако по другим показателям они намного привлекательнее дерева.

Понятно, что создать теплый дом из одного кирпича не удастся. Понадобится грамотная дополнительная изоляция.

Не будем здесь останавливаться на том, какими материалами лучше утеплить стены. Отметим лишь некоторые случайные моменты.

Коэффициент теплопроводности кирпичной стены, как уже было сказано, довольно высокий (доходит до значения 0,8 в зависимости от типа материала). При использовании в зимнее время кирпичной кладки и теплоизоляционного материала могут возникнуть проблемы, связанные с накоплением влаги внутри стены.Это очень негативно сказывается на его качественных свойствах и долговечности.

Чтобы предотвратить такую ​​ситуацию, есть одна инженерная уловка. Об этом и поговорим дальше.

Да, такая уловка называется воздушной прослойкой в ​​кирпичной кладке. О нем знают многие, но не все правильно его создают.

Вот инструкция по созданию воздушного зазора:

  • В первом ряду кладки между кирпичными брусками оставлены зазоры, которые нельзя заполнить цементным раствором.Расстояние между этими промежутками должно быть около 1 метра.
  • По всей высоте стены между кирпичной кладкой и изоляцией остается небольшое пространство, через которое воздух должен «проходить».

Таким образом создается вентиляция, а температура в помещении регулируется.

Примечание! Ни в коем случае нельзя делать стяжку или другое перекрытие на последнем ряду кладки, которое закрыло бы путь для циркуляции воздуха. Тем самым вы лишаете всю идею воздушной прослойки.

Наконец

Как видите, теплопроводность кирпичной кладки можно снизить, не прибегая к каким-либо радикальным методам. И самое главное, вам не нужно тратить большие суммы денег или жертвовать качественными показателями вашего дома.

Кроме того, если вы решите построить стены из огнеупорного кирпичного материала, то вы получите дополнительную степень безопасности, которую вы не достигли бы, построив фундамент из дерева. Несмотря на то, что теплопроводность шамотного кирпича довольно высока, все же хороший выбор в пользу безопасности.

Также следует отметить и показатель изоляции воздушного шума кладки. Как и теплопроводность, сверхкачественных показателей у него нет, но вполне достаточно. А с дополнительной звукоизоляцией вы будете чувствовать себя очень комфортно.

При создании муфты из керамического материала показатель воздушного шума колеблется на границе 50 дБ. Это среднее значение с тенденцией к занижению.

Впрочем, вполне комфортно. При армировании кладки звукоизоляционными материалами можно увеличить значение шумоизоляции до стабильного среднего значения.

Вывод

Понятно, что кладку можно сделать своими руками. На нашем сайте вы найдете много информации о том, как это сделать. Вы найдете информацию о кладке, как из кирпича, так и из пеноблока. Этот материал, кстати, интересен многими своими характеристиками.

Говоря о теплопроводности красного кирпича, хотел бы закончить разговор на следующем. Этот показатель очень важен для дома: не пренебрегайте им, и тогда тепло не уйдет из вашего дома.Если у вас остались вопросы, то в представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Новые материалы не могут не восхищать своими характеристиками и возможностями. Польза строительных технологий с их помощью неоспорима. Искусственные и комбинированные строительные материалы превосходят традиционные сразу по нескольким ключевым параметрам, а зачастую и в несколько раз. Однако нельзя сбрасывать со счетов и традиционные материалы: кирпич, например, был и остается востребованным.

Большинство домов кирпичные: в этом нетрудно убедиться. То есть все знают о способности этого материала успешно противостоять атмосферным явлениям.

Известны также механическая прочность и долговечность этого материала, а также экологическая безопасность. Кроме того, кирпич обладает хорошими тепло- и звукоизоляционными свойствами, морозостойкостью. Все эти качества делают его одним из лучших строительных материалов.

Виды кирпича

Ранее этот материал выпускался двух видов: белый (силикатный) и красный (керамический) полнотелый.Иногда встречались керамические пустоты. Современные керамические кирпичи бывают разных цветов и оттенков: желтого, кремового, розового, бордового. Их фактура тоже может быть разной. Однако по способу изготовления и составу они все же подразделяются на керамические и силикатные.

У них нет ничего общего, кроме геометрических параметров. Керамика состоит из обожженной глины (с различными добавками), а силикат — из извести, кварцевого песка и воды. Тактико-технические характеристики обоих типов регламентируются разными нормативными документами, которые обязательно учитываются в строительной отрасли.

Керамический кирпич более популярен. Его разновидности: полнотелые, пустотелые, облицовочные с разной текстурой поверхности. Свойства этого строительного материала и его эстетические качества, разнообразие цветов и форм делают его уникальным и подходящим для возведения любых построек.

Назначение кирпича различных типов и их отличительные особенности

Кирпич по назначению делится на специальный, строительный и облицовочный. Конструкция применяется для кладки стен, фасады — для украшения фасадов, а в особых случаях — для особых (например, для кладки печи, камина или дымохода).

Полнотелый кирпич содержит не более 13% пустот: он используется для возведения стен (внешних и внутренних), столбов, колонн и т. Д. Конструкции из такого материала способны нести дополнительную нагрузку за счет высокой прочности на сжатие, изгиб и хорошей морозостойкости керамического кирпича. Теплоизоляционные свойства зависят от пористости, а от нее зависит водопоглощение, способность материала сцепляться с кладочным раствором. Этот материал имеет не очень хорошее сопротивление теплопередаче, в связи с чем стены жилых домов должны быть выполнены достаточной толщины или дополнительно утеплены.


В пустотном кирпиче объем пустот может достигать 45% от общего объема изделия, следовательно, его вес меньше, чем у полнотелого. Подходит для возведения светлых стен и наружных стен, они заполняют каркасы многоэтажных домов. Пустоты в нем могут быть как сквозными, так и закрытыми с той или иной стороны. Форма пустот — круглая, квадратная, овальная, прямоугольная. Располагают их вертикально и горизонтально (последнее менее удачно, так как такая форма менее прочная).

В пустотном кирпиче объем пустот может достигать до 45% от общего объема изделия.

Пустоты могут сэкономить довольно много материала, из которого можно сделать кирпичи. Кроме того, он значительно повышает его теплоизоляционные свойства. При этом важно, чтобы консистенция раствора была настолько густой, чтобы он не заполнял воздушные полости.

Кирпич облицовочный применяют соответственно для облицовки зданий. Обычно его размеры такие же, как у стандартного, но в продаже есть и изделия меньшей ширины.Чаще всего его делают пустотелым, что определяет его высокие тепловые характеристики.

Среди специальных кирпичей наиболее распространены огнеупорный (обжиговый) и теплоизоляционный. Оба используются для строительства каминов и печей (в том числе мартеновских). Они сделаны из особой шамотной глины, но имеют другое предназначение. Огнеупор предназначен для выдерживания температур свыше 1600 ° С, а теплоизоляционный — для предотвращения нагрева наружных стен печей и потерь тепла. Если вы построите стены из этого материала, они хорошо сохранят тепло.Но слабая прочность материала позволяет только заливать их стены.

Клинкерный кирпич облицовывает цоколи зданий. Обладает высокой морозостойкостью и механической прочностью за счет использования при их изготовлении огнеупорных глин. Необработанный обжиг проводится при более высоких температурах, чем обычно.

Что такое теплопроводность

Этот термин относится к способности материала передавать тепловую энергию. Эта способность в данном случае выражает коэффициент теплопроводности кирпича.Для клинкера этот показатель составляет порядка 0,8 … 0,9 Вт / м К.

Силикат имеет меньшую теплопроводность и в зависимости от количества содержащихся в нем пустот делится на: щелевые (0,4 Вт / м · К), с техническими пустотами (0,66 Вт / м К), полнотелая (0,8 Вт / м К).

Керамика еще легче, поэтому этот показатель еще меньше. Для полнотелого кирпича она находится в пределах 0,5 … 0,8 Вт / м К, для щелевого кирпича — 0,34 … 0,43 Вт / м К и для пористого кирпича — 0,22 Вт / м К. Характеризуется пустотелый кирпич. на 0.57 Вт / м К. Этот показатель непостоянен и меняется в зависимости от пористости материала, количества и расположения пустот.

Утверждение о том, что кирпич обладает высокой теплопроводностью, не совсем верно: некоторые виды этого материала проводят тепло даже хуже, чем газобетонные блоки. Сочетание прочностных свойств полнотелого кирпича и теплоизоляционных свойств пустотелой (а еще лучше — пористой керамики) позволяет строить надежные и энергоэффективные здания.

Производство полых керамических изделий в России стало составлять около 80%.Значительно расширился ассортимент эффективных керамических изделий, в том числе из пористой керамики. Оборудование для производства пустотелого кирпича и камня в основном импортное, приобретение которого началось в первые годы перестройки. В кирпиче и камне допустимые размеры щелевых пустот увеличены с 12 до 16 мм, диаметр вертикальных цилиндрических пустот и размер стороны квадратных пустот — с 16 до 20 мм. Более крупные пустоты введены в ГОСТ 530-95.При этом Госстрой России планировал поручить НИИ совместно со строителями разработать новые технологии кладки, исключающие заполнение пустот раствором, аналогичным зарубежным.

Поскольку работы по новым технологиям не завершены, большинство строительных организаций продолжают кладку стен по технологии, разработанной для полнотелого кирпича. В результате расход раствора для кладки стен увеличился с 0.От 20-0,24 м 3 до 0,3-0,4 м 3, что привело к набегам цемента 50-100 кг на кубометр кладки и раствора до 300 кг. Попавший в пустоты раствор снижает теплозащитные свойства стен без улучшения их прочностных свойств. Экспериментальные исследования температурно-влажностного режима кладки из современного пустотелого кирпича и камня позволили ввести в новый ГОСТ 530-2007 требования, отражающие современную ситуацию в кирпичной промышленности и строительстве.Было бы неправильно вводить обязательные требования, ограничивающие размер пустот в кирпичах и камнях до 8-12 мм, так как это повлечет временную остановку для многих предприятий. При этом избежать заполнения раствором пустоты размером более 12 мм можно при возведении стен с применением различных технологических приемов. Решение, принятое в ГОСТ 530-2007, позволяет фабрикам и строителям самостоятельно выбрать для себя более приемлемый вариант.

Новые требования, внесенные в стандарт, отражают заинтересованность строительной отрасли в объективной оценке тепловых характеристик продукции и улучшении ее качества.Определение коэффициента теплопроводности пустотелой кирпичной и каменной кладки будет проводиться на фрагменте стены, выполненной по технологии, исключающей заполнение пустот кладочным раствором. то есть с такой же скоростью потока по сравнению с полнотелыми. Этот метод позволяет производителю сравнивать тепловые характеристики своей продукции с производимой на других заводах, так как изготовление фрагмента стены для испытаний полностью исключает эффект нарушений технологии кладки стены, часто допускаемых в строительных условиях. .Свалить вину за снижение теплозащитных качеств на кирпичных заводах на строителей будет практически невозможно. При этом не запрещается испытание пустотелого кирпича и камня на фрагментах стен или непосредственно на стенах эксплуатируемого здания, построенного по технологии, применяемой для кладки полнотелого кирпича, что должно быть зафиксировано в протоколе испытаний. Полученные значения теплопроводности кладки в обоих направлениях могут быть использованы при проектировании наружных стен при соблюдении соответствующих коэффициентов теплопроводности технологического регламента, являющегося неотъемлемой частью конструкции здания.Данные в таблице D.2, приведенные в стандарте, позволяют производителю принять разумное решение по улучшению тепловых характеристик керамических стеновых или стеновых кирпичей и камня. Для этих целей целесообразно увеличить количество щелевых пустот за счет уменьшения их ширины с перекрытием через теплопроводящие керамические диафрагмы, чтобы увеличить пористость черепка. Рациональный размер и расположение пустот в кирпиче позволят на 30% снизить теплопроводность кладки по сравнению с кладкой из кирпича с заполненными раствором пустотами стандартных размеров.Информация о тепловых свойствах кладки позволяет заказчику выбрать подходящую ему продукцию или поставить на заводе вопрос о производстве кирпича с уменьшенными пустотами и улучшенными теплозащитными свойствами. Дополнительные затраты заказчика на развитие производства пустотелого кирпича или камня с улучшенными теплофизическими свойствами окупятся при строительстве за счет снижения расхода цемента до 50-100 кг на кубометр кладки стен.

Установившаяся практика возведения стен из пустотелого теплоэффективного камня и кирпича по той же технологии, что и полнотелая, снизила конкурентоспособность огнестойких прочных конструкционных теплоизоляционных стен и облицовочного кирпича и камня по сравнению с явно худшими материалами в решении проблема энергосбережения и повышения прочности наружных стен.

В новый стандарт вводится новое требование, устанавливающее марку морозостойкости лицевого керамического кирпича не ниже Р 50. Это повышение связано с качественным изменением физических процессов в наружных стенах с повышенным уровнем термической стойкости. изоляция, что привело к большему количеству циклов внешних температурных переходов в облицовочном слое, что привело к преждевременному разрушению наружных стен.

Для определения морозостойкости кирпича принят метод объемного замораживания, более жесткий, чем метод одностороннего замораживания.Статистически обработанные результаты испытаний, полученные методом одностороннего замораживания, примерно на 20% дают больше, чем данные, полученные методом объемного замораживания. При разработке метода одностороннего замораживания считалось, что использование метода объемного замораживания приводит к «необоснованному» выбракованию практически прочных кирпичей и, как следствие, к дополнительным технологическим затратам. Также предполагалось, что пропущенный брак при испытании методом односторонней заморозки принесет меньший ущерб народному хозяйству, чем отбраковка хороших продуктов при замораживании в больших количествах.Но практика эксплуатации зданий показала, что стоимость ремонта поврежденных участков на фасадах стен из допущенного к строительству бракованного кирпича после испытаний методом одностороннего замораживания значительно превышает стоимость производства лицевого кирпича повышенной морозостойкости. . Это также создает большие трудности при ремонте подбором цвета лицевого кирпича, что приводит к ухудшению внешнего вида фасада построек.


Таблица. Тепловые свойства кирпичной кладки из пустотелого керамического кирпича
Название кирпича Плотность, кг / м 3 Расход раствора на 1 м 3 кирпичной кладки, м 3 Массовая доля влажности кирпичной кладки в условиях эксплуатации В, ω,% Теплопроводность кирпичной кладки, λ b, Вт / (м * o C) Превышение в% наименьшего значения λ при ω = 1.8% (т.е. без заполнения пустот раствором)
кирпичей кладка
На цементно-известково-песчаном растворе ϒ = 1800 кг / м 3
Керамика 1000 1180 0,23 1,8 0,43
21 полый 1000 1310 0,30 2,3 0,54 25,6
с размером пустот 20х20 мм 1000 1490 0,40 2,9 0,59 37,2
Также
Также 1400 1490 0,23 1,8 0,56
1400 1620 0,30 2,3 0,65 16,0
1400 1800 0,40 2,9 0,70 25,0
На цементно-песчаном растворе ϒ = 2000 кг / м 3
Также 1400 1540 0,23 1,8 0,58
1400 1680 0,30 2,3 0,74 27,6
1400 1880 г. 0,40 2,9 0,77 32,8

Реализация требований межгосударственного стандарта значительно повышает роль производителей пустотелого керамического кирпича и камня во взаимоотношениях с проектировщиками и строителями в решении задачи повышения теплозащитных качеств и долговечности наружных энергетических стен. -эффективные здания.

Если бы материалы кладки находились в эксплуатации в сухом состоянии, то высокое содержание цементно-известково-песчаного раствора плотностью 1800 кг / м 3 не привело бы к заметному снижению теплозащитных качеств наружного кирпичные стены, так как его коэффициент теплопроводности (λ), равный в этих условиях 0,58 Вт / (м * o C), при той же плотности, что и керамика (1800 кг / м 3), немного превышает его теплопроводность, равную 0,55 Вт / (м * o C). Но, к сожалению, они в условиях эксплуатации имеют существенно разную влажность, что значительно увеличивает λ стены.Сорбционная влажность цементно-известково-песчаного раствора приближается к 5%, а полнотелого керамического кирпича не превышает 1%.

Сорбционная влажность стеновых и облицовочных материалов из пористой керамики, например ОАО «Победа ГРП», как правило, не превышает 0,6%. Экспериментально определенная эксплуатационная влажность кирпичной кладки на образцах, отобранных со стен с массовым соотношением материалов (кирпич: раствор) 3: 1 при относительной влажности наружного воздуха φ n = 97%, соответствующей Шри в январе месяце (г. Москва). , Г.-Петербург), это значительно большее значение. Уместно отметить преимущество этой стены из пористой керамики (рис. 1). На его меньшее значение рабочей влажности повлияла не только особенность пористой структуры, но и значительно меньшее количество раствора в стенках из крупноформатных керамических камней. В условиях эксплуатации кирпичная стена собирает наибольшее количество влаги в период максимального накопления влаги, то есть в марте месяце. В этот период кирпич и раствор находятся в супервпитывающем состоянии.Собравший влагу раствор в результате контакта отдает ее порам кирпича, увеличивая общую влажность кладки. Влага, закрытая в крупные поры, имеет теплопроводность 0,55 Вт / (м * o C), что почти в 20 раз превышает теплопроводность влажного воздуха, равную 0,027 Вт / (м * o C). В сильные морозы часть накопленной влаги в известково-цементно-песчаном растворе и в гораздо меньшем объеме в керамике превращается в лед, теплопроводность которого равна 2.3 Вт / (м * o C), что в 4 раза превышает теплопроводность жидкой влаги. Кроме того, образующийся лед является преградой в стене на пути выхода пара из помещения. Это увеличивает влажность материалов и снижает теплозащитные качества стены и морозостойкость облицовочного кирпича в слое облицовки.

По этим причинам на основании результатов полевых и лабораторных исследований расчетное (нормативное) значение рабочей влажности плотной кирпичной кладки для условий эксплуатации B принято равным 2%, что значительно превышает максимальную сорбционную влажность керамики, равную 1%.Для раствора цементно-известкового раствора стандартное значение влажности для условий эксплуатации B принято равным 4%. Это немного ниже максимального значения сорбции 5-6%. Часть влаги из раствора переносится на соседнюю керамику. Особенно это заметно в кладке из пустотелого кирпича, которая имеет более развитую внешнюю поверхность, контактирующую с влажным раствором, почти вдвое превышающую полнотелую. Да и раствора в кладке из пустотелого кирпича на 30-40% больше, чем в кладке из полнотелого.Таким образом, пустотелый кирпич быстрее переходит в состояние эксплуатационной влажности.

Определение количественных зависимостей влияния кладочного раствора на влажностный режим стен проводилось в климатической камере на трех фрагментах стен размером 1,8 х 1,8 х 0,38 м, изготовленных в ЦНИИСК им. В.А. Кучеренко вместе с НИИСФ. В кирпичах использовался завод Голицына с шириной пазов 12, 16 и 20 мм. При изготовлении осколков измеряется расход раствора.Аналогичные испытания проводились в естественных условиях и в климатической камере на стенах толщиной 640 мм из кирпича с квадратными пустотами 20 х 20 мм. Изготовление фрагментов стен для испытаний производилось квалифицированными каменщиками с фиксированным расходом раствора 0,23 м3, 0,3 и 0,4 м3 на кубометр кладки. Раствор был нанесен цементно-известково-песчаный плотностью 1800 кг / м 3 состава 1: 0,9: 8 (цемент: известь: песок) по объему на портландцемент марки 400 с осадкой 9 см. Стены, испытанные в натурных условиях, были выполнены по технологии, разработанной для полнотелого кирпича, то есть с частичным заполнением пустот раствором.Консистенция и плотность раствора не контролировались. Было разрешено «омолодить» неиспользованный до обеда раствор, то есть с нарушениями технологических регламентов, присущих условиям строительства. Таким образом, результаты тепловых испытаний кладки стен в естественных условиях существенно в худшую сторону отличались от результатов, полученных в климатической камере. Анализ результатов испытаний проводился по данным, полученным в климатической камере. Фрагменты стен выполнены из 21-полого кирпича плотностью 1000 кг / м 3 и 1400 кг / м 3 с размером пустот 20 х 20 мм.Фрагменты укладывались на цементно-известково-песчаный раствор плотностью 1800 кг / м 3 с осадкой конуса 9 см. Толщина горизонтальных швов раствора составляла 12 мм, вертикальных 10 мм. Для сравнения теплотехнической эффективности фрагментов стены первый был выполнен по технологии, полностью исключающей заполнение пустот раствором, то есть по технологии соответствующая кладка из полнотелого кирпича. Расход раствора составил 0,23 м3. Второй и третий фрагменты выполнены соответственно с расходом 0.3 м 3 и 0,4 м 3 на один кубометр кладки, то есть с частичным заполнением пустот. Плотность кладки из пустотелого кирпича плотностью 1000 кг / м 3 соответственно составила 1180 кг / м 3, 1310 кг / м 3 и 1490 кг / м 3. Из пустотелого кирпича плотностью 1400 кг / м 3. плотность увеличилась до 1492 кг / м 3, 1618 кг / м 3 и 1798 кг / м 3.


Для достижения состояния равновесной влажности, соответствующего воздушно-сухому состоянию в климатической камере, перед испытаниями при t B = 20 o C, φ B = 40% фрагменты хранились в специальном помещении.Поскольку наступление стационарных условий диффузии водяного пара требует длительного времени, исследования в климатической камере проводились в течение трех месяцев при t H = -20 o C, t B = 20 o C. Были взяты образцы материалов для определения влажности. в соответствии с расходом на 1 м 3 стены. То есть при расходе 0,23 м 3 это соотношение составляло 1: 3 (одна часть раствора: три части керамики), на 0,3 м 3 брали 1: 2, а при 0,4 м 3 соответственно. 1: 1,5. В кладке, выполненной с нормой расхода 0.23 м 3 влажность керамики с 0,2% в воздушно-сухом состоянии увеличилась до 1,2% с максимальным значением 2,2% на расстоянии 0,33 толщины стенки от внешней поверхности. Влажность раствора в этом месте составляет 5,4% при среднем значении 3,3%. Среднее массовое соотношение влажности кладки составило 1,8% при максимальном значении 3,8%. При увеличении расхода раствора до 0,3 м 3 на 1 м 3 кладки из пустотелого кирпича среднее значение влажности кладки составляет 2.3%; при расходе раствора 0,4 м 3 влажность кладки увеличилась до 2,9% (рис. 2). В последних двух случаях среднее соотношение массы влаги, соответственно, было на 15% и 45% выше стандартного значения, равного 2%. Во всех трех случаях массовое соотношение влажности (максимальное и среднее значения) цементно-известково-песчаного раствора в кладке практически не увеличивается и, тем более, не уменьшается. Среднее значение влажности кладки растет быстрее, чем влажность раствора.Очевидно, это связано со способностью раствора отдавать сверхабсорбированную влагу керамике при контакте и компенсировать потерю влаги из-за диффузии водяного пара из теплого помещения.

Теплопроводность кладки из пустотелого кирпича с диапазоном плотности 1000-1400 кг / м 3, которой практически соответствует практически весь пустотелый кирпич, выпускаемый нашей промышленностью, при расходе раствора 0,23 м 3 в сухом состоянии составляет в диапазоне от 0,26 до 0,41 Вт / (м * o C). Разница не превышает 16%.


При увеличении расхода раствора до 0,3 м 3 плотность кладки, например, из пустотелого кирпича ϒ = 1000 кг / м 3 увеличивается с 1180 кг / м 3 до 1310 кг / м 3. При расходе 0,4 м 3 плотность кладки увеличивается до 1490 кг / м 3. Средняя влажность кирпичной кладки колеблется от 1,8% до 2,3% и 2,9% соответственно. Такое изменение влажности и плотности приводит к увеличению теплопроводности стены с 0,43 до 0.54 Вт / (м * o C) и 0,59 Вт / (м * o C), то есть на 25,6% и 37 соответственно на 2%. При плотности кирпича 1400 кг / м 3 в результате увеличения расхода раствора до 0,3 м 3 и 0,4 м 3 коэффициент теплопроводности кирпичной стены увеличивается с 0,56 Вт / (м * o С). до 0,65 и 0,70 Вт / (м * o С), то есть на 16% и 25,0%. Более значительное увеличение теплопроводности пустотелой кирпичной стены плотностью 1400 кг / м 3 происходит при использовании кладочного цементно-песчаного раствора плотностью 2000 кг / м 3, при том же расходе раствора равном 0.3 м 3 и 0,4 м 3 значение коэффициента теплопроводности увеличивается до 0,74 Вт / (м * o C и 0,77 Вт / (м * o C), то есть на 27,6% и 32,8%. Это также приводит к увеличению по плотности кладки (рис. 3, табл.). Однако следует отметить, что наличие кладки цементно-известково-песчаного раствора плотностью 1800 кг / м 3 в пустотах кирпича оказывает меньшее влияние на увеличение теплопроводности стены по сравнению с увеличением ее влажности, что связано с рыхлым состоянием раствора в пустотах, который представляет собой частицы (комки) неправильной формы, разделенные воздушными небольшими полостями.и примерно равной плотности уложенного пустотелого керамического кирпича (брутто).

Кроме того, раствор, попавший в пустоты, разделил большую воздушную полость на несколько воздушных пространств, каждая из которых в результате полного прекращения теплопередачи конвекцией имеет дополнительное тепловое сопротивление в стене. Создаваемое изменение условий теплообмена в какой-то мере компенсирует влияние избытка раствора на снижение теплозащитных качеств пустотелых кирпичных стен.Значительно худшие влажностные условия образуются в пустотах в результате применения кладочного тяжелого раствора плотностью 2000-2200 кг / м 3, особенно повышенной консистенции. Жидкий раствор легко проникает в пустоты, оседает в «литом» виде. Плотность, влажность и теплопроводность тяжелого раствора в воздушном зазоре практически не отличается от теплофизических параметров раствора, находящегося в горизонтальных швах кладки. Влажность тяжелого раствора в кирпичной кладке может увеличиваться до 6-8%, что изменяет влажность и теплопроводность стены на 30-40%.Разрушение кладочного раствора в пустотах создает для каменщиков большие проблемы в создании равномерного слоя раствора в горизонтальных швах кладки. Неудачный раствор образует щели в горизонтальных швах, создавая благоприятные условия для циркуляции воздуха в пустотах. Созданная таким образом продольная фильтрация воздуха снижает теплотехническую эффективность полых керамических стеновых и облицовочных материалов. Для того чтобы исключить условия попадания кладочного раствора в пустоты и создания ровного горизонтального шва без разрывов, ОАО «Победа ЛСР» начало реализацию крупноформатных пустотелых керамических изделий в обязательном порядке применять сетки с ячейками не более 10 х 10 мм. укладка в горизонтальные швы раствора.

Повышенная плотность и влагопоглощающая способность кладочного раствора в условиях эксплуатации наружных стен зданий значительно снижает теплозащитные свойства кирпича, уложенного на заводе. Негативное влияние тяжелого цементно-песчаного раствора может превышать тепловой эффект, получаемый от рационального расположения пустот и пористости керамики. Поэтому кладку пустотелого кирпича с пористой керамикой следует производить на легких (теплых) растворах с пониженной водопоглощающей способностью, достигаемой введением гидрофобных добавок.В зарубежной строительной практике при возведении стен руководствуются принципом соблюдения теплоизоляционных свойств кладочного раствора по теплоэффективности кирпича. Отечественной промышленностью для этих целей освоен выпуск широкого ассортимента теплых кладочных растворов плотностью от 1600 до 500 кг / м 3, теплопроводностью от 0,81 до 0,21 Вт / (м * o C). На строительном рынке большой объем аналогичной продукции и зарубежных фирм. Отмеченные выше различия теплофизических свойств кирпичной кладки из одного и того же кирпича, но на растворах с разными физическими параметрами создают определенные трудности при построении объективной зависимости коэффициента теплопроводности от плотности.Однако эта зависимость используется во многих зарубежных странах. В некоторых странах его устанавливают в зависимости от плотности кладки. Если установлена ​​зависимость теплопроводности от плотности кирпича, то указываются конкретные характеристики применяемого кладочного раствора. В отечественной строительной практике с 1962 года кладку производили на тяжелый раствор (СНиП НА. 7-62). Конкретное значение плотности и расхода раствора на кубометр кладки не указано. Из-за отсутствия информации о удельной плотности раствора значение теплопроводности кирпичной кладки, указанное в нормативном документе, в настоящее время не может быть четко понято, поскольку категория «тяжелые растворы» охватывает диапазон плотности от 1700 г. до 2200 кг / м 3 с разницей А до 40-50%.

Конечно, сегодня можно было бы признать, что приведенные данные соответствуют муфтам, сделанным на растворе плотностью 1800 кг / м 3, если в последующей редакции СНиП И-А. 7-71 ко всей кирпичной кладке плотностью от 1000 до 1800 кг / м 3 с одинаковыми значениями коэффициентов теплопроводности не указано, что они выполняются на каком-либо растворе. В редакции СНиП II-3-79 полностью сохранены значения А для пустотелой кирпичной кладки. Но для каждой плотности кладки добавлена ​​информация о плотности кирпича.Что касается слов «на любом растворе» или «тяжелом растворе», то они были заменены «на цементно-песчаный раствор» без указания плотности. В последующих редакциях СНиП 11-3-79 1982 и 1998 годов эти данные сохраняются. Они переехали в СП 23-101-2004 и отражают свойства, как и в 1962 году, трех типов пустотелого кирпича.

Такой неспецифический подход к нормированию теплопроводности керамического кирпича и камня был в некоторой степени терпимым до 1980 г. и даже до 1990 г., поскольку объем пустотелого кирпича в общем производстве керамических материалов не превышал 0.5%. В настоящее время его доля приближается к 80%. Номенклатура расширилась до 50 наименований. Заводы освоили новые технологии и перешли на более качественный уровень производства керамических изделий из пористой керамики в виде морозостойких кирпичей, крупноформатных камней, соответствующих размером от 4 до 15 условных кирпичей. Это позволило выполнить кладку из некоторых видов камней в несколько раз, чтобы снизить расход раствора. Использование пористой керамики, рациональное расположение пустот в кирпиче при большом разнообразии их форм позволило значительно улучшить тепловые свойства кирпича.

В нормативных документах СП 23-101-2004 пока не нашли отражения тепловые характеристики современных керамических изделий. Имеющиеся данные по трем типам пустотелого кирпича использовать нельзя, так как размер пустот в них не соответствует утвержденным параметрам в ГОСТ 530-95. Поэтому были проанализированы данные 70 заводов по теплопроводности производимых кирпичей и камней, полученные при испытаниях в аккредитованных лабораториях без заполнения пустот.Полученные статистически обработанные данные представлены на рис. 4.

По причинам, указанным выше, приведенные на рис. 4 данные по теплопроводности пустотелой кирпичной кладки плотностью 1000-1400 кг / м 3, выполненной без заполнения пустот раствором, несколько ниже приведенных данных. в СНиП о строительной теплотехнике с частичным заполнением пустот раствором, позже перенесенный в СП 23-101-2004. Наблюдаются некоторые различия в теплопроводности по сравнению с зарубежными данными.Например, кладка из крупноформатных камней пористой керамикой российского производства имеет более высокие значения теплопроводности.

Информация о теплофизических свойствах кладки из разных видов кирпича, которой будет располагать производитель, позволит заказчику выбрать подходящую ему продукцию или поставить на заводе вопрос о производстве кирпича с уменьшенными пустотами и улучшенными теплозащитными свойствами. Дополнительные затраты заказчика на развитие производства пустотелого кирпича или камня с улучшенными теплофизическими свойствами окупятся при строительстве за счет снижения расхода цемента до 50-100 кг на кубометр кладки стен.

Б / у книги

  1. ГОСТ 530-80. Керамический кирпич и камень. Технические условия. М., 1980.
  2. ГОСТ 530-95. Керамический кирпич и камень. Общие технические условия. М., 1995.
  3. ГОСТ 530-2007. Керамический кирпич и камень. Общие технические условия. М., 2007.
  4. .
  5. СНиП II-А. 7-62. Строительная теплотехника. Стандарты дизайна. М., 1963.
  6. СНиП II-А. 7-71. Строительная теплотехника. Стандарты дизайна. М., 1971.
  7. СНиП II-3-79.Строительная теплотехника. Стандарты дизайна. М., 1979.
  8. .
  9. СП 23-101-2004. Проектирование тепловой защиты зданий. М., 2004.
  10. .

Ананьев А.И. , НИИСФ РААСН
Абарыков Б.П. , Минмособлстрой
С.А. Бегулев , А.С. Буланы ОАО «Победа ЛСР»
Журнал «Строительные технологии» 4 (66) / 2009


Технические характеристики композиционных материалов, содержащих отходы керамической пыли от передового производства пустотелого кирпича, как частичную замену портландцемента

в смесях с большим объемом равномерно распределенных воздушных пустот.Часть добавки cera-

mic, которая не может участвовать в гидратационных и пуццолановых реакциях из-за

отсутствия доступного Ca

2+

, по-видимому, действует как мелкий заполнитель, частично заполняющий пустоты,

, таким образом, способствуя этому. уплотнению затвердевших смесей и компенсации, в определенной степени, фактического уменьшения количества связующего.

Ключевые слова

Портландцемент, керамическая пыль, механические и трещинно-механические свойства, гигроскопичность

и термические характеристики, устойчивость к замораживанию / оттаиванию

Введение

Керамические отходы образуются во всем мире в больших количествах.Керамическая промышленность

сама вносит большой вклад в ее производство в виде лома. Для экземпляра

в Европе количество отходов на различных стадиях производства керамической промышленности

достигает 3–7% от ее мирового производства (Pacheco-Torgal и

Jalali, 2010). В Аргентине около 2% продуктов отказывают по коммерческим причинам (Lavat et al., 2009). В Индии было подсчитано, что около 30%

ежедневного производства в керамической промышленности уходит в отходы (Senthamarai и

Devadas Manoharan, 2005).Эти выброшенные материалы, большая часть которых не может быть переработана на предприятии, представляют собой промышленные отходы, которые часто вывозятся на свалки.

Измельчение до тонкости помола, сравнимой с цементом, представляет собой перспективный способ повторного использования керамических отходов

(Wild, 1996). Полученный керамический порошок, благодаря его активности поццола-

ник (Baronio and Binda, 1997; Pereira-de-Oliveira et al., 2012; Wild et al.,

1997), затем может быть использован в качестве частичной замены цемента в бетоне.Измельченный

пустой глиняный кирпич, вероятно, является наиболее часто используемым источником отходов керамики

, используемого для этой цели (Naceri and Hamina, 2009; O’Farrell et al., 2006; Toledo

Filho et al., 2007; Tydlita

).

´т и др., 2012; Веймелкова

´ и др., 2012 г.). Другими возможными источниками

являются керамическая сантехника (Medina et al., 2013), керамогранит

(Bignozzi and Bondua

`, 2011) или керамические отходы сноса зданий (Katzer, 2013).Сравнение

характеристик нескольких различных источников отработанного керамического порошка в качестве частичной замены портландцемента

было представлено в Пачеко-Торгал и Джалали

(2011).

Производство пустотелого кирпича из красной глины относится к источникам керамических

отходов, значение которых постоянно возрастало в течение последнего десятилетия или двух

(Reig et al., 2013). Возрастающие требования к свойствам теплоизоляции —

стяжек ограждающих конструкций зданий, определенные национальными стандартами, особенно в Европе

, привели производителей кирпича к сокращению производства обычного полнотелого кирпича.Кирпич

блоков с более или менее сложной системой внутренних полостей заменили традиционные кирпичи

и стали доминирующими на рынке строительной керамики (Антониадис

и др., 2012; Арендт и др., 2011; Павлы

´ к и др., 2013, 2014).

При производстве пустотелого кирпича количество лома аналогично традиционному кирпичу из красной глины

. Тем не менее, для продвинутых типов пустотелых кирпичных блоков,

2Journal of Building Physics

от гостя 29 июля 2015 года.sagepub.comDownloaded from

Сравнительный анализ термических характеристик и механической стойкости строительных материалов и элементов с землей

Работа проводится в рамках многолетнего исследовательского проекта PIP № 11220150 100570CO под названием «Социальные технологии в городской среде обитания с малоимущим населением». Эта работа финансируется Национальным советом по научным и техническим исследованиям (CONICET) и Департаментом архитектуры, дизайна и городского планирования Университета Буэнос-Айреса в сочетании с Проектом исследований и разработок оптимизированных технологий Wattle и Daub для жилищного строительства в холодных условиях. Засушливые и полузасушливые городки Аргентины, также финансируемые CONICET.

Чтобы объединить внешнюю среду с архитектурными работами, все большее число специалистов в области строительства реализуют жилищные и городские проекты, в которых учитывается экологичность. Устойчивость заключается в адаптации среды обитания человека к ограничивающему фактору: способности окружающей среды удовлетворять потребности человека, чтобы ее природные ресурсы не деградировали необратимо (Alavedra, Domínguez, Gonzalo & Serra, 1997, p. 42).

Что касается промышленной деятельности, строительство и связанные с ним отрасли являются крупнейшим потребителем природных ресурсов, таких как древесина, полезные ископаемые, вода и энергия.Точно так же после постройки здания продолжают оставаться прямой причиной загрязнения из-за выбросов, которые они производят, тем самым влияя на окружающую среду региона, потребляя энергию и воду для регулярных операций (Alavedra et al., 1997, стр. 42).

Стадии производства строительных материалов и их побочных продуктов обычно приводят к сильному воздействию на окружающую среду. Это воздействие начинается с добычи природных ресурсов, которые будут использоваться в производственном процессе, и продолжается с учетом энергии, потребляемой на каждом этапе процесса.В результате выбросы попадают в атмосферу в виде загрязнителей, которые могут быть коррозионными и высокотоксичными. Этот процесс повторяется как при эксплуатации, так и при использовании здания, пока материалы не будут окончательно уменьшены до основных частей, которые будут переработаны или повторно использованы в новом строительстве.

Критерии устойчивого строительства определяют производство зданий с пониженным содержанием промышленных материалов, тем самым избегая, когда это возможно, использования материалов, которые заканчивают свой жизненный цикл как опасные отходы или чьи основные компоненты трудно разрушить.Основное воздействие строительных материалов на окружающую среду включает: потребление энергии, твердые отходы, вклад в парниковый эффект, повреждение озонового слоя и другие факторы загрязнения окружающей среды (Cáseres, 1996, стр. 7-8; Wassouf, 2014).

Предполагается, что почва является самым старым строительным материалом, который использовалось человечеством, и в настоящее время она представляет собой решение проблемы спроса на недорогое жилье (Vega, Andrés, Guerra, Morán, Aguado & Llamas, 2011, стр. 3021). Даже сегодня 30% населения мира живет в земных убежищах (Freire & Tinoco, 2015, стр.18). Эта альтернатива имеет множество оправданий, в том числе: высокая доступность этого сырья в природе, его меньшее загрязнение и низкие выбросы CO2 на этапах производства и транспортировки (Piattoni, Quagliarini & Lenci, 2011, стр. 2067), а также нулевое генерирование отходы, как на стадии строительства, так и на стадии сноса; Аналогичным образом, одним из наиболее ценных его свойств является его тепловая реакция, которая необходима для комфорта и сокращения использования дополнительных систем отопления или охлаждения на протяжении всего жизненного цикла здания.

Наиболее распространенные строительные системы с землей — это саман, плетень и мазня, утрамбованная земля и CEB. В этих естественных строительных системах большая часть энергии, используемой для производства, поступает от солнца, потому что они сушатся на открытом воздухе, под солнцем, без необходимости прибегать к сушке в печи, как в обожженном кирпиче. Это снижает потребление невозобновляемой энергии и соответствующие выбросы.

Важной характеристикой надлежащего функционирования и удобства домашней обстановки является удобный дизайн для ее обитателей.В этом смысле материалы, используемые в оболочке здания, имеют фундаментальное значение, поскольку они объединяют элементы, отделяющие внутреннюю среду от внешней. Выбор этих элементов зависит от различных факторов, таких как технология, которую можно использовать, ее структурный отклик, жизненный цикл и эстетика.

Учитывая, что земляные материалы имеют неоднородное поведение, их нельзя типизировать для достижения однородного отклика, как, например, с бетоном.В случае с почвой его поведение будет зависеть от состава каждого образца почвы и каждого участка (Минке, 2005, стр. 16). Таким образом, строительные элементы из разных грунтов имеют разные термические, механические и физические характеристики.

Настоящая работа представляет собой сборник данных, полученных в результате исследовательских проектов, и руководящих принципов, касающихся переменных теплового поведения, а также механической и структурной устойчивости земляных строительных материалов. Некоторые из этих значений являются результатом экспериментальных испытаний, проведенных в аккредитованных учреждениях по всему миру.Они относятся к свойствам различных строительных технологий с грунтом, таких как глинобитный, утрамбованный грунт, плетень и мазня, а также CEB и другие. Некоторые из материалов, используемых в традиционном строительстве, были взяты за основу, например, обожженный кирпич, пустотелый керамический кирпич и бетон. На основе этого анализа возникают некоторые соображения, которые помогают определить наиболее важные характеристики земляных строительных материалов и взаимосвязь между ними.

Методология

Был использован метод сравнительного анализа как термических свойств, так и механической прочности.С этой целью была составлена ​​библиография, содержащая существующие публикации нескольких авторов, а также данные нормативных документов и экспериментальные данные, полученные авторами настоящей работы. Сначала для оценки были определены термические и механические свойства. Затем были созданы сравнительные таблицы для визуализации тепловых свойств и плотности, которые разные авторы получили для каждой природной системы строительства (например, саман, утрамбованный грунт, CEB, плетень и мазня), а также для систем, используемых в традиционном строительстве (например.г. полнотелый, пустотелый керамический кирпич и монолитный бетон).

Чтобы соответствовать минимальному уровню теплового комфорта в соответствии с биологической зоной окружающей среды, проанализированная толщина стенок из глиняной конструкции отражает максимальные значения теплопередачи, допустимые для стен в Аргентине в соответствии со стандартом IRAM.

Наконец, та же сравнительная процедура была проведена для механических сопротивлений как земляных, так и традиционных строительных систем. Сравниваемые значения были получены каждым автором или каждым нормативным стандартом и относятся к сопротивлению материала порезанию, изгибу и простому сжатию.

Заключение отражает анализ сравнительного термического и механического сопротивления, полученный из обзора литературы, а также собственные размышления авторов об условиях для потенциального развития земляного строительства в Аргентине.

Результаты

Термические и механические характеристики материалов

Ниже приведены определения, связывающие каждое измеренное свойство с силами или потоками энергии, которые производят значения, записанные в каждой соответствующей таблице.

Тепловые свойства

Термические свойства относятся к большей или меньшей способности передавать или накапливать тепло, тем самым определяя тепловую инерцию конструкции. Применительно к самому материалу эти емкости могут быть определены как: плотность, удельная теплоемкость и теплопроводность. Применительно к элементам конструкции, таким как горизонтальные ограждения (потолки), прозрачные вертикальные ограждения (фиксированные рамы, окна и ставни) и непрозрачные вертикальные ограждения (стены и двери), эти возможности определяются как теплопроводность, теплоемкость, тепловая инерция и задерживать.Значение этих термических свойств приводится в следующих разделах.

Термические свойства применительно к материалам

  • Плотность (кг / м 3 ): масса на единицу объема тела. Большая или меньшая плотность строительного материала влияет на его изоляционные свойства, что будет проанализировано позже. Следует отметить, что плотность также влияет на механические свойства.

  • Теплопроводность X [Вт / мК]: количество тепла, которое передается в одном направлении, за единицу времени и площади поверхности, когда градиент температуры в этом направлении является однородным.

Термические свойства по отношению к элементам конструкции

  • Коэффициент теплопередачи K [Вт / м 2 K]: количество тепла, передаваемого шкафом в устойчивом состоянии, на квадратный метр поверхности (перпендикулярно тепловому потоку), за единицу времени и на единицу градиента температуры между внутренними помещениями. и внешняя среда.

  • Тепловая инерция: это способность массы материалов поглощать и накапливать тепло в дневное время, которое затем выделяется для кондиционирования внутренней среды (как правило, ночью).Это помогает достичь лучшего теплового комфорта за счет уменьшения колебаний температуры в помещении по сравнению с температурой наружного воздуха. Процесс передачи энергии не является мгновенным. Существует задержка во времени передачи тепла за счет теплопроводности от одной стороны стены к другой, известная как тепловая инерция. На рисунке 1 представлены концепции теплового запаздывания, времени, прошедшего, пока тепло, поглощаемое стеной, достигает противоположной стороны, и демпфирования, разницы в энергии между открытой поверхностью стены и внутренней частью (Gutierrez & Gallegos, 2015, стр.61).


Рисунок 1
Кривые теплового запаздывания для стены
Источник: источники freixanet (2009, с. 122)

Механические свойства

Механические свойства относятся к наиболее важным параметрам строительных материалов или технологий. Эти свойства: простая прочность на сжатие, прочность на разрыв и сопротивление сдвигу. Под простой прочностью на сжатие понимается способность материалов противостоять раздавливающим нагрузкам перед разрушением. В случае прочности на растяжение это способность материалов выдерживать нагрузки, которые имеют тенденцию тянуть его до разрушения.Прочность на сдвиг относится к способности выдерживать сдвигающие нагрузки. Эти сопротивления имеют одно и то же выражение; в каждом случае изменяется сила, приложенная к элементу (Cieck, 2005, стр. 136).

После того, как были определены понятия термических и механических свойств, был проведен сравнительный анализ каждого из них в отношении материалов, используемых как в земляном, так и в традиционном строительстве, в соответствии с результатами, опубликованными разными авторами.

Плотность и тепловые свойства некоторых материалов и элементов конструкций, используемых в промышленном и земляном строительстве

В таблице 1 показаны плотность, теплопроводность и коэффициент теплопередачи различных почвенных смесей и некоторых земляных строительных элементов, таких как саман, смесь соломы и грязи, твердый ил, CEB, плетень и мазня.В таблице 2 приведены соответствующие значения плотности, теплопроводности, толщины и теплопередачи для стен из обожженного кирпича, пустотелого керамического кирпича и монолитного бетона.

Таблица 1

Тепловые свойства некоторых земляных материалов и строительных элементов различной толщины по мнению разных авторов.


Источник: разработка автора (2019).

Таблица 2

Тепловые свойства некоторых традиционных материалов и строительных элементов различной толщины, по мнению разных авторов.


Источник: разработка автора (2018).

Стены, построенные из грунта, имеют значения плотности, которые варьируются от 750 кг / м 3, для смеси солома с грязью и 2000 кг / м 3 для твердого раствора. Для сравнения, плотность промышленных материалов может варьироваться от 1300 кг / м 3 для обычного полнотелого кирпича до 2400 кг / м 3 для монолитного бетона.

Получены от нескольких авторов, также представлены значения коэффициента теплопередачи и теплопроводности, соответствующие значениям плотности этих материалов.Есть некоторые отличия теплопроводности земляных конструкций от обычных. В первом случае он основан на значениях 0,30 Вт / мК для смеси из соломы и бурового раствора, 0,95 Вт / мК для самана и 1,60 Вт / мК для твердого бурового раствора с переменной толщиной от 0,074 м для плетня и мазка до 0,35 м. для самана.

Во втором случае значения варьируются от 0,29 Вт / мК для пустотелого кирпича до 2,32 Вт / мК для полнотелого кирпича толщиной 0,18 м .

На рис. 2 в логарифмическом масштабе показаны значения теплопроводности материалов, обычно используемых в традиционном строительстве.Пенополистирол показывает самую низкую теплопроводность, а медь — самую высокую теплопроводность. На рисунке 2 также показан диапазон электропроводности для систем земляных зданий, который варьируется от 0,46 Вт / мК до 1,00 Вт / мК, что свидетельствует о небольшом изменении теплопроводности для земляных конструкций по сравнению с материалами, обычно используемыми в традиционном строительстве.


Рисунок 2
Сравнение теплопроводности строительных материалов в w / mk (логарифмическая шкала)
Источник: разработка автора, по материалам edison (2018).

Анализ взаимосвязи между плотностью материала и теплопроводностью (рис. 3) показывает, что материалы с низкой плотностью имеют низкие значения теплопроводности.Это потому, что они имеют меньшее уплотнение и больше пустот, что приводит к более легкому и более изолирующему материалу по сравнению с более плотным и компактным материалом. Эту динамику можно увидеть в случае легкого и ячеистого бетона, где чем выше плотность, тем выше проводимость. В случае глинобитного и уплотненного грунта плотность относительно постоянна, поэтому электропроводность незначительна; однако в случае легкой почвы, плетня и мазки плотность низкая из-за наличия большего количества воздуха и ручной строительной техники, используемой для поднятия стен (Таблица 1).


Рисунок 3
Зависимость плотности от проводимости
Источник: evans (2004), стр. 15.

Другой аспект, проанализированный несколькими авторами, — это тепловая задержка различных строительных систем. В таблице 3 показано сравнительное тепловое отставание глинобитной стены от стены из уплотненного грунта, расположенной в биоэкологической зоне IIIb, с минимальной толщиной — согласно стандарту IRAM 11.605 (IRAM 11605, 1996, стр. 16) — 25 см и 35 см. , соответственно. Они обеспечивают тепловую задержку 8.4 часа и 11,4 часа, оба с одинаковым коэффициентом теплопередачи. Ни в том, ни в другом случае нет риска образования поверхностной или межклеточной конденсации.

Таблица 3

Тепловое отставание глинобитной стены от уплотненной земляной стены


Источник: evans (2004, с. 15).

Точно так же тепловой отклик сырца сравнивается с традиционными материалами, такими как бетон, кирпич и камень (рис. 4). Видно, что во всех материалах существует линейная взаимосвязь между толщиной стены и тепловой задержкой, где саман является промежуточной точкой между бетоном и кирпичом.Если необходимо провести более тщательное исследование, оно должно проводиться при толщине обычной кирпичной стены 0,20 м, которая выдерживает тепловую задержку в 6 часов. Для бетонных стен такой же толщины задержка составляет 5 часов, но в случае сырца стены обычно строятся толщиной 0,30 м, что приводит к задержке в 9 часов; то есть, если максимальный пик наружной температуры приходится на полдень, вся поглощенная энергия будет доставлена ​​во внутреннюю среду к 9 часам вечера, когда это наиболее необходимо для достижения комфорта.Без учета потерь с внешней поверхности элемента в наружный воздух поглощение солнечного излучения внешней поверхностью считается равномерным, что указывает на постоянное значение для всех случаев.


РИСУНОК 4
Кривые теплового запаздывания для различных строительных материалов
Источник: evans (2007, с. 10).

Анализ максимально допустимых значений теплопередачи стен в Аргентине

Чтобы оптимизировать вертикальные ограждения дома, IRAM 11.603 (2012) и IRAM 11.605 (1996) стандарты были использованы для определения максимально допустимого значения K max A D M коэффициента теплопередачи K в стенах для каждой биоэкологической зоны в Аргентине (Рисунок 5).

После этого с учетом коэффициента теплопередачи, указанного в таблицах 1 и 2, ограждение проверяется по различным биоклиматическим зонам в соответствии с прогнозируемой внешней температурой (зимой) в столицах каждой провинции. IRAM 11.605 указывает 3 уровня гигротермического комфорта: Уровень A: рекомендуется; Уровень B: средний; и уровень C: минимум.Частично они определяются отсутствием поверхностной конденсации, когда температура воздуха в помещении поддерживается на определенных значениях в соответствии со стандартом IRAM 11.625. Настоящее исследование проводилось в соответствии с рекомендациями для Уровня C: температура 18 2 C и разница до 4 ° C между внутренней температурой модели и температурой внутренней поверхности корпуса.

В таблице 4 показаны значения ADM K M AX для городов в каждой провинции Аргентины в зависимости от внешней температуры модели (TED) в соответствии со значениями стандарта IRAM 11.603.

Таблица 4

Максимально допустимые значения коэффициента теплопередачи kmax adm для каждой провинции Аргентины


Источник: IRAM 11.603, (2012).

В таблице 5 показаны максимальные значения K в зависимости от зоны биоокружающей среды, определенной в IRAM 11.603, и уровня теплового комфорта. Здания в биоэкологической зоне V и VI не требуют охлаждения.

Таблица 5

Максимальные значения коэффициента теплопередачи в зависимости от зоны биоэкологии и уровня гигротермического комфорта.


Источник: IRAM 11605 (1996, стр. 7).

На основании уровня комфорта C и максимально допустимых значений коэффициента теплопередачи K для зимнего сезона в таблице 6 показано, какие материалы термически подходят для использования в строительстве ограждений в различных биоклиматических зонах Аргентины, как установлено IRAM 11.603.

Таблица 6

Сертификация биоэкологической зоны на коэффициент теплопередачи различных материалов


Таблица 6, (продолжение)

Сертификация биоэкологической зоны на коэффициент теплопередачи различных материалов


Источник: разработка автора на основе IRAM 11.601 (2002, стр. 14).

Для этого анализа были рассмотрены наиболее распространенные примеры традиционного строительства: кирпичная стена толщиной 0,20 м, с использованием кирпичей шириной 0,18 м и 0,01 м штукатурки с обеих сторон, и бетонные блоки без штукатурки. В обоих случаях значения поверхностного сопротивления составили 0,13 м 9 · 1053 2 9 · 1054 К / Вт для внутренней части и 0.04 м 2 К / Вт для экстерьера.

Вышеописанная оштукатуренная кирпичная стена имеет значение K 2,58 Вт / м 2 K, что не соответствует требованиям для какой-либо зоны биологической окружающей среды. Если его мощность увеличить до 0,30 м, значение K снизится до 2,03 Вт / м 2 K, что соответствует только летним условиям в биоэкологических зонах Illa, IVa и IVb, которые отмечены как очень теплые и теплые области (см. Рис. 4). В случае стены из бетонных блоков, заполненных стекловолокном, она имеет толщину 0.19 м, что сертифицировано для всех биоэкологических зон. Это оптимальный вариант для зимы.

Оценка толщины наружной стены по применяемой технологии земляного строительства

На основании анализа, проведенного разными авторами и стандартами, было выбрано пять методов строительства земляных работ: саман, CEB, утрамбованная земля, плетень, мазня и соломенная обшивка. Была произведена оценка минимальной ширины несущей или отдельно стоящей внешней стены, которая соответствовала бы сертифицированным значениям K для уровня комфорта C (см. Таблицу 7) для дома, расположенного в Большом Буэнос-Айресе, биоэкологическая зона lllb ( умеренно-теплая зона с небольшими тепловыми амплитудами в течение всего года).В случае самана и CEB толщина наружных стен варьируется от 0,35 м до 0,43 м. Для утрамбованной земли необходимо работать с толщиной стен 0,40 м. Что касается плетеной, мазной и соломенной обшивки, обе из которых являются более изоляционными за счет тростника в плетенке и мазке, а также воздуха между соломой в соломенной обшивке, обе позволяют уменьшить толщину. Для плетня и мазни наружные стены должны быть толщиной 0,28 м. В случае соломенной доски необходимая толщина стены составляет 0,25 м. Кроме того, в крайнем случае города Рио-Гальегос было показано, что толщина стены из плетня и мазка должна быть равна 0.27 м, чтобы оставаться в пределах уровня C от стандарта, однако уровень комфорта B может быть достигнут при общей толщине всего 0,13 м за счет включения 2 см пенополистирола (Cuitiño, Esteves & Rotondaro, 2014). Наблюдая за этими значениями, можно сделать вывод, что для Большого Буэнос-Айреса ограждения, использующие один из этих пяти методов, будут приемлемой термической альтернативой ограждению из керамического кирпича толщиной 0,35 м.

Таблица 7

Оценка минимально необходимой толщины внешней стены, которая должна быть сертифицирована для гигротермического комфорта уровня c в биоклиматической зоне lllb (центральная часть провинции Буэнос-Айрес).


Источник: разработка автора (2018).

Механическая прочность материалов и элементов стен корпуса

Существует периодическая дискриминация земляных сооружений из-за недостатка знаний о механических характеристиках материалов, компонентов и строительных систем. Многие авторы проводили испытания глинобитных конструкций, конструкций из цементно-песчаного бруса и утрамбованного грунта, чтобы определить устойчивость к простым напряжениям сжатия, резания и изгиба. Такое поведение имеет первостепенное значение при проектировании и строительстве.По достижении стадии, когда необходимо оценить сопротивление конструктивных элементов, становятся актуальными техника строительной системы, материалы и пропорции.

Перуанский стандарт Adobe E.080 (Министерство транспорта, коммуникаций, жилищного строительства и строительства, 2000 г.) определяет саман как «твердый блок сырой земли, который может содержать солому или другой материал для повышения его устойчивости к внешним воздействиям и уменьшения трещин, вызванных усадкой. после высыхания «. В случае CEB процесс более контролируемый, поскольку для создания давления уплотнения используется пресс, в отличие от кирпичной кладки, которая не производится с уплотнением раствора.Это сжатие подразумевает увеличение плотности блока, что придает ему превосходные механические качества.

Утрамбованная земля отличается от предыдущих компонентов, потому что она производится с использованием подвижной опалубки, в которой стабилизированная земля сжимается слоями с помощью трамбовки, и таким образом стена строится по частям. В таблицах 8, 9, 10 и 11 представлены значения прочности на сжатие, изгиб и растяжение, полученные разными авторами на основе стандартизованных испытаний в разных странах и их собственных данных.

Таблица 8

Значения механического сопротивления для самана.


Источник: разработка автора (2018).

Таблица 9

Значения механического сопротивления для CEB


Источник: разработка автора (2018).

Таблица 10

Значения механического сопротивления при сжатии утрамбованной земли


Источник: разработка автора (2018).

Таблица 11

Значения сопротивления сдвигу и простому сжатию для земляных и промышленных строительных материалов и компонентов (regalement cirsoc 501)


Источник: авторская разработка (2018).

В случае самана прочность на сжатие варьируется от 3 кгс / см 2 до 21 кгс / см 2 ; его прочность на разрыв и сдвиг очень низкая: 3,16 кгс / см 2 . CEB показывает улучшенный отклик со значениями в диапазоне от 17 кг / см 2 до 121,8 кг / см 2 . Колебания отражают содержание цемента в смеси: по мере увеличения процентного содержания заполнителя цемента сопротивление сжатию и изгибу увеличивается. Наконец, утрамбованная земля имеет переменное сопротивление в зависимости от смеси песка и глины и толщины стены.

Таким образом, полученные значения варьируются от 46 кгс / см 2 до 196 кгс / см 2 . В случае других материалов и компонентов, таких как кирпич обыкновенный, в таблице 12 показаны значения сжатия от 17,5 кгс / см 2 до 78 кгс / см 2 . Для пустотелого бетонного блока эти значения находятся в диапазоне от 45,5 кгс / см 2 до 130 кгс / см 2 . По этим данным видно, что саман имеет очень низкие значения механического сопротивления, поэтому необходимо укрепить конструкцию, чтобы улучшить ее структурные характеристики.CEB и утрамбованная земля имеют лучший отклик, чем саман, с точки зрения стандартизованных значений механической прочности, и их можно сопоставить с откликами обычного обожженного кирпича и бетонных блоков. Однако, несмотря на его лучший отклик, следует иметь в виду, что в случае промышленных систем его толщина составляет около 0,18 м, а в случае систем земляного строительства — около 0,30 м и 0,90 м.

Таблица 12

Диапазон значений плотности, проводимости и коэффициента теплопередачи для земляных и промышленных строительных компонентов и материалов


Источник: разработка автора (2018).

Обсуждение

Это исследование представляет собой сравнительный анализ термического и механического поведения различных строительных материалов и элементов, изготовленных из стабилизированных природных грунтов, по отношению к свойствам некоторых традиционных промышленных материалов. Он показывает сложность гомогенизации значений для глинобитных материалов, легких грунтов и утрамбованных грунтов. Такое поведение является результатом переменной плотности и диапазона материалов и растворов, обычно используемых при их производстве.

Также было показано, что теплопроводность экспоненциально изменяется в зависимости от плотности, которая изменяется в зависимости от наличия растительного волокна и степени уплотнения. То есть, чем больше уплотнение, тем ниже пористость или процент воздушных карманов; таким образом, уменьшается и утеплитель, и увеличивается теплопроводность: чем выше плотность элемента конструкции, тем больше значение проводимости. Такое поведение, вероятно, является источником различий, иногда заметных, между значениями теплопроводности или значениями теплопроводности в результатах, полученных в результате стандартизованных испытаний, проведенных разными авторами.Используя данные из таблиц 1 и 2, таблица 13 суммирует тепловое поведение, предоставляя диапазон значений плотности, проводимости и теплопередачи, независимо от авторов, проводивших оригинальные исследования.

Можно видеть, что значения плотности для материалов, используемых в технологиях земляного строительства, которые содержат растворы с низкой плотностью волокна или уплотненные стабилизированные грунты, имеют значения между 1200 кг / м 3 и 2200 кг / м 3 . Невозможно работать с более низкой плотностью, потому что это подразумевает наличие большего количества воздуха, включенного в миномет.

В случае наиболее распространенных промышленных материалов в традиционном аргентинском строительстве видно, что они обладают более высокой плотностью: от 1305 кг / м 3 до 2400 кг / м 3 .

В отношении стандарта IRAM 11.605 можно сделать вывод, что 1,85 Вт / м 2 K необходимы для достижения уровня экологического комфорта C в зоне lllb, провинция Буэнос-Айрес. Таким образом, для достижения такого уровня изоляции с помощью традиционной технологии стены из обычного полнотелого кирпича требуют толщины 0.35 м, а в случае пустотелых керамических блоков и несущих керамических блоков необходима стена толщиной 0,20 м. Для сравнения, необходимая толщина наружных стен из самана и БСЭ составляет от 0,35 до 0,43 м; для утрамбованной земли нужна стена 0,40 м; в случае плетения и мазни нужна толщина 0,28 м; а для соломенной обшивки нужна толщина 0,25 м.

Другим анализируемым поведением было механическое сопротивление, в первую очередь простому сжатию, поскольку оно является одним из наиболее важных механических свойств земляных материалов и строительных компонентов.В случае простой прочности на сжатие диапазон или отклонение составляет от 3 кгс / см 2 до 21 кгс / см 2 для самана, за исключением единственного значения 30,4 кгс / см 2 в таблице 9, которое показывает очень низкое сопротивление растяжению и сдвигу. Простая прочность на сжатие улучшается в случае CEB со значениями от 17 кг / см 2 до 121,8 кг / см 2 , что сравнимо с показателями обычного обожженного кирпича, которые могут варьироваться от 17,5 кг / см 2 до 70 кг / см 2 , а для пустотелых бетонных блоков — от 45.5 кгс / см 2 и 130 кгс / см 2 .

Выводы

В качестве заключительного размышления и с учетом результатов этого исследования, даже с учетом отличительных особенностей и ограниченной поведенческой стандартизации для различных материалов, строительных растворов и строительных элементов, прогнозируемое развитие земляного строительства и архитектуры в Аргентине очень актуально в этой области. жилья. Этот прогноз основан на том факте, что в последние десятилетия наблюдается рост использования этой технологии для строительства домов и общественных зданий по всей Аргентине, от регионов с самой высокой сейсмической уязвимостью до регионов с самой низкой.В ближайшем будущем эти изменения могут способствовать улучшению предложений по строительству мест обитания с четкой ориентацией на устойчивую архитектуру, а также сокращению жилищного дефицита.

Не исключено, что на это увеличение строительства с использованием земляных технологий повлияли присущие им характеристики и свойства их механического и теплового поведения, такие как изоляционная способность, простота конструкции, использование природных местных материалов и низкие относительные экономические затраты. .

Аналогичным образом, структурный аспект некоторых методов земляного строительства может быть полезен, если они сочетаются с качественным проектированием и исполнением в отношении ширины стены, усиления и пропорциональности. Это актуально для сейсмических зон, так как данная технология дает возможность изготавливать земляные конструкции с легкими, гибкими и прочными конструкциями.

Растущее признание и интерес к земляному строительству является стимулом для продолжения исследования преимуществ ее тепловых свойств и характеристик, а также механической стойкости, которые характеризуют различные методы строительства, в которых используются модифицированные естественные грунты, и здания с повышенным экологическим комфортом и структурной стабильностью.

Ссылка

Alavedra, R, Domínguez, J., Gonzalo, E., & Serra, J. (1997). La construcción sostenible: el estado de la cuestión. Informes de la Construcción, 451 (49), 41-47. http://dx.doi.Org/10.3989/ic.1997.V49.¡451.936.

Арансибия, Р. (2013). Medida de la conductividad térmica con el método de la aguja térmica, basado en la fuente lineal de calor transitorio, para su aplicación en los cerramientos de adobes y bloques de tierra comprimida (докторская диссертация Тесиса). Мадрид: Мадридский политехнический университет. Recuperado de :: http: // oa.upm.es/21903/.

Ариас, Э., Латина, С. М., Альдерете, К., Меллаче, Р. Ф, Соса, М., и Феррейра, И. (2007). Comportamiento Térmico de Muros de Tierra en Tucumán, (стр. 1-8). Буэнос-Айрес, Аргентина: ANPCYT, Agencia Nacional de Promoción Científica y Tecnológica. Recuperado de :: https://fci.uib.es/digitalAssets/177/177906_4.pdf.

Arias, L., Alderete, C., Mellace, R., Latina, S., Sosa, M., & Ferreyra, I. (2006). Diseño y Análisis Estructural de Componentes Constructivos de Tierra Cruda.Memorias V o Seminario Iberoamericano de Construcción con Tierra (V o SIACOT). Мендоса: CRICYT CONICET. Recuperado de :: https://dialnet.unirioja.es/servlet/articulo?codigo=4529876.

Бедоя-Монтойя, К. (2018). Construcción de vivienda sostenible con bloques de Suelo Cemento: del Остаточный материал. Revista de Arquitectura (Богота), 20 (1), 62-70. http://dx.doi.Org/1 0.1 471 8 / RevArq.2018.20.1.1193.

Бестратен, С., Хормиас, Э., и Альтемир, А.(2011). Construcción con tierra en el siglo XXI. Informes de la Construcción, 63 (523), 5-20. DOI: http://dx.doi.org/10.3989/ic.10.046.

Бласко, И., Альбаррасин, О., Годальго, Э., Дубос, А., Перейра, А., Флорес, М., и Мерино, Н. (2002). Construcción de salón comunitario en suelo-Cemento, ler Seminario — Exposición -Consorcio Terra cono-sur. La tierra cruda en la construcción del hábitat, (стр. 10).

Касерес Теран, Дж. (1996, октябрь). Desenvolupament Sostenible. Ревиста Трете (66), 7-8.

Куитиньо Г., Эстевес А. и Ротондаро Р. (2014). Análisis del comportamiento térmico de muros de quincha. Castellanos Ochoa, M. N. (Comp.) Arquitectura de Tierra: Patrimonio y sustentabilidad en regiones sísmicas. 14 ° SIACOT — Иберо-американо-де-аркитектура и строительство на Тьерре (стр. 184–192). Тукуман.

Куитиньо, О., Эстевес, А., Мальдонадо, О., и Ротондаро, Р. (2015). Análisis де ла трансмиссия térmica y resistencia al impacto de los muros de quincha.Informes de la Construcción, 67 (537), e063. 1-11 DOI: http://dx.doi.org/10.3989/ic.12.082.

Куитиньо, О., Мальдонадо, О., и Эстевес, А. (2014). Анализ механического поведения сборных стен из плетеной плитки и шпаклевки. Международный журнал архитектуры, инженерии и Con 10,5 Avances en Energías Renovables y Medio Ambiente, 13, 203-210. Recuperado de :: https://www.mendoza-conicet.gob.ar/asades/modulos/averma/trabajos/2009/2009-t005-a026.pdf.

Etchebarne, R., Piñero, O, & Silva, J.(2006). Proyecto Terra Uruguay. Создание прототипов жизни и использование технологий на уровне: Adobe, Fajina и BTC. Construcción con Tierra, 2, 5-20. Recuperado de: https://core.ac.Uk/download/pdf/151807285.pdf#page=5

Эванс, Дж., Шиллер, С., & Гарсон, Л. (2012). Desempeño térmico de viviendas construidas con quincha. Construcción con tierra, 5, 93-102. Recuperado de :: https://core.ac.Uk/download/pdf/151807279.pdf#page=125.

Эванс, Дж. (2004).Construcción en tierra: Aporte a la ownabilidad. 1er Seminario deConstrucción con Tierra, 12-17.

Эванс, Дж. (2007). Actualización de la construcción con tierra. Construcción con tierra 3, 7-15.

Фернандес, Э., и Эстевес, А. (2004). Conservación de energía en sistemas autoconstruidos. Эль-Касо-де-ла-Кинча Мехорада. Avances en Energías Renovables y Medio Ambiente, 8 (1) 121-125. Recuperado de: http://sedici.unlp.edu.ar/handle/10915/81714.

Фрейре, Д., и Тиноко, Дж.(2015). Estudio de una propuesta de mejoramiento del sistema constructivo adobe (Tesis de grado). Эквадор: Университет Куэнка. Recuperado de :: http://dspace.ucuenca.edu.ec/handle/123456789/22773.

Fuentes Freixanet, В. А. (2009). Modelo de análisis climático y Definición de estrategias de Disño bioclimático для различных регионов Мексиканской Республики. Tesis de Doctor en Diseño. Azcapotzalco: Universidad Autónoma Metropolitana — Unidad Azcapotzalco División de Ciencias y Artes para el Diseño.Recuperado de :: https://core.ac.uk/download/pdf/128736412.pdf.

Гатани М. (2002). Producción de Ladrillos de Suelo Cemento. ¿Una alternativa eficiente, económica y Sustentable? Actas I Seminario Exposición La tierra cruda en la construcción del hábitat (стр. 203–212). Сан-Мигель-де-Тукуман: Facultad de Arquitectura y Urbanismo. Национальный университет Тукумана.

Гик, К. (2005). Manual de fórmulas técnicas. Мексика: Альфаомега.

Гутьеррес, Р., и Гальегос, Д.(2015). Construcción Sustentable, Análisis de retraso térmico a bloques de tierra comprimida. Contexto, 9 (11). 59-71.Recuperado de: http://contexto.uanl.mx/index.php/contexto/article/view/49.

Hays, A., & Matuk, S. (2003). Рекомендации по разработке технических нормативов по техническому образованию с использованием смесей конструкции на земле. En Técnicas mixtas de construcción Proyecto XIV .6 Proterra Habyted Subprograma XIV-Viviendas de Interés Social. (стр. 121-352). Сальвадор: Ибероамериканская программа Ciencia y Tecnología para el Desarrollo (CYTED).

Хиткот, К. (2011). Тепловые характеристики земляных построек. Informes de la Construcción, 63 (523), 117-126. DOI: http://dx.doi.org/10.3989/ic.10.024.

Houbén, H., & Cuillaud, H. (1984). Земляное строительство. Брюссель: CRATerre / PCC / CRA / UNCHS / ACCD.

INPRES CIRSOC 103, часть III. Норма (2016). Reglamento argentino para construcciones sismorresistentes. 75. Буэнос-Айрес, Аргентина: Национальный институт промышленных технологий.

ИНПРЕС ЦИРСОК 501.Норма (2007). Reglamento argentino de estructuras de mampostería. 64. Буэнос-Айрес, Аргентина: Национальный институт промышленных технологий.

IRAM 11.601. Норма (2002). Aislamiento térmico de edificios. Métodos de cálculo. 52. Буэнос-Айрес, Аргентина.

IRAM 11.603. Норма (2012). Condicionamiento térmico de edificios Clasificación bioambiental de la República Argentina. 43. Буэнос-Айрес, Аргентина.

IRAM 11.625. Норма (2000). Aislamiento térmico de edificios — Verificación de sus condiciones highrotérmicas.41. Буэнос-Айрес, Аргентина.

IRAM 11605. Norma (1996). Acondicionamiento térmico de edificios. Condiciones de Hubabilidad en edificios. Valores máximos de Transmitancia térmica en cerramientos opacos. 27. Буэнос-Айрес, Аргентина.

Лучано, Ф., Брейд, М., Карай, Э., Мерканти, Н., и Тирнер, Дж. (2006). Proyecto, конструкция и конструкция компонентов вивьендас кон суело-цемент монолитико-ан-ла-провинция-де-корриентес. V Seminario Iberoamericano de Construcción con Tierra — I Seminario Argentino de Arquitectura yConstrucción con Tierra.Мендоса, Аргентина: AHTER-CRIATiC. Recuperado de :: https://dialnet.unirioja.es/servlet/articulo?codigo=4531585.

Мас, Дж. М., и Киршбаум, К. Ф. (2012). Estudios de resistencia a la compresión en bloques de suelo-цемент. Avances en Energías Renovables y Medio Ambiente, 16, 77-84. Recuperado de :: https://www.mendoza-conicet.gob.ar/asades/modulos/averma/trabajos/2012/2012-t005-a010.pdf.

Маццео, Дж., Ласус, О., Калоне, М., Сангинетти, Дж., Феррейро, А., Маркес, Дж., И Мато, Л.(2007). Proyecto hornero: prototipo global de Experimentación construcción con materiales naturales. Монтевидео, Уругвай: Университет Республики. Recuperado de :: https://hdl.handle.net/20.500.12008/9469.

МакГенри-младший, П. (1996). Adobe. Cómo construir fácilmente. Мексика: Триллы.

Ministerio de Transportes, Comunicaciones, Vivienda y Construcción. (2000). Norma Técnica de edificaciónE.080. 16. Лима, Перу. Recuperado de: https://www.sencico.gob.pe/descargar. php? idFile = 3478.

Минке, К. (2005). Manual de construcción con tierra. La tierra como material de construcción y su aplicación en la arquitectura actual (2-е изд.) Кассель, Алемания: Fin de Siglo.

Моэвус М., Энгер Р. и Фонтейн Л. (2012). Гигротермомеханические свойства земляных материалов для строительства: обзор литературы. Терра, 12, 1-10. Recuperado de :: https://hal.archives-ouvertes.fr/hal-01005948.

Муньос, Н., Томас, Л., и Марино, Б. (2015). Comportamiento térmico dinámico de muros típicos empleando el método de la admitancia.Energías Renovables Y Medio Ambiente (ERMA), 36. 31–39. Recuperado de: http://www.ekeko.org/ojs8/index.php/ERMA/article/view/125.

Невес, К. (2006). O uso do solo-cimento em edificações. Опыт, который нужно сделать CEPED. V Ибероамериканский семинар по строительству на Тьерре — I Аргентинский семинар по архитектуре и строительству на Тьерре, (стр. 1-11). Мендоса, Аргентина: AHTER-CRIATiC. Recuperado de: https://dialnet.unirioja.es/servlet/articulo?codigo=4529722.

Пиаттони, К., Квальярини, Э., & Ленси, С. (2011). Экспериментальный анализ и моделирование механического поведения глиняных кирпичей. Строительство и строительные материалы, 2067-2075. http://dx.doi.org/10.1016/j.conbuildmat.2010.11.039.

Понс, К. (2018). Características generales del adobe como material de construcción. Recuperado de :: http://ecosur.org/index.php/es/ecomateriales/ adobe / 712-caracteristicas-generales-del-adobe-como-material-de-construccion.

Ривера Торрес, Дж. (2012). El adobe y otros materiales de sistemas constructivos en tierra cruda: caracterización con fines estructurales.Апунтес. Revista de Estudios sobre patrimonio culture, 25 (2). 164-181. Recuperado de :: https://revistas.javeriana.edu.co/index.php/revApuntesArq/article/view/8763.

Ротондаро, Р. (2011). Adobe: Técnicas de construcción con tierra. Бразилия: PROTERRA

Ру К., Р., Эспуна М., Дж., И Карсия И., В. (2008). Influencia del Cemento Portland en las características de resistencia de compresión simple y permeabilidad en los BTC. Seminário Ibero-Americano de Construção com Terra -II Congresso de Arquitetura e Construção com Terra no Brasil (стр.210-219). Бразилия: UTN Rafaela.

Санчес М., Бельярдо Х., Казенаве С. и Шак Дж. (2008). Elaboración de bloques de suelo-cemento con barros de excación para pilotes. Иберо-американо-де-конструкторское сообщество Терра-II Конгресс Аркитетура и Конструкторское товарищество Терра-но-Бразилия (стр. 190–197). Бразилия: UTN Rafaela.

Вальдес, К., и Рапиман, Дж. (2007). Propiedades físicas y mecánicas de bloques de Germigón compuestos con áridos reciclados. Información Tecnológica, 18 (3), 81-88.Recuperado de: https://scielo.conicyt.cl/pdf/infotec/v18n3/art10.pdf.

Вега, П., Андрес, Дж., Куэрра, М., Моран, Дж., Агуадо, П., и Лламас, Б. (2011). Механическая характеристика традиционных адобэ с севера Испании. Строительство и строительные материалы, 25 (7), 3020-3023. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2011.02.003.

Вассуф, М. (2014). Passivhaus — de la casa pasiva al estándar. Барселона: Густаво Чили.

Ямин Лакутюр, Л., Филлипс Бернал, К., Рейес Ортис, Дж., И Руис Валенсия, Д. (2007). Estudios de weakrabilidad sísmica, rehabilitationación y refuerzo de casas en adobe y tapia pisada. Апунтес. Revista de Estudios sobre patrimonio culture, 20 (2). 286-377. Recuperado de https://revistas.javeriana.edu.co/index.php/revApuntesArq/article/view/8984.

Юсте, Б. (2014). Arquitectura en tierra. Caracterización de los tipos edificatorios (Tesis de Máster de Arquitectura, Energía y Medio Ambiente). Каталония: Политехнический университет Каталонии.Recuperado de :: https://wwwaie.webs.upc.edu/maema/wp-content/uploads/2016/07/26-Beatriz-Yuste-Miguel-Arquitectura-de-tierra_COMPLETO.pdf

Банкноты

Куитиньо Росалес М. Дж., Ротондаро Р., Эстевес А. (2020). Сравнительный анализ тепловых аспектов и механической стойкости строительных материалов и элементов с землей. Revista de Arquitectura (Богота), 22 (1). 138-151. http://dx.doi.org/10.14718/RevArq.2020.2348

Численно-экспериментальный анализ стенок керамических блоков разной толщины при высоких температурах

ВСТУПЛЕНИЕ

В 1974 году пожар в здании Joelma, расположенном в Сан-Паулу, Бразилия, подчеркнул опасность пожара из-за отсутствия горизонтального и вертикального разделения.Разделение участков является элементом пожарной безопасности, и его основная цель состоит в том, чтобы ограничить действие огня, чтобы ограничить территорию и, таким образом, развитие пламени, а также защитить жителей от воздействия огня на определенный период. Кладка стен и перегородок может способствовать разделению между комнатами, уменьшая распространение огня и дыма между помещениями. (MARCATTI et al., 2008).

В связи с растущей потребностью в строительстве с соблюдением качества и безопасности, особенно в связи с вступлением в силу Бразильского стандарта качества жилищных зданий NBR 15575 (ABNT, 2013), необходимость проверки эффективности строительных систем с точки зрения (а) устойчивости , (б) обитаемость и (в) усиление безопасности.Согласно NBR 15575 (ABNT, 2013), среди систем, которые должны соответствовать этим условиям, система вертикального уплотнения должна соответствовать минимальным требованиям пожарной безопасности. Кроме того, требования к разделению на отсеки требуются правилами государственного управления пожарной охраны Бразилии, что усиливает эту потребность и требует от проектировщиков соблюдения этих стандартов.

Огнестойкость элементов кладки принято связывать с их толщиной, но необходимо учитывать и другие факторы, такие как количество воздушных слоев, содержащихся в блоках.В сечении этих элементов имеется сложное распределение температуры, которое требует дальнейшего изучения из-за различных механизмов теплопроводности в них. Кладка также варьируется в зависимости от региона производства, а также от изменения доступных составляющих материалов и местных производственных процессов. (ЗЕМБЕРЫ, 2013).

Для проекта кладки в условиях пожара Еврокод 6 (EN 1996-1-2, 2005) допускает два типа методов определения размеров. Один использует фиксированные данные, которые обеспечивают минимальный требуемый размер толщины стенки для определения времени огнестойкости.Второй метод, посредством расчета, который учитывает модуль разрушения материала при воздействии высокой температуры, определяет характеристики элемента в соответствии с температурой, степенью гибкости и деформацией из-за ограниченного теплового расширения. (RIGÃO, 2012).

Учитывая, что NBR 15220 (ABNT, 2003) использует очевидное упрощение теплопроводности и представляет коэффициент теплопроводности замкнутого воздуха намного ниже, чем у вентилируемого воздуха, можно сделать вывод, что причина этого уменьшения связана с конвекцией. и перенос теплового излучения, который происходит между гранями, которые создают это ограничение.Можно также предположить, что объяснение разницы в кажущихся значениях теплопроводности в тестах Bai (2017) связано с тем фактом, что их образцы с меньшими альвеолами имеют большее количество полостей, что приводит к большему количеству явлений конвекции и теплового излучения, происходящих внутри пример.

Лабораторные испытания проводятся для понимания работы систем вертикального уплотнения в пожарной ситуации и, следовательно, для определения возможности их использования. В Бразилии стандартом, регулирующим испытания этих систем на огнестойкость, является NBR 5628 (ABNT, 2001) для стен со структурной функцией и NBR 10636 (ABNT, 1989) для стен без структурной функции.Согласно стандартам, испытания должны проводиться в реальном масштабе, что делает процесс дорогостоящим, что в сочетании с ограниченным количеством вертикальных печей в Латинской Америке ограничивает техническую коллекцию в этой области. (RIGÃO, 2012).

Следовательно, разработка теоретических моделей и компьютерного моделирования необходима для оценки поведения кладки в пожарной ситуации. В этом анализе теплопередача и механическое поведение являются факторами, которые происходят в трехмерной плоскости.Однако большинство существующих моделей основаны на двумерных подходах, основанных на макроскопическом масштабе, что препятствует надлежащему анализу конвективной и радиационной теплопередачи внутри керамических блоков. (NGUYEN et al., 2009).

Чтобы сделать вычислительный анализ более репрезентативным, вычислительные модели должны быть откалиброваны с данными, полученными в результате экспериментальных испытаний. Доступные результаты испытаний системы вертикального уплотнения приближаются к параметрам герметичности (T), теплоизоляции (I) и механического сопротивления (R), что затрудняет выполнение расширенной вычислительной модели, требующей некоторой другой соответствующей информации.(НГУЕН; МЕФТА, 2012).

Таким образом, в данной работе оценивалось влияние геометрии керамического блока с вертикальными отверстиями на огнестойкость вертикальных уплотнительных систем в пожарных ситуациях, с использованием компьютерных моделей, калибруя их по результатам испытаний на огнестойкость в реальных экспериментальных стенах, разработанных в соответствии с NBR. 5628 (ABNT, 2001). Исследование было разделено на пять этапов: (1) введение; (2) экспериментальная программа; (3) численный анализ; (4) результаты и обсуждение; и (5) заключение.

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОГРАММА.

Строительство прототипа стены

Стена, использованная в качестве калибровочного объекта, получила название P1. Эта система имеет размеры 3,15 x 2,80 м и была построена на металлическом портале в лаборатории, как показано на Рисунке 1.


Рисунок 1
Конструктивная последовательность стены П1.

Для выполнения опытной испытательной стены использовались керамические блоки с fbk 8 МПа, содержащие вертикальные отверстия и размерами 14 x 19 x 29 см, а также с укладкой швов из цемента, песка и извести со средним значением 4 МПа. прочность на сжатие, в дополнение к аэраторам, стабилизатору гидратации и водоудерживающему устройству.

Приборы

Для оценки температуры стенки на протяжении всего испытания пять термопар использовались на лицевой стороне, подвергшейся воздействию огня, и пять термопар на неэкспонированной поверхности, помещенных на ее поверхность, как показано на рисунке 2. Кроме того, пять термопар были добавлены вдоль секции блока. , как показано на рисунке 3.


Рисунок 2
Внешние термопары.

Рисунок 3
Расположение внутренних термопар на блоках в разрезе (а) и плане (б).

Вертикальная печь

Испытание проводилось в лаборатории пожарной безопасности Unisinos.Стена была испытана после 56 дней отверждения в вертикальной печи. Печь имеет четыре горелки, расположенные в соответствии с рисунком 4, управляемые двумя термопарами, которые позволяют измерять изменение температуры в соответствии с ISO 834 (2014). На рисунке 4 также показана последовательность настенного монтажа и установки в испытательной печи. Печь имеет дымоход, который регулирует поток газов, образующихся при нагревании, и внутреннее давление на протяжении всего испытания, а также теплоизоляцию, состоящую из одеяла из керамического волокна и четырех газовых горелок, которые управляются цифровым способом с помощью цифрового центра управления.


Рисунок 4
Деталь соединения системы с вертикальной печью.

ЧИСЛЕННЫЙ АНАЛИЗ

Анализ помещений

Для разработки вычислительной модели использовалась программа Ansys Mechanical Transient Thermal. В этой программе была сгенерирована сетка элементов, как показано на рисунке 5. Каждое деление, отображаемое в секции блока, представляет собой конечный элемент, который должен быть вычислен, так что программа выполняет серию более мелких вычислений и группирует их для представления окончательного результата. .


Рисунок 5
Гипотетическая вычислительная сетка для вычислительного анализа.

Конечные элементы, созданные программой для анализа, были типа QUAD_4, который генерирует четыре узла и представляет собой близкие квадратные формы. Минимальный и максимальный размер каждого элемента определялся вручную: наименьший возможный элемент со стороной 1 мм и максимально возможный элемент со стороной 50 мм. Миномет рассматривался как инертный элемент, с полной итерацией с блоком.Теплопроводность блока была дана как функция температур, извлеченных из экспериментальной модели. Это моделирование было выполнено в двух измерениях с единственной целью рассмотреть изотермы анализируемых блоков.

С расчетной сеткой была вставлена ​​кривая температуры, которой должна подвергаться стена, в соответствии с кривой, приведенной в ISO 834 (ISO, 2014). Начальная температура, определенная для вычислительного анализа, была такой же, как и использованная в экспериментальном тесте, 20ºC.

Параметры, полученные при экспериментальной калибровке

Для проведения экспериментального анализа необходимо было использовать параметры, связанные с тепловыми свойствами материалов, а именно: плотность, удельную теплоемкость и коэффициент теплопроводности. Параметры, определенные для калибровки, представлены в таблице 1.

Таблица 1

Параметры, определенные для калибровки.

Параметр Значение
Плотность (кг / м³) Теплопроводность (Вт.См / м) Удельная теплоемкость (Дж.Кл / кг)
Воздух 1,125 0,025 1005
Раствор 1709 0,9 1550
Блок 1200 2,5 880

Для определения значений конвекции, учитывая ее изменчивость с повышением температуры, блок был разделен на две области, как показано на рисунке 6, и для каждой из них было присвоено значение коэффициента теплопроводности в соответствии с эволюцией время испытания, когда температура повысилась.Используемые коэффициенты показаны в таблице 2.


Рисунок 6
Области, определенные для коэффициентов конвекции.

Таблица 2

Коэффициенты тепловой конвекции.

Область блока Время проверки
30 мин. 60 мин.120 мин. 240 мин.
Область 1 30 (Вт / м) 14 (Вт / м) 9 (Вт / м) 4 (Вт.С / м)
Область 2 0,7 (Вт / м) 20 (Вт / м) 6 (Вт / м) 0,5 (Вт / м)

Эти значения были извлечены из экспериментальной модели и вставлены в вычислительное моделирование.

Точки измерения температуры

Точки считывания температуры в блоке были такими же, как и те, что определены экспериментально, как показано на рисунке 7. Термопары 3 и 4, которые не показаны на рисунке 7, использовались для измерения результатов температуры воздуха в компьютерном моделировании.


Рисунок 7
Точки, учитываемые при измерении температуры блоков.

Калибровка и валидация вычислительной модели

Для проверки расчетной модели путем экспериментального анализа в вертикальной печи в качестве переменных рассматривались параметры плотности, теплопроводности, удельной теплоемкости и тепловой конвекции, которые были извлечены из теста. С помощью этих отчетов вычислительная модель была откалибрована с экспериментальными данными, как показано в таблице 3.

Таблица 3

Температуры, достигнутые в калибровочной модели.

Очки Время
30 мин. 60 мин.120 мин. 240 мин.
В точке 1 833 ºC 945 ºC 1047 ºC 1151 ºC
В точке 2 321 ºC 608 ºC 701 ºC 846 ºC
В точке 3 46 ºC 95 ºC 237 ºC 417 ºC

Проверка модели произошла на основе значений, полученных в результате численного анализа с экспериментальным анализом.

Экстраполяция экспериментальных результатов

После калибровки, выполненной в соответствии с экспериментальным результатом, начался процесс вычислительной экстраполяции для блоков различной геометрии. Для этого использовались керамические блоки трех товарных толщин: 11,5, 14 и 19 см. Для каждой из этих толщин были определены три блока, варьируя количество альвеол и, следовательно, процент пустот. Было предложено три различных геометрии, но толщина внутренних стенок блока была постоянной: 9 мм снаружи и 8 мм внутри, как показано на рисунке 8.


Рисунок 8
Внутренние и внешние стены блоков.

Семейство блоков толщиной 11,5 см называлось BL1; BL2 толщиной 14 см; и BL3 толщиной 19 см. Процентные вариации пустот внутри одного и того же семейства блоков были рассчитаны с использованием соотношения между общей площадью и чистой площадью и обозначены как индексы I, II и III. На рисунке 9 подробно описаны блоки, использованные в этом исследовании. Блоки были названы последовательно от BL1 до BL3. Замечено, что блоки с индексом II (BL1-II, BL2-II и BL3-II) встречаются на рынке, коммерческие.Отсюда были предложены блоки с меньшими и немного большими альвеолами, с индексом I (BL1-I, BL2-I и BL3-I), и блоки с более крупными альвеолами и в небольшом количестве, с индексом III (BL1- III, BL2-III и BL3-III).


Рисунок 9
Б / у блоки.

Таблица 4 показывает номенклатуру, измерения и пустой объем (%), рассчитанные для каждого типа керамического блока.

Таблица 4

Блоки, используемые при моделировании.

Название блока Размеры (см) Общее количество пустот (%)
BL1-I 11,5 x 19 x 26,5 54,24
BL1-II 11,5 x 19 x 26,5 43,72
BL1-III 11,5 x 19 x 26,5 71,42
BL2-I 14 x 19 x 26,5 54,2
BL2-II 14 x 19 x 26,5 58,6
BL2-III 14 x 19 x 26,5 72,82
BL3-I 19 x 19 x 26,5 64,36
BL3-II 19 x 19 x 26,5 57,39
BL3-III 19 x 19 x 26,5 79,03

Времена анализа изотерм блока

Изотермы блоков в вычислительной программе рассчитывались через 30, 60, 90, 120, 180 и 240 минут.Для определения времени огнестойкости (FRT) каждого блока была определена предельная температура 200 ° C (180 + 20 ° C) на не подверженной воздействию огня стороне для изолированной термопары на основе предписаний NBR 10636 (ABNT, 1989). ).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Поскольку преобладающим критерием определения FRT является температура неэкспонированной поверхности блока, эти измерения были использованы для анализа с предельной температурой 200 ° C на неэкспонированной поверхности.Изотермы блоков были собраны в вычислительной программе через 30, 60, 90, 120, 180 и 240 минут. На рисунке 10 представлены изотермы некоторых блоков, использованных в этом исследовании, а на рисунке 11 показано сравнение всех блоков с вариациями в геометрии, процентном содержании пустот и толщине.


Рисунок 10
Блок-изотермы (a) BL2-I, (b) BL2-III, (c) BL3-II и (d) BL3-III через 180 минут.

Рис. 11
Сравнение температур на неэкспонированных поверхностях всех протестированных блоков.

По рисунку 11 можно определить, что альвеолы ​​имеют большое влияние на теплоизоляцию блоков, особенно при более высоких температурах. Было замечено, что выбор блока с большим количеством альвеол может быть более эффективным вариантом, чем выбор более толстого блока, когда желателен высокий FRT, что подтверждает вывод Ли (2017) о том, что влияние альвеол в блоке становится практически нулевым при низких температурах.Рассматривая реакцию моделей, было обнаружено, что при более высоких температурах конвективные и радиационные явления, которые происходят внутри блоков, более актуальны, чем теплопроводность, которая происходит через материал. Это подчеркивается в NBR 15220 (ABNT, 2003), где ограниченный воздух определяется как отличный теплоизолятор.

Из результатов рисунка 11 можно было экстраполировать значения пустот, необходимые для соблюдения времени термоизоляции (TIT) для каждого типа блока, представленного в таблице 5.Экстраполяция была произведена путем корректировки только формы блока, основанного на той, которая была откалибрована экспериментальным путем.

Таблица 5

Определение TIT по процентному содержанию пустот в блоке.

Толщина блока Максимальный процент пустот для FRT в минутах
30 60 90120180 240
11,5 см 79,11% 86,64% 45,95% 42,17% 40,25% 30,95%
14 см 81,73% 80,71% 62,89% 58,30% 53,08% 45,96%
19 см 84,90% 84,90% 84,90% 84,90% 74,02% 59,62%

Для сравнения были построены кривые изменения температуры неэкспонированной грани блоков Index II, чтобы сравнить влияние толщины блоков, представленных на Рисунке 12.


Рисунок 12
Блок-кривые BL1-II, BL2-II и BL3-II

Из этих кривых можно было определить толщину, относящуюся к желаемой TIT в уплотнительной стенке, как показано в Таблице 6.

Таблица 6

Определение ТИТ по толщине блока.

Минимальная толщина для FRT
FRT (мин.) 30 60 90120 180 240
Толщина (см) 11,5 11,5 14 19 19

В таблице 6 представлена ​​минимальная толщина стенок, соответствующая требованиям Еврокода 6 (EN 1996-1-2, 2005), что усиливает валидацию используемых параметров.Наблюдая за данными, полученными в результате анализа влияния толщины блока, можно убедиться, что этот фактор имеет хорошее влияние на более низкие TIT. Однако через 90 минут этот параметр имеет тенденцию иметь более низкую скорость приращения TIT.

ВЫВОДЫ

В данной работе огнестойкость керамических блоков, используемых для структурной кладки, была проанализирована методом конечных элементов с использованием программы Ansys Mechanical. Блоки, протестированные с помощью программного обеспечения, были отформованы в конфигурацию без покрытия и с 1-сантиметровыми строительными швами, варьируя только толщину и количество альвеол в каждой модели.

Вычислительный анализ привел к результатам, указывающим на предел эффективности увеличения толщины стены для достижения высоких показателей FRT по отношению к теплоизоляции. Также можно было продемонстрировать усиление теплоизоляции за счет увеличения количества альвеол в блоке. Таким образом, удалось убедиться в важности процессов конвекции и теплового излучения для пожарной безопасности, которые более актуальны, чем теплопроводность оцениваемого материала.

Когда анализ выполняется только в отношении толщины блока, результаты сходятся к тому, что представлено в проектной таблице Еврокода 6 (EN 1996-1-2, 2005).При рассмотрении количества альвеол потенциальный выигрыш в термическом сопротивлении без изменения толщины блока соответствует концепциям теплового комфорта, представленным в NBR 15220. Этот факт усиливает актуальность использования этой концепции при разработке бразильского стандарта для проекты структурной кладки в условиях пожара.

ССЫЛКИ

Associação Brasileira de Normas Técnicas (1989). ABNT NBR 10636: Paredes divisórias sem função estrutural — Determinação da resistência ao fogo — Método de Ensaio.Рио де Жанейро.

Associação Brasileira de Normas Técnicas (2001). ABNT NBR 5628: Componentes construtivos estruturais — Determinação da resistência ao fogo. Рио де Жанейро.

Associação Brasileira de Normas Técnicas (2013). ABNT NBR 15575: edificações Habitacionais: desempenho. Рио де Жанейро.

Associação Brasileira de Normas Técnicas (2003). ABNT NBR 15220: Desempenho térmico de edificações. Рио де Жанейро.

Bai, G. et al. (2017). Исследование теплофизических свойств пустотелых сланцевых блоков как стеновых самоизоляционных материалов.Достижения в области материаловедения и инженерии. vol 2017 (ID 9432145), стр. 12. DOI: https://doi.org/10.1155/2017/9432145

Эренбринг, Х. З., Куинино, У., Оливейра, Л. С., Тутикян, Б. Ф. (2019), Экспериментальный метод исследования влияния добавления полимерных волокон на усадку при высыхании и растрескивание бетона. Конструкционный бетон. 20 (3), 1064–1075. DOI: https://doi.org/10.1002/suco.201800228.

Европейский комитет по стандартизации (2005 г.). Еврокод 6: Проектирование каменных конструкций: Часть 1-2: Общие правила — Конструктивное противопожарное проектирование.Брюссель.

Гил А., Пачеко Ф., Христос Р., Болина Ф. Л., Хаят К. Х., Тутикян Б. Ф. (2017), Сравнительное исследование огнестойкости бетонных панелей. Журнал материалов ACI. 114 (5), 755-762.

Международная организация по стандартизации (2014). ISO 834-11: Испытания на огнестойкость — Элементы конструкции здания — Часть 11: Особые требования к оценке огнестойкости конструкционных стальных элементов. Швейцария.

Ли, Л. С. Х., Джим, К. Ю. (2017).Субтропические летние термические эффекты зеленых стен из проволочного троса с разной глубиной воздушного зазора. Строительство и окружающая среда, т. 126, с. 1–12. DOI: https://doi.org/10.1016/j.buildenv.2017.09.021

Маркатти, Дж., Коэльо Филью, Х. С., Беркво Филью, Дж. Э. (2008), Compartimentação e afastamento entre edificações. В: SEITO, A. I. et al (Coord.). A segurança contra incêndio no Brasil. Сан-Паулу: Projeto Editora. п. 496. ISBN: 978-85-61295-00-4

Nguyen, T. D. et al. (2009), Поведение кладки стен, подвергшихся воздействию огня: моделирование и параметрические исследования в случае пустотелого кирпича из обожженной глины.Журнал пожарной безопасности. 44 (4), с. 629–641. DOI: https://doi.org/10.1016/j.firesaf.2008.12.006

Нгуен, Т. Д., Мефтах, Ф. (2012), Поведение стен из кирпичной кладки из глиняного пустотелого кирпича во время пожара. Часть 1: Экспериментальный анализ. Журнал пожарной безопасности. 52. с. 55–64. DOI: https://doi.org/10.1016/j.firesaf.2012.06.001

Пачеко, Ф., Соуза, Р., Крист, Р., Роча, К., Сильва, Л., Тутикян, Б. Ф. (2018), Определение объема и распределения пор бетона в соответствии с различными классами воздействия с помощью трехмерной микротомографии и ртутная порозиметрия.Конструкционный бетон. 19 (2). п. 1419–1427. DOI: https://doi.org/10.1002/suco.201800075

Rigão, A.O. (2012), Comportamento de pequenas paredes de alvenaria estrutural frente a altas temperaturas. 142 ф. Dissertação (Mestrado) — Curso de Engenharia Civil, Universidade Federal de Santa Maria, RS, Brasil.

Зембери С., Лоуренс С. (2013), Руководство 2 — Свойства глиняной кладки. Подумайте о кирпиче. Австралия.

Заметки автора

[email protected]

Дополнительная информация

Цит. Как :: Болина, Ф., Tutikian, B., Gonçalves, J., Souza, T. Manica, G. (2020), «Численно-экспериментальный анализ стен из керамических блоков различной толщины при высоких температурах», Revista ALCONPAT, 10 (1), стр. 22 — 35, DOI: http://dx.doi.org/10.21041/ra.v10i1.417

Юридическая информация: Revista ALCONPAT — это ежеквартальное издание Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción, Internacional, A.C., Km. 6 antigua carretera a Progreso, Mérida, Yucatán, 97310, тел.5219997385893, [email protected], Веб-сайт: www.alconpat.org Ответственный редактор: Педро Кастро Борхес, доктор философии. Сохранение прав на исключительное использование № 04-2013-011717330300-203 и ISSN 2007-6835, оба предоставлены Instituto Nacional de Derecho de Autor. Ответственный за последнее обновление этого выпуска, отдел информатики ALCONPAT, Элизабет Сабидо Мальдонадо, км. 6, antigua carretera a Progreso, Mérida, Yucatán, C.P. 97310. Мнения авторов не обязательно отражают позицию редактора.Полное или частичное воспроизведение содержания и изображений публикации строго запрещено без предварительного разрешения ALCONPAT Internacional AC. Любой спор, включая ответы авторов, будет опубликован в третьем выпуске 2020 года при условии, что информация будет получена ранее. закрытие второго выпуска 2020г.

Прикладные науки | Бесплатный полнотекстовый | Применение жаропрочного бетона из керамических отходов сантехники для накопления тепловой энергии

5.1. Этап 1 — Первоначальная оценка свойств TES при более низкой температуре
Результаты первого этапа эксперимента показаны на рис. 4.

Несмотря на тот же размер образцов и тот факт, что они были оставлены в одной и той же термической среде. В условиях они показали разные тепловые характеристики. После процесса нагрева образцы имели разную температуру. Ни один из материалов после 3 ч нагрева не достиг заданной температуры. После 15 мин охлаждения наивысшей температурой был стальной образец (122.2 ° C), а самый низкий — у образца из газобетона (76,8 ° C). Причина различий при нагревании и охлаждении этих материалов заключается в их структуре и внутреннем взаимодействии между молекулами материала. Сталь — это компактный материал, который имеет самую высокую плотность и наименьшее количество пустот и свободных пространств внутри своего объема по сравнению с другими протестированными материалами. Кроме того, высокая теплопроводность стали обусловлена ​​металлической связью между молекулами.Газобетон кардинально отличается по своей структуре: у него низкая плотность и большая пористость; появление воздушных пустот делает его изоляционным материалом с низким коэффициентом теплопередачи. Пористость поверхности газобетона дает ему наибольшую поверхность контакта с более холодным воздухом помещения из всех испытанных материалов. Такой эффект неблагоприятно влияет на время выделения накопленного тепла — температура образца очень быстро падает.

Анализ температурных перепадов при дальнейшем охлаждении подтверждает эту закономерность.Стальной образец, несмотря на то, что через 15 мин достиг температуры, близкой к температуре образцов бетона (сталь: 122,2 ° C; обычный бетон: 117,2 ° C), он оставался теплым дольше всех, и перепады температуры в последующих интервалах были минимальными. самый низкий. Образец газобетона охладился в кратчайшие сроки.

Анализ термического поведения других образцов указывает на превосходство бетонов (в том числе бетона с керамическим заполнителем) над традиционной керамикой с точки зрения ТЭС.Образцы бетона, как более компактный материал с более высокой плотностью, одновременно нагреваются до более высоких температур в тех же условиях (образцы бетона: более 100 ° C; образцы керамики: менее 100 ° C).

Расчет тепловой мощности представлен в Таблице 7. При анализе результатов было отмечено, что наибольшая тепловая мощность была достигнута в стали (8,8 Вт), а наименьшая — в бетоне (5,3-6,6 Вт). Самая низкая тепловая мощность была у газобетона (1,616 Вт) и шамотного кирпича (2.408 Вт).
5.2. Этап 2 — Свойства TES в условиях эксплуатации камина
Результаты второго этапа эксперимента, в котором образцы были нагреты до 400 ° C, показаны на рисунке 5.

Наибольшая температура была достигнута в образце CGA-PC ( 393 ° C), а самым низким, как и на первом этапе, был образец AC (297 ° C). По мере увеличения температуры нагрева разница в конечной температуре материалов также увеличивается. В этом случае температура стали (303 ° C) сразу после нагрева была только выше от переменного тока.Это показывает, что тепловые свойства материалов, помимо структуры материала и типа связи между молекулами, также зависят от температуры, при которой работают материалы.

Падение температуры во время охлаждения показывает, что газобетон охладился в кратчайшие сроки, но для стального образца наблюдалась другая картина охлаждения (по сравнению с первой стадией). Образец S характеризовался наименьшей скоростью падения температуры в зависимости от времени охлаждения.После 9 минут охлаждения образец S имел более высокую температуру, чем все испытанные бетоны, а через 12 минут образец S имел самую высокую температуру из всех материалов.

Начальная температура после нагрева бетонов с керамическим заполнителем была выше, чем почти у всех материалов, например, CCA-PC и CCA-AC, и составляла 354 ° C и 349 ° C соответственно. Только образец CGA-PC показал более высокую начальную температуру — 393 ° C. На первом этапе большее количество материалов (S, SLB и CGA-PC) получило более высокие начальные температуры по сравнению с керамобетоном.Испытание при 400 ° C показывает, что свойства ТЭС бетонов на основе керамического заполнителя лучше при повышении рабочей температуры по сравнению с другими материалами.

В случае измерения температуры с помощью инфракрасной камеры, когда отражается высокотемпературный объект (внутренняя часть печи), результаты измерения могут искажаться, если не учитывать температуру окружающей среды. При измерениях угол наблюдения не превышал 30 °, учитывались коэффициенты излучения поверхности материалов.

Анализ тепловизионных изображений проводился сравнительным методом. Сравнивались температуры образцов, которые были получены из термограмм, сделанных за один раз для материалов. Самый яркий цвет на тепловом изображении в течение всего периода охлаждения наблюдался у стального образца, что соответствовало показаниям температуры с термопары. Самый темный цвет был зафиксирован у образца газобетона. Этот факт согласуется с показаниями температуры — образец переменного тока достиг самой низкой температуры в процессе нагрева, и температуры, зарегистрированные для него в последующие моменты времени, также были самыми низкими.Термографическое исследование было проведено для обнаружения возможных аномалий, то есть усиленного инфракрасного излучения для выбранных материалов, которое не было бы совместимо с показаниями температуры, полученными от термопар. Тепловые изображения керамических материалов, бетонов и природного камня были близки по качеству. Этот факт может указывать на то, что бетонные композиты могут выполнять функции радиаторов тепла, которые традиционно выполнялись в старых каминах из керамических и каменных материалов.

Как и в случае первого этапа эксперимента, тепловая мощность испытанных материалов была рассчитана, и результаты представлены в таблице 8. Сравнение тепловой мощности между образцами, подвергнутыми низкотемпературной нагрузке (этап 1) и рабочая температура камина показана на рисунке 6.

Тепловая мощность материалов, нагретых до 400 ° C, колеблется от 6,2 (для стали) до 11,4 (для газобетона) раз больше, чем тепловая мощность материалов, полученная на первом этапе эксперимент.Раньше только сталь давала более высокую тепловую мощность, чем образцы бетона. На втором этапе наибольшая тепловая мощность была достигнута за счет бетона CGA-PC. Все испытанные бетоны имели тепловую мощность в среднем на 82% выше, чем другие материалы (за исключением стали). Кроме того, наибольшее увеличение тепловой мощности (между первым и вторым этапами эксперимента) было достигнуто в бетонах и стальном образце. Это показывает, что свойства ТЭС этих материалов лучше, когда они работают в условиях повышенных температур.

Испытания при рабочей температуре камина показывают, что бетон (в том числе огнеупорный бетон с заполнителем из керамических отходов) обладает очень хорошими характеристиками ТЭС и в сочетании с высокой прочностью может успешно использоваться в качестве аккумулятора тепла в строительной отрасли.

После проведения исследования образцы были оставлены в лаборатории на срок две недели, после чего был произведен их осмотр. На образцах из бетона с гравийным заполнителем (CGA-PC, CGA-AC) были обнаружены повреждения в виде трещин (рис. 7).Аналогичные повреждения наблюдались в бетоне из керамогранита и портландцемента (CCA-PC). Повреждение произошло из-за слишком высокой температуры в процессе нагрева. Остальные материалы остались нетронутыми, в том числе бетон CCA-AC.

Повреждение после нагрева бетонов на портландцементе (CGA-PC, CCA-PC) не позволило определить их основные механические свойства — прочность на сжатие и растяжение. Края образцов после нагрева отслаивались, отмечалась потеря массы.Бетоны на глиноземистом цементе (CGA-AC, CCA-AC) после нагрева имеют компактную структуру, что позволило изучить их прочностные характеристики. Для CGA-AC прочность на сжатие составляла 28,4 МПа, а предел прочности на разрыв — 2,6 МПа. Прочностные характеристики CCA-AC составили 49,8 МПа и 4,2 МПа соответственно. Вывод из этого наблюдения обращает внимание на то, что среди испытанных бетонов только вторичный, для которого использовались керамические отходы агрегата и глиноземистый цемент (CCA-AC), сможет работать без разрушения в термических условиях. которые присутствуют в камине.

Разница между глиняными кирпичами и полыми глиняными кирпичами

На протяжении веков кирпичи являются неотъемлемой частью любого строительства. В древности это дома, дворцы, памятники, форты, а в современную эпоху — здания, небоскребы, школы, больницы; кирпичи обеспечивают прочность и прочность, чтобы стоять твердо и прямо. Но возникает вопрос: «Какой тип кирпича выбрать для строительства?»

Что ж, на решение влияют принципиально некие ключевые факторы. Экологичность, соотношение цены и качества, вес, плотность, прочность, водопоглощение, теплопроводность и т. Д.некоторые из них.

Два основных типа кирпича и их ключевые особенности?

  1. Глиняный кирпич

Изготовлен из глины. Глина обжигается при высоких температурах, чтобы сделать кирпичи. Вырабатываемое тепло расплавляет частицы глины и создает прочную керамическую связь. Причина в теплых и естественных цветах обожженной глины. Однако цвета можно изменять с помощью различных методов, таких как регулирование температуры и атмосферы в печи или изменение состава глины.Даже текстуры можно варьировать, чтобы придать им дополнительную красоту. Глиняные кирпичи прочные и прочные.

Пустотелый глиняный кирпич сейчас является модным словом в каменной промышленности. Его называют кирпичом нового века. Их также называют кирпичами Porotherm или перфорированными кирпичами из-за вертикальной или горизонтальной перфорации и специальной упаковки из изоляционного материала. Легкость, меньшее водопоглощение, экологически чистый материал и теплоизоляция — вот некоторые из его основных особенностей. Кроме того, они придают лучший эстетический вид, чем обычные традиционные глиняные кирпичи.Пустотелый глиняный кирпич безопасен и пожаробезопасен.

Прочтите: мы сравниваем преимущества кирпичей Porotherm с традиционными материалами

Сравнение — глиняные кирпичи и полые глиняные кирпичи

Давайте теперь попробуем понять разницу между глиняным кирпичом и пустотелым глиняным кирпичом, основываясь на некоторых критических факторах.

  1. Состав
    1. Глиняные кирпичи состоят из глины, извести, песка, оксида железа и магнезии.
    2. Пустотелый глиняный кирпич — это смесь глины, летучей золы, угольной золы, опилок и золы рисовой шелухи.
  2. Использование
    1. Глиняный кирпич в основном используется при строительстве стен, тротуаров, тротуаров, проездов, пешеходных дорожек и ландшафтного дизайна.
    2. Пустотелый глиняный кирпич используется как для внутренних, так и для наружных стен здания, но предпочтительно до 4 этажей. Перегородки иногда возводятся из пустотелого кирпича.
  3. Вес или масса
    1. Глиняные кирпичи сравнительно тяжелее, их вес составляет примерно 2,5 кг на 3.5 кг
    2. Полые глиняные кирпичи почти на 60% легче традиционных глиняных кирпичей
  4. Водопоглощающая способность
    1. Для глиняных кирпичей она составляет около 20% от их массы
    2. Для полых глиняных кирпичей она составляет около 15% от его массы
  5. Тепловая или теплопроводность
    1. Приблизительно от 0,6 до 1 Вт на метр по Кельвину в глиняных кирпичах
    2. Приблизительно от 0,28 до 0,31 Вт на метр по Кельвину в полых кирпичах из глины
  6. с нагрузкой
    1. Оно находится в диапазоне 7.От 5 до 10 ньютонов на квадратный миллиметр для глиняных кирпичей
    2. Это около 3,5 ньютонов на квадратный миллиметр для полых глиняных кирпичей
  7. Размер кирпича
    1. Глиняные кирпичи доступны на рынке в двух размерах — стандартном (без раствора) и номинальный (со ступкой). Оба имеют два разных размера:
      1. Стандартный
        1. Длина 190 мм (миллиметр), Ширина 90 мм и Ширина 40 мм
        2. Длина 190 мм, Ширина 90 мм и Ширина 90 мм.
      2. Номинал
        1. Длина 230 мм, ширина 110 мм и ширина 70 мм
        2. Длина 30 мм, ширина 110 мм и ширина 30 мм
    2. полые глиняные кирпичи доступны на рынке в различных размерах,
      1. Длина — от 200 до 400 мм
      2. Ширина — от 150 до 400 мм и
      3. Ширина — от 200 до 400 мм
  8. Плотность кирпича
    1. В глиняных кирпичах от 1700 до 1920 килограммов на кубический метр
    2. В пустотелых глиняных кирпичах он составляет от 694 до 788 килограммов на кубический метр.

Причины использования пустотелого глиняного кирпича

Пустотелый кирпич можно использовать для строительства как несущих, так и ненесущих стен, в зависимости от прочности на сжатие используемого материала. Некоторые из причин использования пустотелого кирпича —

.
  1. Пустотелый кирпич является экологически чистым, поскольку он производится с использованием переработанных материалов / отходов / природных заменителей, таких как угольная зола, рисовая шелуха, гранитная суспензия, летучая зола и т. Д.
  2. Пустотелый кирпич может сократить использование охлаждающих и нагревательных устройств, поскольку в соответствии с сезонными требованиями из-за их теплоизоляционных свойств.Это снижает потребление энергии, тем самым экономя ресурсы и ваши карманы.
  3. Воздух, присутствующий в пустотах этих кирпичей, делает их теплоизоляционными. Они сохраняют прохладу летом и тепло зимой, особенно «глиняный пустотелый кирпич». Они также обеспечивают лучшую звукоизоляцию по сравнению с полнотелым кирпичом.
  4. Пустотелый кирпич демонстрирует хорошую прочность на сжатие, что делает его подходящим для установки тяжелых стеновых отсеков, шкафов, газовых колонок и т.д. труд, ущерб и стоимость.
  5. Пустотелый кирпич намного легче полнотелого. Это снижает общую стоимость конструкции.
  6. Поскольку эти кирпичи намного легче по весу, чем полнотелые, простота работы с ними способствует более быстрому сужению и скорейшему завершению проекта. Кроме того, один пустотелый кирпич эквивалентен 9 кирпичам; следовательно, их установить быстрее и проще, что, в свою очередь, экономит время строительства и затраты на рабочую силу.
  7. Благодаря большому размеру, эти кирпичи уменьшают количество раствора, а также количество швов, которые необходимо заполнить в процессе строительства.
  8. Пустотелый кирпич на 60 процентов легче, чем 9 кирпичей по объему. Таким образом, пустотелый кирпич снизит статическую нагрузку на здания, а значит, снизится стоимость конструкции.
  9. Пустотелый кирпич — экологически чистый строительный материал, который производится из переработанных отходов и таких материалов, как угольная зола, рисовая шелуха и летучая зола. Они оценены Советом по экологическому строительству Индии.

Заключение

Кирпич — один из важнейших материалов, используемых в строительстве.Появление пустотелого глиняного кирпича действительно произвело революционные изменения в каменной промышленности.

Кураторство редактора Wienerberger India

Нравится эта история? Или есть чем поделиться? Напишите нам: [email protected] или свяжитесь с нами в Facebook и Twitter.

Что такое кирпич Porotherm? Свойства, преимущества и применение

🕑 Время чтения: 1 минута

Глина Porotherm кирпичи — это глиняные кирпичи с горизонтальной или вертикальной перфорацией.они есть изготавливаются различных размеров (общий размер 400х200х200 мм) из натурального глина, угольная зола, рисовая шелуха и гранитная суспензия. Термин поротерм используется для этот вид кирпича обусловлен его желаемыми теплоизоляционными характеристиками.

перфорация глиняного кирпича обеспечивает исключение системы стен, которая способствует теплоизоляции, что приводит к более прохладным помещениям в жаркое время года и теплые внутренние условия в холодное время года.

глиняные кирпичи porotherm просты в использовании, экономичны, экологически чисты, и его можно использовать для строительства как ненесущих стен, так и несущих несущие стены.Кирпичи Porotherm имеют малый вес, прочные, прочные и обладают удовлетворительной огнестойкостью. Может использоваться с сухим строительным раствором, который устраняют необходимость во времени отверждения.

Недвижимость кирпичей Porotherm
  1. Прочность на сжатие более 3,5 МПа
  2. Высокая тепло- и звукоизоляция.
  3. Малый вес: он легче традиционного монолитного бетонного блока на 60 процентов. Высокая огнестойкость
  4. Диапазон плотности от 694 до 783 кг / м3
  5. Большой размер, но легкий вес приводит к низкой статической нагрузке
  6. около 15
Рис.1: Глиняные кирпичи Porotherm

Преимущества кирпича Porotherm

1. Хорошая прочность

Прочность на сжатие поротермного кирпича составляет более 3,5 МПа. Применение высокой температуры во время его производственный процесс и наличие в его составе материала teeracotta придает материалу отличную прочность.

2. Теплоизоляция

Кирпич Porotherm имеет отличную теплоизоляцию, которая получается за счет перфорации кирпичей.

Рис.2: Кирпичи Porotherm для теплоизоляции

3. Высокая прочность

Высокий прочность на сжатие, огнестойкость и устойчивость к карбонизации делает кирпич Porotherm отличается высокой прочностью и долговечностью. Водопоглощение около 15%, поэтому существует риск сырости, трещин или усадки стен. существенно низкий.

4. Рентабельность

Кирпич Porotherm не только экономит много энергии, но также снижает затраты на строительство и эксплуатацию.Использование этого типа кирпич избавит от необходимости использовать кондиционер летом и обогреватели зимой, следовательно, экономить энергию. Для возведения стен не требуется песок и цемент, поэтому это снизило стоимость строительства. Наконец, у него нулевая стоимость обслуживания.

5. Экологичность

Кирпич Porotherm содержит вторичное сырье. Из-за тот факт, что в его составе не используются химические материалы, поэтому он не вызывает аллергических проблем.

6.

Скорость строительства

Скорость возведения стен существенно увеличивается при использовании поротермных кирпичей.Это связано с легкостью кирпича, простотой обращения и отсутствием времени отверждения, поскольку песок и цемент не требуются для строительства стен из поротермного кирпича.

Кроме того, его можно легко резать и долбить, что значительно упрощает установку приспособлений. Наконец, porotherm обеспечивает чистую и сухую рабочую площадку, поэтому не оставляет мусора, который нужно утилизировать.

Рис.3: Простота конструкции

Недостатки кирпича Porotherm

  1. Глиняный кирпич Porotherm не может использоваться для строительства огромных сооружений из-за его плотности, которая составляет от 694 до 783 кг / м3.
  2. Он может подвергаться воздействию соли из-за его водопоглощения, которое составляет около 15%, и, следовательно, прочность конструкции будет снижена.
  3. Кирпич Porotherm нельзя использовать при строительстве фундаментов и фундаментно-плиточных работ в районах с высоким уровнем грунтовых вод. Это связано с тем, что такие кирпичи могут не выдерживать отрицательное давление воды и капиллярное действие.

Заявки компании Porotherm Bricks
  • Несущие и ненесущие стеновые конструкции.
  • Перегородка
  • Заполняющие панели внутри каркасных конструкций.
  • Одностворчатые или монолитные внутренние и внешние стены.
  • Внутренний лист полых стен кирпичный.
  • Внутренние и внешние листы стенок визуализированной полости.