Общая характеристика со
Санкт-Петербургский Государственный Медицинский Университет
имени академика И.П. Павлова
Кафедра мобилизационной подготовки здравоохранения и экстремальной медицины
РЕФЕРАТ
на тему:
«Отравления оксидом углерода»
Выполнил:
Проверил:
Санкт-Петербург
20??
Оглавление
Введение 3
Общая характеристика СО 5
Патофизиология 6
Клинические проявления 13
Лабораторная и инструментальная диагностика 15
Группы пациентов с высоким риском
инвалидизации или гибели при отравлении СО 17
Первая помощь при отравлении угарным газом 17 Медицинская помощь при отравлении СО 17
Прогноз 20
Заключение 21
Список литературы 22
Введение
«Мне плохо, голова раскалывается. Посмотри, и собака больна. Наверное, мы что-то съели. Ничего, все пройдет. Не надо никого тревожить». Это были последние слова, произнесенные 28 сентября 1902 г. великим французским писателем, который скончался от отравления угарным газом из-за неисправности печи в его парижской квартире.
Это сказал Эмиль Золя своей жене.1
Угарный газ (СО) — один из наиболее распространенных отравляющих газов в природе, загрязняющих окружающую среду в современном мире с интенсивным использованием энергии. Главным источником СО является неполное сгорание ископаемого топлива, особенно угля. Выхлопные газы служат одним из главных источников образования СО в окружающей среде. Следующий его источник — сигаретный дым, содержащий 3—6 % СО, что превышает в 8 раз его допустимую концентрацию в воздухе промышленных объектов. Люди особенно подвержены отравлению СО в закрытых помещениях. Пассивное вдыхание сигаретного дыма способствует отравлению некурящих; это особенно опасно для детей и беременных женщин.
Окись углерода является наиболее распространенным промышленным ядом и встречается везде, где имеются процессы неполного сгорания углерода. Опасность отравления рабочих СО существует в доменных, мартеновских, кузнечных, литейных, термических цехах, при работе на автотранспорте (выхлопные газы содержат значительные количества СО), на химических предприятиях, где оксид углерода является сырьем (синтез фосгена, аммиака, метилового спирта и др.).
В последние годы во всем мире в связи с суровыми зимами и энергетическим кризисом возросло количество различных домашних источников обогревания, что при отсутствии надлежащей вентиляции значительно повышает возможность отравления СО. Такие отравления часто случаются в быту: во время принятия ванн, при приготовления пищи в посуде с большой поверхностью дна. При плохом доступе кислорода происходит неполное сгорание, в результате чего образуется СО из соединений углерода, содержащихся в природном газе. Сложилось убеждение, что природный газ полностью безопасен и при горении не выделяется в атмосферу, а значит, угроза отравления отсутствует. Однако горение вовсе не означает, что естественное выделение газа невозможно. Часто могут забиться вентиляционные трубы или же вытяжка над газовой плитой может быть установлена.
Угарный газ является повсеместным продуктом неполного сгорания угля и другого топлива — газа, бензина. Поскольку СО не имеет ни запаха, ни цвета, ни вкуса, не является раздражающим и легко смешивается с воздухом, а также беспрепятственно распространяется, он получил название «молчаливого убийцы». Очень часто трудно распознать потенциальную опасность поэтому нередко встречаются отравления СО, выделяемым из печей (так называемый чад) при преждевременном закрытии заслонки, наличии щелей в печи или даже в результате выделения СО раскаленными докрасна частями газовых колонок.
Угарный газ также является компонентом различных промышленных газов, которые выделяются из доменных печей коксовых заводов, электрокотельных.
Оксид
углерода — газ без цвета и запаха, легче
воздуха (относительная плотность по
воздуху 0,97), сжижается при температуре
-191,5°С, замерзает при температуре -204°С.
Мало растворим в воде и плазме крови
(объемная доля около 2%). Плохо сорбируется
активированным углем, силикагелем.
Оксид углерода образует с воздухом
взрывоопасную смесь (объемная доля в
пределах 16,2-73,4%). Может вступать в
соединение с некоторыми металлами,
образуя карбонилы (Ni(CO)4), которые в
присутствии катализатора разлагаются
с выделением СО и металла.
СО образуется при неполном сгорании практически любого углеродсодержащего вещества, в том числе топлива для обогрева помещений, а также в большом количестве — при пожарах в зданиях. Пик отравлений СО отмечается осенью и зимой, когда широко используются обогревательные устройства Умышленное или случайное отравление выхлопными газами автомобилей и ингаляция дыма при пожарах жилых строений — это вторая по распространенности причина интоксикации СО.
Уникальным источником СО является метиленхлорид — растворитель, содержащийся в средстве для удаления краски. Он образуется из ингалированного метиленхлорида в процессе метаболизма в печени.
Источники и условия токсического действия СО:
• Дым при горении органических материалов (например, сигарет)•Неисправные обогревательные приборы (камины, обогреватели, водогреи), в которых используют различные виды топлива (древесину, уголь, мазут, керосин, пропан
• Выбросы из расположенных внутри помещений устройств, работающих на бензине, дизельном топливе, пропане (электрогенераторы, автомобили, автопогрузчики, машины для заливки льда)
• Метиленхлорид (средство для удаления краски).
Монооксид углерода был впервые получен французским химиком Жаком де Лассоном в 1776 году при нагревании оксида цинка с углём, но первоначально его ошибочно приняли за водород, так как он сгорал синим пламенем. То, что в состав этого газа входит углерод и кислород, выяснил в 1800 году английский химик Вильям Крукшэнк. Монооксид углерода вне атмосферы Земли впервые был обнаружен бельгийским ученым М. Мижотом (M. Migeotte) в 1949 году по наличию основной колебательно-вращательной полосы в ИК спектре Солнца.
Оксид углерода (СО) никогда не применялся в качестве самостоятельного отравляющего вещества, но ни одна война не проходила без отравлений этим газом. Отравления оксидом углерода также устойчиво занимают одно из ведущих мест в статистике острых отравлений в Вооруженных Силах в мирное время. В конце Второй мировой войны союзники бомбили с применением напалма фашистские города: в течение буквально одной ночи были сожжены дотла Гамбург, Дрезден, Кассель. Когда потом проанализировали причину гибели людей, то оказалось, что 60% горожан погибли от отравления угарным газом.
Патофизиология
У СО несколько механизмов токсического действия. Он способен нарушать доставку кислорода тканям, его утилизацию и, возможно, провоцировать возникновение окислительного стресса. Высокоаффинное связывание СО с гемоглобином (а сродство гемоглобина к оксиду углерода в 200-250 раз больше, чем к кислороду) приводит: 1) к образованию карбоксигемоглобина (НЬСО), 2) замещению кислорода в гемоглобине и уменьшению кислородтранспортной емкости крови, а также 3) смещению кривой диссоциации оксигемоглобина влево. Кроме того, СО способен присоединяться к другим гемсодержащим белкам, например миоглобину и некоторым цитохромам, играющим ведущую роль в выработке энергии клетками. Однако до настоящего времени не установлено, насколько клинически значимо такое взаимодействие. Согласно последним экспериментальным данным, СО запускает каскад реакций, включая перекисное окисление липидов мозга, что вызывает временную и необратимую дисфункцию.
Классическим
примером повреждающего действия на
кровь с нарушением ее дыхательной
функции, обусловленным инактивацией
кровяного пигмента — гемоглобина,
служит образование карбоксигемоглобина
(НЬСО) под влиянием оксида углерода.
Превращение гемоглобина в НЬСО приводит
к изменению спектральных характеристик
крови, что легло в основу количественного
определения его в крови. НЬСО образуется
в результате взаимодействия оксида
углерода (СО) с железом гемоглобина, что
лишает его способности к оксигенации,
приводит к нарушению транспортной
функции и как результат вызывает развитие
гемической гипоксии. Появление НЬСО
служит следствием поступления СО в
легкие с вдыхаемым воздухом. Образование
НЬСО начинается с периферии эритроцитов
уже в легочных капиллярах. В дальнейшем
с увеличением содержания СО во вдыхаемом
воздухе НЬСО образуется не только в
периферических отделах эритроцита, но
и в центральных его отделах. Причем
скорость образования НЬСО прямо
пропорциональна величине концентрации
СО во вдыхаемом воздухе, а максимум
его в крови определяется временем
контакта. Способность гемоглобина
связывать О
Эта зависимость носит название константы Хюфнера. Вместе с тем сродство гемоглобина к СО в 250—300 раз больше, чем к О 2. Примечательно, что оболочка эритроцитов служит своего рода защитным барьером при образовании НЬСО, так как во взвеси эритроцитов этого деривата гемоглобина образуется на 20 % меньше, чем в растворе гемоглобина. Валентность железа в НЬСО остается неизмененной, происходит лишь перестройка связей Fe2+. Все непарные электроны участвуют в образовании НЬСО. Параллельно с образованием связей между СО и Fe2+ изменяется характер связи железа с глобином и порфирином. Она теряет свой ионный характер и превращается в ковалентную. Взаимодействие СО с HbO2 выражается взаимно сопряженными реакциями.
HbO2 + CO → НЬСО + O2
НЬСО + O2 → HbO2 + CO
Скорость
этих реакций и образование НЬСО
определяются парциальным давлением СО
и О2 в воздухе. При этом количество
образовавшегося НbCO
пропорционально давлению СО в окружающей
среде и обратнопропорционально давлению
О
Итак, основным пусковым механизмом развития специфической гемической гипоксии при отравлении СО является образование НbСО, который утрачивает способность переносить кислород в сочетании с угнетающим влиянием на процесс диссоциации НbO2. Неопровержимое доказательство того, что первопричиной развития СО-интоксикации является карбоксигемоглобинемия, — прямая зависимость между уровнем НbСО в крови и тяжестью интоксикации. Так, поданным V.E.Henderson4, при содержании НbСО в крови, равном 10%, отмечена лишь одышка при физическом напряжении, при 40—50 % НЬСО появляются явные признаки интоксикации: головная боль, помрачение сознания вплоть до его потери, концентрация НЬСО в крови свыше 60 % ведет к летальному исходу. Во всяком случае у людей, впадающих в коматозное состояние или погибающих от острого отравления СО, содержание НЬСО, как правило, не менее 50 %. Однако не всегда прослеживается прямая связь между содержанием в крови НbСО и тяжестью отравления. Известны случаи, когда тяжелая форма отравления развивалась уже при 20 % НbСО и, наоборот, при 60 % НbСО встречаются легкие формы отравления. Во многом это объясняется достаточно большой индивидуальной чувствительностью к СО, которую связывают с генетическим фактором.
Реальным подтверждением кислородного голодания за счет карбоксигелобинемии при тяжелой острой интоксикации СО является снижение содержания кислорода в артериальной крови до 13,4—12,4 об.% сравнительно с 18-20 об.% в норме. Одновременно падает артериально-венозная разница в содержании О2 с 6-7 об.% до 3,0-2,2 об.%, снижается утилизация кислорода тканями, исходя из величины соответствующего коэффициента, уменьшается содержание СО2 в крови до 35 об.% в сравнении с нормой.
Образование НbСО под влиянием СО не является единственным нарушением порфиринового обмена. Так, при остром СО-отравлении при вдыхании СО в концентрациях 40—600 мг/м3 растет содержание прото- и уропорфирина в эритроцитах, а также развивается копро- и уропорфиринурия. Причем рост копропорфиринов в моче обусловлен образованием продуктов синтеза СО с железопорфиринами тканей, которые, поступая в кровь, выделяются затем с мочой. В особо тяжелых случаях прослежено увеличение содержания порфобилиногена. Возможно возрастание уровня метгемоглобина и появление сульфгемоглобина в крови. И наконец, под влиянием СО возрастает содержание ключевого продукта синтеза гемоглобина дельтааминолевулиновой кислоты в плазме и эритроцитах, что, по-видимому, свидетельствует об угнетении синтеза гемоглобина под влиянием СО.
Долгое время считали, что механизм токсического действия СО определяется исключительно нарушением дыхательной функции крови за счет образования НbСО. Однако со временем эта концепция была пересмотрена Убедительно доказано, что СО действует на многие биологически активные системы организма, содержащие железо, а именно: миоглобин, цитохромсодержащие дыхательные ферменты, такие как цитохром P-450, цитохромоксидаза (цитохром a3), цитохром с, пероксидаза, каталаза.5
При взаимодействии СО с миоглобином образуется карбоксимиоглобин, хотя сродство СО к миоглобину меньше, чем к гемоглобину. В то же время сродство миоглобина к СО, по разным данным, в 25—50 раз больше, чем к кислороду.
Таким образом, при отравлении СО наряду с образованием НbСО происходит также образование карбоксимиоглобина. При этом его нарастание в мышцах протекает параллельно росту этого деривата гемоглобина в крови. Не исключено, что появление карбоксимиоглобина в мышцах играет определенную роль в патогенезе СО-интоксикации, во всяком случае поражение мышц при этом однозначно связывают с воздействием на миоглобин. Есть данные, что соотношение карбоксимиоглобина и НbСО независимо от уровня воздействия СО составляет 0,52. При тяжелых отравлениях более 25 % миоглобина может быть связано с СО.
Результаты многочисленных исследований свидетельствуют в пользу того, что в патогенезе СО-интоксикации далеко не последнюю роль играет взаимодействие СО с системой цитохромов — железосодержащих дыхательных ферментов, что приводит к угнетению тканевого дыхания. Как выяснилось, тяжесть нарушений в организме именно за счет этого механизма существенно превосходит таковые, вызванные банальной кислородной недостаточностью, связанной с дефицитом O2 во вдыхаемом воздухе.
Основное внимание при оценке токсического воздействия СО на организм до определенного времени уделялось острым отравлениям, возникающим под влиянием этого газа. Несмотря на то что пусковым механизмом развития острой интоксикации СО служит его взаимодействие с гемоглобином и другими железосодержащими биохимическими структурами, в клинической картине интоксикации преобладают прежде всего симптомы расстройств со стороны ЦНС, выраженность которых, как правило, зависит от содержания НbСО в крови.
Учитывая, что патогенез острого отравления СО изначально определяется повреждающим действием на кровь, уместно охарактеризовать, как при этом изменяется морфологический и биохимический состав крови. На высоте интоксикации увеличивается количество эритроцитов до 5,5 – 6,6*1012/л, что обусловлено, с одной стороны, сокращением селезенки из-за рефлексов с каротидных синусов и поступлением в кровь депонированных эритроцитов, а с другой стороны, причиной эритроцитоза может быть непосредственная стимуляция СО образования эритропоэтина. И наконец, нельзя исключить гипоксию как еще один причинный фактор возрастания числа эритроцитов. Эритроцитоз — чаще всего явление временное, однако иногда развивается истинная полицитемия либо сразу вслед за острой интоксикацией, либо как последействие спустя месяцы и даже годы. При повторных отравлениях СО на фоне лимфоцитоза в крови появляются нормобласты при повышенном содержании ретикулоцитов. Примечательно, что изменения содержания гемоглобина при СО-интоксикации мало характерны.
В ряде случаев исходом поражения красной крови при отравлении СО является развитие анемии типа Бирмера в сочетании с нейтропенией.6
По мнению А.М.Рашевской и Л.А.Зориной7, изменения со стороны белой крови встречаются чаще, чем таковые со стороны красной. Это проявляется нейтрофильным лейкоцитозом иногда до 20—25*109/л со сдвигом влево на фоне лимфо- и эозинопении при снижении фагоцитарной активности. Считается, что механизм лейкоцитоза связан со стрессом, а угнетение фагоцитоза — с угнетением активности цитохромоксидазы в нейтрофилах. У людей при отравлении СО зафиксировано повышение активности щелочной фосфатазы нейтрофилов.
Что касается костного мозга, то клетки его претерпевают дегенеративные изменения при явлениях раздражения, о чем свидетельствует увеличение ядросодержащих элементов со сдвигом формулы влево с вершиной в области миелоцитов и метамиелоцитов.
Существенно важными при интоксикации СО представляются некоторые сдвиги биохимического характера: увеличение негемоглобинового железа крови (может достигать 50 %), что имеет непосредственное отношение к состоянию красной крови. При повторных острых отравлениях параллельно происходит падение содержания железа в тканях за счет соединения с СО, что расценивается как механизм детоксикации. Достаточно хорошо изучены и некоторые другие биохимические сдвиги в периферической крови при остром отравлении СО. Так, со стороны углеводного обмена выявлены нарушения в виде гипергликемии и глюкозурии. По мнению одних авторов, эти сдвиги могут быть следствием изменений центральных механизмов регуляции углеводного обмена, по мнению других, причина — в усиленном распаде гликогена печени за счет интенсивного выделения адреналина. Достаточно закономерным при этом считают увеличение содержания молочной кислоты в крови при повышении уровня НbСО до 30 %. Нарушения азотистого обмена при острой интоксикации СО сводится в основном к усиленному накоплению азотистых шлаков в крови, а именно мочевины, что обусловлено нарушениями антитоксической функции печени. Со стороны липидного обмена прослежены стимуляция окисления свободных жирных кислот и снижение продукции триглицеридов. Электролитный обмен проявляется дисбалансом содержания в крови и тканях кальция, магния и особенно калия и натрия. Последнее приводит к нарушению деятельности сердечной мышцы.
Длительное время возможность развития хронического отравления СО подвергалась сомнению. В настоящее время общепризнано, что такая форма патологии существует. Однако ввиду того, что при этом сложно дифференцировать истинное хроническое воздействие СО от повторных острых отравлений, вопрос был однозначно решен на основании данных эксперимента.
Хроническое отравление СО у людей может возникнуть при длительном вдыхании воздуха с содержанием СО в концентрации порядка 10—50 мг/м3. Обычно при этом в крови обнаруживается 3—13 % НbСО, в то время как в крови у некурящих людей содержание НbСО составляет 1,5—2 %. Со стороны красной крови в условиях хронического отравления СО прослежены увеличение содержания гемоглобина и эритроцитов иногда на фоне ретикулоцитоза, сдвиг лейкоцитарной формулы влево, более редко наблюдается тромбоцитоз. При этом содержание эритроцитов может достигать значений 6*1012/л и выше. Однако в поздних стадиях интоксикации, а иногда уже на начальных ее этапах, возможно развитие анемии. Описаны даже единичные случаи пернициозной и гиперхромной анемии с перерождением в парамиелобластлейкемию, что обычно заканчивалось летальным исходом. Примечательно, что в условиях хронического воздействия СО на людей при содержании НbСО в крови в среднем 4 % в эритроцитах возрастало содержание дельтааминолевулиновой кислоты до 2,7—6,9 мкг/мл в сравнении с исходным (0,7—2,5 мкг/мл). В последующем это сопровождалось нарушением синтеза порфиринов и гема. В целом нельзя исключить и прямое воздействие СО на биосинтез гема в клетке. В известной мере по содержанию дельтааминолевулиновой кислоты в эритроцитах можно судить о чувствительности организма к СО. Изменения со стороны белой крови характеризуются разнонаправленностью, в частности может иметь место как лейкоцитоз, так и лейкопения на фоне эозинопении, лимфоцитоза, моноцитоза. Описана также токсическая зернистость нейтрофилов. При хроническом воздействии СО в нейтрофилах обнаружено увеличение ДНК и снижение РНК при условии падения в них активности пероксидазы. При изучении воздействия СО на человека в концентрациях порядка 10-20 мг/м3 в условиях гермокамеры на протяжении 1—3 мес обнаружены следующие закономерные изменения: сдвиг кислотно-щелочного равновесия сторону ацидоза, появление в крови НbСО в пределах 10,5—14 %, рост негемоглобинового железа сыворотки до 149 мкг% при 127 мкг% в исходном состоянии (в случае концентрации СО порядка 20 мг/м3) и снижение индекса каталазы. Как уже указывалось выше, между содержанием НbСО в крови и выраженностью клинических симптомов не всегда прослеживается прямая зависимость. Однако особенно часто этот феномен имеет место при анализе случаев хронического отравления. Это значительно затрудняет его диагностику. Объяснение таким фактам, когда при прогрессирующем снижении уровня НbСО в крови вплоть до нормальных величин симптомы отравления сохраняются, заключается в том, что поступивший в организм СО фиксируется гемоглобином в виде НbСО и выводится из организма после его разрушения. Исследованиями ряда авторов доказано, что СО способен фиксироваться в клетках ряда органов, в частности печени, селезенки, мышц, головного мозга. Это сочетается с возрастанием при хроническом отравлении СО содержания негемоглобинового железа плазмы, в результате чего СО длительное время находится вне связи с гемоглобином. Ростом негемоглобинового железа сыворотки можно объяснить и увеличение содержания β-глобулиновой фракции белков сыворотки, которая содержит в своем составе транспортную форму железа — трансферрин. Такое предположение прямо подтверждается серией соответствующих работ, в которых показано, что при хронической интоксикации СО рост содержания железа в сыворотке и протопорфиринурия сочетаются с нарастанием β-глобулиновой фракции белков сыворотки.8
Хорошо известно, что клиника как острых, так и хронических отравлений СО изобилует симптомами поражения в первую очередь ЦНС, а также других органов и систем, что объясняется в первую очередь результатом развивающейся гемической гипоксемии и гипоксии, а также в известной мере блокадой ферментных систем, содержащих железопорфириновые структуры. Для хронического воздействия характерны расстройства ЦНС; астенический синдром, вегетативная дистония и ангиодистонический синдром с наклонностью к ангиоспазмам, а также изменения психической сферы. Доказано, что хроническая интоксикация СО сопровождается нарушением функции сердечно-сосудистой системы при условии разной степени поражения сердечной мышцы за счет гипоксии. Возможны изменения артериального давления как в сторону гипо-, так и особенно гипертонии. Несколько менее закономерно, но, тем не, менее возможно возникновение отклонений со стороны эндокринной системы, в том числе половой сфере, а также показателей функций щитовидной железы и надпочечников.
И, наконец, существуют данные о нарушениях органов чувств под влиянием хронической СО-интоксикации. Это касается органа слуха (кохлеарной и вестибулярной части внутреннего уха), а также органа зрения с нарушениями конвергенции, аккомодации, цветоощущения, остроты зрения, сужением полей зрения и, наконец, изменениями глазного дна в виде сосудистой патологии сетчатки различной интенсивности.
Содержание ВведениеНа заре цивилизации человечеству было известно сравнительно небольшое количество ядовитых веществ, причем использовались они главным образом с преступными целями. История применения ядов в древности и в средние века сохранила мрачные страницы описания и применения ядов как средств политической борьбы и мести. Применялись, в частности, такие яды, как соли металлов, опиум, цикута, болиголов, аконит, бруцин, мышьяк.По мере развития науки вообще и химии и биологии в частности список ядовитых веществ стал стремительно расширяться. Это и не удивительно, если учесть, что общее число химических соединений, известных человеку, растет с исключительной быстротой. Однако считается, что это примерно только треть существующих на сегодняшний день веществ. Кроме того, их число ежегодно увеличивается на 300 000 соединений. Разумеется, не все эти химические соединения обладают высокой токсичностью для человека. В настоящее время значительно возросла частота отравлений угарным газом. Отравление от вдыхания угарного газа все еще часто становится причиной смерти, несмотря на то, что общество осведомлено об этой опасности. Процесс отравления окисью углерода с давних пор называют угаранием, отсюда произошло бытовое название этого газа — угарный газ. Угарный газ очень коварен, он совершенно не имеет запаха. А образоваться может везде, где есть процесс горения, даже в духовке. Основная причина его образования — недостаток кислорода в зоне горения. И тогда вместо совершенно безобидного углекислого газа — продукта полноценного прогорания топлива — образуется тот самый угарный газ. Отравление оксидом углерода может произойти очень незаметно. О присутствии газа нельзя узнать, пока не почувствуешь недомогание, а для отравления достаточно небольшого его количества. Острые отравления СО могут иметь место на производстве, особенно в химической промышленности, при коксовании угля, в каменноугольных разработках, литейных цехах, когда в процессе производства образуется большое количество окиси углерода. Так, например, каменноугольный светильный газ содержит 4 — 11% СО, коксовый — 70%, сланцевый — 17%, генераторный из угля и кокса — 27%, доменный — до 30%. Выхлопные газы автомобилей содержат в среднем 6,3%, а иногда до 13,5% СО. В кабинах автомашин концентрация СО может достигать О,05 мг на 1 л воздуха и более, на улицах городов в зависимости от загруженности их транспортом — от 0,004 до 0,21 мг/л, а вблизи автомашин — 1,5-7,1 мг/л. Опасность отравления СО в гаражах велика, если не соблюдать меры предосторожности (вентиляция). Так, мотор мощностью 20 л. с. может выделить до 28 л СО в минуту, создав через 5 мин смертельную концентрацию газа в воздухе. 1. Общие сведения о летучих ядах1.1 Характеристика летучих ядовОтравление — патологический процесс, возникающий в результате воздействия на организм поступающих из окружающей среды ядовитых веществ различного происхождения. В зависимости от количества яда, проникающего в организм в единицу времени, могут развиваться острые и хронические отравления.Яд — это чужеродное химическое соединение, нарушающее течение нормальных биохимических процессов в организме, вследствие чего возникают расстройства физиологических функций разной степени выраженности, от слабых проявлений интоксикации до смертельного исхода. Степень ядовитости (токсичности) может колебаться в значительных пределах. Считается, что к собственно ядам относятся вещества с особо высокой токсичностью. Для того, чтобы оценить потенциальную опасность того или иного вещества, нужно определить его токсичность. Токсичность. В основу суждения о токсичности вещества для человека (при отсутствии точных клинических данных) положены результаты опытов на животных. Основным показателем токсичности вещества для животных является ЛД 50 — доза, вызывающая в эксперименте смерть 50% подопытных животных. Ее обычно выражают в миллиграммах вещества на 1 кг массы тела. Конечно, не всегда имеется полная корреляция между чувствительностью к яду животных и человека. Тем не менее вещества, высокотоксичные для животных, как правило, токсичны и для людей. Когда возникает вопрос об опасности ингаляционных отравлений какими-либо веществами, следует учитывать не только токсичность, но и летучесть соединений. По степени опасности летучие яды обычно подразделяют на три группы: малоопасные — насыщающая концентрация меньше пороговой; опасные — насыщающая концентрация больше пороговой; весьма опасные — насыщающая концентрация равна или превосходит токсическую. Под термином «летучие яды» подразумевают класс токсичных жидких органических веществ высокой липофильности и летучести; к летучим ядам также относят токсичные газы. Исторически в судебной химии считали летучим ядом вещество, изолируемое из биоматериала перегонкой с водяным паром. Включение органического вещества в группу летучих ядов определяется, во-первых, его летучестью, т.е. низкой температурой фазового перехода жидкость — газ. Токсиканты этой группы в обычных условиях находятся в газовой фазе или легко в нее переходят из жидкого состояния. Во-вторых, летучие яды можно изолировать из биологических материалов методом перегонки (дистилляции) или микродиффузии. В-третьих, токсиканты этой группы идентифицируют и количественно определяют методом газовой хроматографии (ГХ) и газожидкостной хроматографии (ГЖХ) (парофазный метод). К летучим ядам относятся продукты перегонки нефти и большинство органических растворителей, применяемых в промышленности и быту, которые используют для растворения, разбавления или диспергирования материалов, нерастворимых в воде. Многие летучие растворители, например, керосины и бензины, являются сложными смесями сотен химических компонентов. В число летучих ядов включают алифатические углеводороды и их хлорпроизводные, спирты, эфиры, альдегиды, кетоны, разнообразные ароматические соединения и многочисленные токсичные газы. Летучие яды классифицируют в основном согласно их химической природе с учетом молекулярного строения и присутствующих в молекуле функциональных групп. Незначительные различия химической структуры летучего яда могут привести к ощутимым различиям токсичности. Летучие яды легко абсорбируются через легкие, кожу и желудочно-кишечный тракт. Липофильность растворителей возрастает с увеличением молярной массы, а летучесть при этом уменьшается. До сих пор нет единого мнения, может ли хроническое воздействие незначительных количеств органического растворителя или их смеси вызвать хроническую энцефалопатию, сопровождающуюся головной болью, усталостью, беспокойным сном, Обратимая форма хронической энцефалопатии носит название «нейроастенический синдром». Умеренные и острые формы хронической энцефалопатии могут иметь признаки нейропсихической дисфункции. Окончательное решение вопроса возможно только после проведения клинических эпидемиологических исследований. Дети и пожилые люди потенциально чувствительны к действию летучих ядов. Токсические дозы для детей и взрослых различаются в 2-3 раза. Чем меньше возраст ребенка, тем больше проявляется токсический эффект растворителя. Доля жировой ткани в организме ребенка в возрасте 0,5-3 лет больше, чем у взрослого, и уменьшается к 14-16 годам. Липофильные растворители концентрируются преимущественно в жировой ткани и медленно выводятся. У пожилых людей доля жировой ткани в организме увеличивается в результате снижения содержания воды и общей массы тела. Кроме того, в пожилом возрасте сердечный выброс, почечный и печеночный кровоток снижены, выведение токсикантов и их метаболитов затруднено. Содержание в крови полярных растворителей относительно выше, чем неполярных. 1.2 Методы определения летучих ядовПолный химический анализ состава проб газа и воздуха на содержание в них определенных компонентов производят в специализированных лабораториях. Анализу предшествует отбор проб газа.Пробы отбирают в специальные емкости, тип которых определяется назначением анализа. Газ может пропускаться некоторое время через поглотительные приборы, в которых задерживается определяемое вещество, или собираться в газоприемники (аспираторы). Чтобы газ поступал в газоприемники самостоятельно, из них откачивается часть воздуха, то eсть, создается вакуум в 10-15 мм рт. ст. Иногда в качестве газоприемников используют резиновые баллоны, в которые газ засасывается с помощью груш. Специальной санитарно-гигиенической комиссией для каждого конкретного случая разработаны условия отбора проб для определения допустимых максимальных разовых и среднесуточных концентраций. При изучении токсичности отработавших газов автомобилей во избежание разбавления их атмосферным воздухом пробы отбирают прямо из выпускных трубопроводов двигателей. Поступающие в лабораторию пробы анализируют. При этом используют самые различные методы аналитической химии и соответствующие приборы. 1.2.1 Колориметрический методНаиболее простым и в то же время достаточно чувствительным является колориметрический метод.Сущность метода основывается на способности растворов определенных веществ окрашиваться при воздействии на них химических реактивов. При этом степень окраски раствора увеличивается пропорционально количеству вещества, находящегося в растворе. Для того чтобы по окраске раствора определить количество исследуемого вещества, сравнивают интенсивность этой окраски с интенсивностью окраски раствора, содержащего известную концентрацию того же вещества. 1.2.2 Фотоколориметрический методТак как точность метода в известной степени зависит от глаза лаборанта, его способности правильно сравнивать интенсивности окраски, то в последнее время стали применять фотоколориметрический метод.Отличие его от описанного заключается в том, что через пробирки с пробами пропускают свет, интенсивность которого регистрируется при помощи фотоэлемента. По величине фототока судят о концентрации исследуемого вещества. Этот метод, безусловно, точнее и быстрее, но тоже имеет недостатки. Например, при очень малых концентрациях, а следовательно, и слабых окрасках, фотоэлемент слабо реагирует на изменение окраски. 1.2.3 Газожидкостная хроматографияЗаслуженным успехом в лабораторной токсикологической диагностике пользуется один из новых и весьма перспективных методов анализа — газожидкостная хроматография. Отличительными особенностями газожидкостной хроматографии являются: высокая специфичность и чувствительность, быстрота проведения анализа (5-15 мин), малые количества исследуемого материала, сравнительная простота выполнения и достаточная объективность результатов исследования.С помощью этого метода возможно количественное и качественное определение целого ряда летучих токсических веществ, таких, как дихлорэтан, четыреххлористый углерод, хлороформ, ацетон, этиловый и метиловый спирт, высшие спирты, фосфорорганические инсектициды и др. Современные методы анализа позволяют проводить систематический контроль за динамикой выведения токсических веществ из организма при использовании различных методов искусственной детоксикации, проводить необходимые сопоставления клинической картины интоксикации с концентрацией в организме токсических веществ и их метаболитов. Однако для быстрого выполнения лабораторного анализа необходимо указать предполагаемый вид токсического вещества (барбитураты, фенотиазины, хлорированные углеводороды и др.), так как, учитывая многообразие токсических веществ, которые могут вызвать явления острой интоксикации, нецеленаправленный лабораторный поиск их в биологическом материале займет слишком много времени и вследствие этого потеряет свое клиническое значение. 1.2.4 Определение окиси углерода в газоанализоторахСодержание в газах окиси углерода в лабораторных условиях определяют при по мощи газоанализаторов. Большое применение для анализа газа с малым содержанием СО находит прибор марки ТГ-5. Этот газоанализатор состоит из двух частей: очистительной и аналитической.В очистительной части газ очищается от посторонних примесей. В аналитической части в специальной колонке окись углерода сжигается на раскаленной платиновой спирали. Далее определяют химическим путем количество образовавшегося при сгорании СО углекислого газа и по этому количеству рассчитывают содержание в исходной пробе окиси углерода. Чувствительность газоанализатора — от 0,0014 мг до 0,0028 мг. Работа с прибором требует определенного навыка и квалификации лаборанта. В случае концентрации в газовой смеси окиси углерода в количествах, составляющих проценты по объему, для определения содержания в ней СО ГОСТ 5439-56 предусмотрен прибор модели ВТИ-2. Анализ при помощи этого прибора позволяет кроме окиси углерода определить раздельные концентрации в смеси газов кислорода, азота, метана, суммарные концентрации углекислого газа, сернистого газа, сероводорода и других кислотных газов, а также непредельных углеводородов, водорода в сумме с предельными углеводородами. Принцип действия прибора основан на избирательном поглощении жидкими веществами отдельных компонентов газов. Определенный объем газа прокачивается через жидкий поглотитель. Отдельный компонент его поглощается. По изменению объема газа судят о содержании в смеси этого компонента. В последнее время в лабораторной практике появились автоматические и полуавтоматические самозаписывающие приборы газового анализа. К их числу в первую очередь следует отнести хроматографы и оптико-акустические газоанализаторы. Некоторые приборы включают элементы электроники. В практике они в большинстве случаев употребляются пока в специализированных лабораториях. Для карбюраторных двигателей повсеместно принята необходимость нормирования содержания в отработавших газах окиси углерода. Нормирование выделения углеводородов принято в США, где также предполагается ввести ограничение и на окислы азота. В Европе в качестве дополнительной контрольной цифры к данным по СО определяется выделение углеводородов. 1.2.5 Определение концентрации окиси углерода в индикаторной трубкеКонцентрацию окиси углерода в воздухе рабочего места определяют с помощью индикаторной трубки, заполненной индикаторным порошком, маркированным «Окись углерода», с фильтрующим патроном, предназначенным для улавливания сопутствующих веществ.При приготовлении фильтрующего патрона в узкий конец трубки вкладывают ватный тампон толщиной 5 мм и через широкий конец трубки, соединенной встык с воронкой, насыпают: до первой перетяжки — слой силикагеля, обработанного раствором хромового ангидрида в серной кислоте; в две оливы (до третьей перетяжки) — активированный уголь; в последнюю оливу — силикагель, обработанный раствором сернокислой закиси ртути. Вкладывают аналогичный ватный тампон и оба конца герметизируют заглушками. Вскрытые ампулы с оставшимися реактивами герметизируют заглушками. Для продувки фильтрующего патрона применяют малые трубки, заполненные фарфоровым порошком. Берут стеклянную трубку длиной 50 мм, один конец ее закрывают ватным тампоном, через другой с помощью воронки насыпают слой фарфорового порошка высотой 30…35 мм, а затем закрывают его ватным тампоном. Следует помнить, что каждая такая трубка может быть использована только один раз. На месте проведения анализа вначале продувают фильтрующий патрон исследуемым воздухом. Для этого в направляющую втулку воздухозаборного устройства при оттянутом стопоре вставляют шток так, чтобы стопор скользил по канавке штока, над которой указан объем просасываемого воздуха 60 или 220 мл. Давлением руки на головку штока сильфон сжимают до тех пор, пока наконечник стопора не совпадет с верхним углублением в канавке штока, фиксируя сильфон в сжатом состоянии. К резиновой трубке воздухозаборного устройства герметически присоединяют малую трубку, а свободный конец последней соединяют при помощи отрезка резиновой трубки с узким концом фильтрующего патрона. Снимают заглушку с широкого конца фильтрующего патрона и вводят его в исследуемую среду. Надавливая рукой на головку штока, отводят стопор. |
Отравление угарным газом (стр. 1 из 5)
Содержание
Введение
1. Общие сведения о летучих ядах
1.1Характеристика летучих ядов
1.2 Методы определения летучих ядов
1.2.1 Колориметрический метод
1.2.2 Фотоколориметрический метод
1.2.3 Газожидкостная хроматография
1.2.4 Определение окиси углерода в газоанализоторах
1.2.5 Определение концентрации окиси углерода в индикаторной трубке
1.3 Механизмы действия летучих ядов
2. Отравление угарным газом
2.1 Общие сведения
2.2 Помощь при отравлении оксидом углерода
2.3 Анализ окиси углерода
2.3.1 Качественное определение
2.3.2 Количественное определение
Заключение
Список используемой литературы
Введение
На заре цивилизации человечеству было известно сравнительно небольшое количество ядовитых веществ, причем использовались они главным образом с преступными целями. История применения ядов в древности и в средние века сохранила мрачные страницы описания и применения ядов как средств политической борьбы и мести. Применялись, в частности, такие яды, как соли металлов, опиум, цикута, болиголов, аконит, бруцин, мышьяк.
По мере развития науки вообще и химии и биологии в частности список ядовитых веществ стал стремительно расширяться. Это и не удивительно, если учесть, что общее число химических соединений, известных человеку, растет с исключительной быстротой. Однако считается, что это примерно только треть существующих на сегодняшний день веществ. Кроме того, их число ежегодно увеличивается на 300 000 соединений.
Разумеется, не все эти химические соединения обладают высокой токсичностью для человека.
В настоящее время значительно возросла частота отравлений угарным газом.
Отравление от вдыхания угарного газа все еще часто становится причиной смерти, несмотря на то, что общество осведомлено об этой опасности. Процесс отравления окисью углерода с давних пор называют угаранием, отсюда произошло бытовое название этого газа — угарный газ.
Угарный газ очень коварен, он совершенно не имеет запаха. А образоваться может везде, где есть процесс горения, даже в духовке. Основная причина его образования – недостаток кислорода в зоне горения. И тогда вместо совершенно безобидного углекислого газа – продукта полноценного прогорания топлива — образуется тот самый угарный газ.
Отравление оксидом углерода может произойти очень незаметно. О присутствии газа нельзя узнать, пока не почувствуешь недомогание, а для отравления достаточно небольшого его количества.
Острые отравления СО могут иметь место на производстве, особенно в химической промышленности, при коксовании угля, в каменноугольных разработках, литейных цехах, когда в процессе производства образуется большое количество окиси углерода. Так, например, каменноугольный светильный газ содержит 4— 11 % СО, коксовый — 70 %, сланцевый —17 %, генераторный из угля и кокса — 27 %, доменный — до 30 %. Выхлопные газы автомобилей содержат в среднем 6,3%, а иногда до 13,5% СО. В кабинах автомашин концентрация СО может достигать О,05 мг на 1 л воздуха и более, на улицах городов в зависимости от загруженности их транспортом — от 0,004 до 0,21 мг/л, а вблизи автомашин — 1,5—7,1 мг/л. Опасность отравления СО в гаражах велика, если не соблюдать меры предосторожности (вентиляция). Так, мотор мощностью 20 л. с. может выделить до 28 л СО в минуту, создав через 5 мин смертельную концентрацию газа в воздухе.
1. Общие сведения о летучих ядах
1.1 Характеристика летучих ядов
Отравление – патологический процесс, возникающий в результате воздействия на организм поступающих из окружающей среды ядовитых веществ различного происхождения. В зависимости от количества яда, проникающего в организм в единицу времени, могут развиваться острые и хронические отравления.
Яд – это чужеродное химическое соединение, нарушающее течение нормальных биохимических процессов в организме, вследствие чего возникают расстройства физиологических функций разной степени выраженности, от слабых проявлений интоксикации до смертельного исхода. Степень ядовитости (токсичности) может колебаться в значительных пределах. Считается, что к собственно ядам относятся вещества с особо высокой токсичностью.
Для того, чтобы оценить потенциальную опасность того или иного вещества, нужно определить его токсичность.
Токсичность. В основу суждения о токсичности вещества для человека (при отсутствии точных клинических данных) положены результаты опытов на животных. Основным показателем токсичности вещества для животных является ЛД 50 — доза, вызывающая в эксперименте смерть 50% подопытных животных. Ее обычно выражают в миллиграммах вещества на 1 кг массы тела. Конечно, не всегда имеется полная корреляция между чувствительностью к яду животных и человека. Тем не менее вещества, высокотоксичные для животных, как правило, токсичны и для людей.
Когда возникает вопрос об опасности ингаляционных отравлений какими-либо веществами, следует учитывать не только токсичность, но и летучесть соединений. По степени опасности летучие яды обычно подразделяют на три группы:
— малоопасные — насыщающая концентрация меньше пороговой;
— опасные — насыщающая концентрация больше пороговой;
— весьма опасные — насыщающая концентрация равна или превосходит токсическую.
Под термином «летучие яды» подразумевают класс токсичных жидких органических веществ высокой липофильности и летучести; к летучим ядам также относят токсичные газы. Исторически в судебной химии считали летучим ядом вещество, изолируемое из биоматериала перегонкой с водяным паром.
Включение органического вещества в группу летучих ядов определяется, во-первых, его летучестью, т.е. низкой температурой фазового перехода жидкость — газ.
Токсиканты этой группы в обычных условиях находятся в газовой фазе или легко в нее переходят из жидкого состояния. Во-вторых, летучие яды можно изолировать из биологических материалов методом перегонки (дистилляции) или микродиффузии. В-третьих, токсиканты этой группы идентифицируют и количественно определяют методом газовой хроматографии (ГХ) и газожидкостной хроматографии (ГЖХ) (парофазный метод).
К летучим ядам относятся продукты перегонки нефти и большинство органических растворителей, применяемых в промышленности и быту, которые используют для растворения, разбавления или диспергирования материалов, нерастворимых в воде.
Многие летучие растворители, например, керосины и бензины, являются сложными смесями сотен химических компонентов. В число летучих ядов включают алифатические углеводороды и их хлорпроизводные, спирты, эфиры, альдегиды, кетоны, разнообразные ароматические соединения и многочисленные токсичные газы.
Летучие яды классифицируют в основном согласно их химической природе с учетом молекулярного строения и присутствующих в молекуле функциональных групп. Незначительные различия химической структуры летучего яда могут привести к ощутимым различиям токсичности.
Летучие яды легко абсорбируются через легкие, кожу и желудочно-кишечный тракт. Липофильность растворителей возрастает с увеличением молярной массы, а летучесть при этом уменьшается.
До сих пор нет единого мнения, может ли хроническое воздействие незначительных количеств органического растворителя или их смеси вызвать хроническую энцефалопатию, сопровождающуюся головной болью, усталостью, беспокойным сном, Обратимая форма хронической энцефалопатии носит название «нейроастенический синдром». Умеренные и острые формы хронической энцефалопатии могут иметь признаки нейропсихической дисфункции. Окончательное решение вопроса возможно только после проведения клинических эпидемиологических исследований.
Дети и пожилые люди потенциально чувствительны к действию летучих ядов. Токсические дозы для детей и взрослых различаются в 2—3 раза. Чем меньше возраст ребенка, тем больше проявляется токсический эффект растворителя. Доля жировой ткани в организме ребенка в возрасте 0,5—3 лет больше, чем у взрослого, и уменьшается к 14—16 годам. Липофильные растворители концентрируются преимущественно в жировой ткани и медленно выводятся. У пожилых людей доля жировой ткани в организме увеличивается в результате снижения содержания воды и общей массы тела. Кроме того, в пожилом возрасте сердечный выброс, почечный и печеночный кровоток снижены, выведение токсикантов и их метаболитов затруднено. Содержание в крови полярных растворителей относительно выше, чем неполярных.
Полный химический анализ состава проб газа и воздуха на содержание в них определенных компонентов производят в специализированных лабораториях. Анализу предшествует отбор проб газа.
Пробы отбирают в специальные емкости, тип которых определяется назначением анализа. Газ может пропускаться некоторое время через поглотительные приборы, в которых задерживается определяемое вещество, или собираться в газоприемники (аспираторы). Чтобы газ поступал в газоприемники самостоятельно, из них откачивается часть воздуха, то eсть, создается вакуум в 10-15 мм рт. ст. Иногда в качестве газопрнемников используют резиновые баллоны, в которые газ засасывается с помощью груш.
Специальной санитарно-гигиенической комиссией для каждого конкретного случая разработаны условия отбора проб для определения допустимых максимальных разовых и среднесуточных концентраций. При изучении токсичности отработавших газов автомобилей во избежание разбавления их атмосферным воздухом пробы отбирают прямо из выпускных трубопроводов двигателей.
Поступающие в лабораторию пробы анализируют. При этом используют самые различные методы аналитической химии и соответствующие приборы.
1.2.1 Колориметрический метод
Наиболее простым и в то же время достаточно чувствительным является колориметрический метод.
Клинические проявления
Диагностика отравления СО требует высокого уровня настороженности. Если пациент жалуется на гриппоподобное состояние, проявляющееся в холодную погоду и особенно при перерывах в подаче электроэнергии, возникающих во время зимних ненастий, то вероятность, что у него отравление оксидом углерода, велика. Кроме того, при наличии аналогичных жалоб у жителей одного и того же дома или работающих на одном предприятии дает основание подозревать воздействие этим ядовитым газом.
Клинические проявления отравления зависят от дозы и продолжительности воздействия СО. При нахождении в замкнутом пространстве (воздействие высоких доз), в которое поступают выхлопные газы от автомобиля, интоксикация будет тяжелая (кома, судороги, остановка дыхательной и сердечной деятельности). Длительное пребывание в помещении с низкими и умеренными концентрациями СО сопровождается развитием не столь выраженной симптоматики. У людей, которые подвержены подострому или хроническому отравлению из-за необнаруженных дефектов системы отопления, отмечаются неспецифические признаки и симптомы — головная боль, общее недомогание, повышенная утомляемость, раздражение слизистых оболочек дыхательного тракта. Часто на данную симптоматику врачи не обращают внимания или расценивают ее как простудную, что иногда завершается трагически.
В целом, органы, в которых высок уровень метаболизма — головной мозг и сердце,— более чувствительны к воздействию СО. Тяжесть и течение нарушений сознания у пациентов с отравлением СО колеблются от почти незаметных поведенческих изменений до глубокой комы. ЭКГ-признаки сердечной дисфункции наиболее выражены у людей с сердечными заболеваниями.
В таблице, приведенной ниже, представлены клинические признаки острых отравлений СО различной степени тяжести. Окрашивание кожных покровов в ярко-вишневый цвет и кровоизлияние в сетчатку, характерные для тяжелых отравлений СО, как правило, отсутствуют у пациентов, которые живы к моменту доставки в медицинское учреждение.
Начальные клинические проявления острого отравления оксидом углерода9
СТЕПЕНЬ ТЯЖЕСТИ | СИМПТОМАТИКА |
Легкая | Головная боль, головокружение, слабость, тошнота и рвота |
Средняя | Спутанность сознания, летаргическое состояние, обморок, патологический нистагм, атаксия |
Тяжелая | Кома, судороги, отек легких. Инфаркт миокарда, остановка сердца |
Как было сказано выше, клиника зависит от содержания карбоксигемоглобина в крови: до 20 % — клинические симптомы отсутствуют, при 20-30 % наблюдается легкая степень отравления. Отмечается ощущение тяжести и давления в голове, пульсации в висках, головокружение, тошнота, рвота.10
Средняя степень тяжести отравления — при содержании в крови 35-50 % карбоксигемоглобина; наблюдается резкая слабость, одышка, заторможенность, кратковременная потеря сознания, судороги.11
При тяжелой степени отравления (карбоксигемоглобин 50-60 %) отмечаются: бред, галлюцинации, судороги, парезы и параличи, непроизвольные мочеиспускания и дефекация, длительная потеря сознания (часы, сутки), острая сердечно-сосудистая недостаточность, расстройства дыхания. Обращает на себя внимание, что кожные покровы и слизистые длительное время розовые. Уровень карбоксигемоглобина не всегда является показателем тяжести отравления, через 5-10 ч с момента отравления большая часть его диссоциирует.12
Течение отравления может быть различным: после легкой и средней степени отравления наступает быстрое выздоровление без остаточных явлений; тяжелое отравление оксидом углерода может закончиться очаговым поражением ЦНС, парезами и параличами, нарушением интеллекта.
Подострые клинические последствия воздействия СО:
• Устойчивые нарушения нервной и сердечной деятельности
• Ишемия кожи
• Нарушения функции мышц и нервов в результате буллезного повреждения кожи
• Рабдомиолиз
• Периферическая нейропатия
• Аспирационный пмевмонит
Часто имеет место индуцированный оксидом углерода отсроченный нейропсихиатрический синдром (ОНПС). Отсроченное возникновение нейроповеденческих нарушений после, казалось бы, восстановления нормального состояния острого отравления СО — это характерный признак синдрома. Изменения развиваются через несколько дней, иногда недель и даже месяцев с момента отравления. ОНПС наблюдается приблизительно у 10-30 % перенесших отравление, проявляясь снижением мыслительных способностей, личностными изменениями, деменцией, паркинсонизмом и децеребральной ригидностью. Большинство пациентов выздоравливают в течение одного года.