Вакуумный солнечный коллектор. Принцип работы и оценка эффективности.

Вакуумный солнечный коллектор — оборудование, предназначенное для нагрева воды с помощью солнечной энергии.

Основным нагревательным элементом солнечного коллектора является вакуумная трубка с селективным покрытием. В простых термосифонных коллекторах процесс нагрева воды происходит непосредственно в самой трубке. За счет явления конвекции, нагретая вода перемещается вверх, холодная вниз.

Нулевая теплопроводность вакуума между внутренней и внешней трубкой обеспечивает сохранность тепла. Эффективность такой системы в теплое время года наиболее высокая. Так за один солнечный августовский день термосифонный водонагреватель нагревает 200 литров воды до 84°С.

   

Безупречная эффективность термосифонного водонагревателя в теплое время года оборачивается проблемой в холода: несмотря на 50мм теплоизоляцию бака-накопителя теплопотери в холодную ночь могут достигать 20-25°С.

Если же морозы продержатся несколько дней, а солнце не сумеет пробиться через плотный слой облаков, вода в трубках превратится в лед, а это может привести к разрыву внутренней трубки и выходу из строя всего коллектора.

Кроме того, замена даже одной трубки, требует слива всей воды в баке, что очень трудозатратно.

Для решения проблемы «сезонности», широко применяется в нашем климате вакуумная трубка Heat Pipe или так называемая «сухая трубка».

В стеклянную трубку вставлена медная трубка в алюминиевом рефлекторе, который выполняет роль мостика тепла. Процесс конвекции протекает уже внутри медной трубки HP.  

  

Температура на конце трубки может достигать 250-280ºС. Существует два основных способа передачи этого тепла к потребителю:

1. Греем воду непосредственно в баке (система под давлением). Эта система проста и компактна, но за счет того, что бак расположен на улице, в зимнее время эффективность такой системы тоже имеет ряд ограничений.

 

 

2. Передаем тепло теплоносителю и греем воду в баке косвенного нагрева, расположенному в помещении. Поговорим более подробно о солнечном вакуумном коллекторе:

Такая система универсальна. Она может быть интегрирована в систему отопления и существенно сократить расходы на топливо.

Но не стоит рассматривать солнечный коллектор как единственный источник тепла в Вашем доме. Законы физики неумолимы! Когда светит солнце — коллектор работает. Когда солнца нет — не работает!

Рассчитать эффективность солнечного вакуумного коллектора для горячего водоснабжения в первом приближении поможет следующая методика:

  • Шаг 1. Определить, на сколько градусов должна повыситься температура воды и ее объем. Семья — 4 человека (2 взрослых и 2 ребенка). В среднем на одного человека расходуется в день 50 литров воды. Соответственно 50*4=200 л.  Средняя температура водопроводной воды = 15°С. Она должна быть нагрета до 50°С.
    50-15=35°С.
  • Шаг 2. Определить количество энергии необходимой для нагревания этого объема воды. Для нагрева одного литра воды на один градус надо затратить энергию равную 1 ккал. 200 л x 35°C = 7000 ккал. Для перевода данной энергии в кВт*ч воспользуемся следующей формулой 7000 / 859,8 = 8,14 кВт*ч (1 кВт*ч = 859,8 ккал)
  • Шаг 3. Определить количество энергии, которая может быть преобразована в тепло солнечным коллектором. Рассмотрим вариант расположения солнечной установки в Краснодаре. Значение солнечной радиации на поверхность, наклоненную к горизонту на 45° с ориентацией на юг, по данным за последние 22 года наблюдений:  в июле  на 1 м² составляет 5,44 кВт*ч/день, а в декабре  1,74 кВт*ч/день.  Эффективность вакуумного солнечного коллектора традиционно принимают за 80%. Это не совсем верно, так как на КПД влияют многие факторы, мы поговорим о них ниже. Но для предварительного расчета примем эту цифру. Значение передачи поглощенной энергии вакуумными трубками  равно 5,44 x 0,8 = 4,35 кВт*ч/день площади поглощения коллектора для июля.
    Значение передачи поглощенной энергии вакуумными трубками  равно 1,74 x 0,8 = 1,39 кВт*ч/день площади поглощения коллектора для декабря. Площадь абсорбции вакуумной трубки диаметром 58 и длиной 1800 мм составляет 0,0937 м². Несложно подсчитать, что одна трубка способна получать и передавать солнечное тепло в размере 0,4075 кВт*ч и 0,13 кВт*ч соответственно в июле и  декабре.
  • Шаг 4. Определить необходимое число трубок. Используя значение, вычисленное выше, определяем количество трубок, которое надо установить. Энергия, которую необходимо затратить на нагрев нужного количества воды, составляет 8,14 кВт*ч. Энергия, которую может передать одна вакуумная трубка, в зависимости от месяца составляет 0,4075 кВт*ч и 0,130 кВт*ч.

Июль – 8,14 / 0,4075 = 20 трубок. Декабрь – 8,14 / 0,130= 63 трубки.

Оптимальным выбором будет два 20-ти трубочных коллектора и бак на 220 литров с одним теплообменником. 

Для наглядности приведем таблицу эффективности коллекторного поля из 40 трубок ориентированного на юг.

Угол наклона трубок к горизонту 45º, выраженную в кВт*ч в день тепловой энергии, опираясь на данные Национального Управления по Воздухоплаванию и Исследованию Космического Пространства (NASA), получаем следующий график:

Чтобы эти цифры обрели прикладное значение, давайте попробуем рассчитать, на какую температуру в баке накопителе мы можем рассчитывать? 

Возьмем для примера рекомендованный из расчета бак на 220 литров.

Температура воды в баке на начало дня равна температуре в бойлерной, где он располагается и равна, предположим, 20ºС. 

Сначала переводим кВт*ч в килокалории:

Теперь, определим, на сколько градусов нагреет воду в баке наш коллектор за один СРЕДНИЙ  декабрьский день:

  • Pккал (мощность коллектора в ккал)
  • Vбака (Объем воды в баке): 220л
  • Δt искомая величина (значение температуры, на которое нагреется вода в баке за день).

Δt = Pккал/Vбака 

Несмотря на хорошую теплоизоляцию теплопровода, мы потеряем часть тепла по пути до бака. Сам бак тоже обладает не 100% теплоизоляцией.

Так же процесс теплообмена между концом трубки Heat Pipe и теплоносителем и теплообмен в змеевике бойлера снижает общую эффективность системы. Так что можно смело списывать еще 10% для зимы, 5% для  ноября и марта, 2% для апреля с октябрем. Летом можно принять этот вид потерь за ноль.

Δt= Pккал/Vбака*0,9 

Δt дек=4486/220*0,9=18ºС 

 Казалось бы все ясно и понятно. НО! Мы опираемся на данные среднемесячных наблюдений. А это значит, что В СРЕДНЕМ по декабрю мы получим такую величину Δt.  Давайте попытаемся понять, что значит это самое СРЕДНЕЕ: По данным портала: russia.pogoda360.ru солнечных дней в Краснодаре в декабре 31%, облачных 34%, пасмурных: 34%

В пасмурную погоду эффективность солнечного коллектора близка к нулю. Нет солнца — нет тепла.

Конечно какую-то энергию рассеянного солнечного излучения вакуумные трубки соберут, но при передаче ее воде бака естественные потери в теплотрассе и самом баке ее обнулят.

Да и циркуляционный насос качающий теплоноситель не включится, если разность температур в коллекторе и баке не превысит хотя бы 10ºС.

Таким образом все те крохи тепла, что соберет коллектор просто развеятся. В такие дни поддержкой температуры в баке занимается электрический ТЭН, который предусмотрен во всех буферных емкостях. Если ТЭНа нет или он отключен, теплопотери бака ничем не компенсируются. Температура воды в баке сравняется с температурой воздуха в бойлерной.

Скорость с которой остынет вода, зависит от теплоизоляции бака и температуры внутри помещения. По эмпирическим данным потеря тепла составляет порядка 5-8ºС за 12 часов (ночь) при разнице температур в баке и помещении около 25ºС .
Если за сутки плотные тучи так и не рассеялись, наш бак остынет на 10-16 градусов. А за два дня потеряет все накопленное тепло.

В облачную погоду мы уже можем на что-то рассчитывать. Но опять же. Насколько она «облачна»? Сколько конкретно кВт*ч солнечного излучения приходит на нашу солнечную установку?  В лучшем случае нам удастся компенсировать естественное остывание бака. ..

Рассчитать точное значение мощности солнечного коллектора в каждый день можно, но для этого нужно иметь  данные инсоляции по каждому дню. Знать истинные цифры теплопотерь на конкретном объекте. Температуру воздуха и пр. Это имеет скорее научное, чем прикладное значение. Нам же надо понять принцип работы и возможности, которые предоставляет нам использование этого оборудования.  

Итак, мы имеем среднее значение Δt=18ºС.  Это значит, что в СРЕДНЕМ в декабре мы получим 38ºС в баке за один день. За ночь наш бак остынет, и если нам повезет и день снова будет СРЕДНИМ ( 🙂 ), к вечеру мы можем рассчитывать на 38-5+15=51ºС. Не учитывая потерь бака, о которых мы говорили выше. Но достаточно двух подряд пасмурных дней, чтобы вода в баке остыла до температуры окружающей среды. При этом, за два солнечных дня мы увидим 60-70 градусов на термометре бака, если не будет водоразбора. Где же этому предел? И почему мы так редко наблюдаем кипящую воду в баке зимой? Все дело снова в потерях! Чем выше разница между температурой в баке и воздухом в бойлерной, тем интенсивней идет теплообмен.

Так все-таки работает ли солнечный коллектор зимой или нет!?

Ответ: ДА работает! Но мы не можем рассматривать коллектор как единственный источник тепла. Лишь, как помощь основному источнику.

В среднем использование солнечного коллектора может экономить:

  • В зимний период от 20 до 40% энергии на отопление и ГВС.
  • В период с апреля по октябрь наши потребности в отоплении значительно ниже, а солнца больше. Здесь мы говорим о 60-70% на отопление и до 90% на ГВС.
  • С мая по сентябрь солнца много, потребности в отоплении нет совсем и мы закрываем 100%+ потребности в ГВС!

Вернемся снова к нашему расчету. Копнув чуть глубже мы выяснили, что не все так прямолинейно. И если расчет для ИЮЛЯ остается практически неизменным, то для февраля мы должны учесть потери как минимум 10%. Тогда наша формула будет выглядеть так:
Июль – 8,14 / 0,4075 = 20 трубок. Декабрь – 8,14 / (0,130*0,9)= 70 трубок.  
Поэтому,  нашей рекомендацией будет установка коллектора на 20 и 30 трубок, соединенных в группу на 50 трубок.  И установка электроТЭНа на 2 кВт в бак накопитель.

Куда же девать излишки тепла летом?  Решение зависит от конкретного объекта. Если есть бассейн — греем бассейн. Если нет — ставим тепловентилятор, который работает по принципу печки в автомобиле. Сбросом тепла управляет контроллер гелеосистемы. Все автоматизировано и не требует  участия человека. 

    

ИБП для гелиоустановки: Контроллер управления, циркуляционные насосы гелеосистемы и тепловентилятора работают от сети 220в 50Гц. В случае отключения электропитания в солнечный летний день, и остановки циркуляции теплоносителя ,температура в коллекторе достигнет предельных значений за считанные секунды.

Это может привести к аварии и дорогому ремонту оборудования.  Поэтому, верным решением будет обеспечить их работу источником бесперебойного питания, состоящего из небольшого инвертора с зарядным устройством и аккумуляторной гелевой батареи.

Специалисты нашей компании имеют богатый практический опыт в проектировании и установке солнечного оборудования. А прямые поставки с заводов изготовителей, гарантируют лучшие цены на рынке.

Мы предлагаем нашим клиентам не просто оборудование, а комплексное решение задач отопления и горячего водоснабжения. 

Солнечные коллекторы для отопления и горячего водоснабжения

Сортировать по позиции: низкие позиции выше

Горячее водоснабжение 200 литров

Скидка 10%

Объем 200 л
Бак Нерж. сталь
Кол-во трубок 30 шт
Тип коллектора Вакуумный
Производитель SILA
Вес 161 кг

Цена

130 546 руб

145 051 руб

Комплект солнечного отопления 320D/60R5

Скидка 10%

Объем 320 л
Бак Нерж. сталь
Кол-во трубок 60 шт
Тип коллектора Вакуумный
Производитель SILA
Вес

Цена

196 574 руб

218 416 руб

Комплект солнечного отопления 500D/90R5

Скидка 10%

Объем 500 л
Бак Нерж. сталь
Кол-во трубок 90 шт
Тип коллектора Вакуумный
Производитель SILA
Вес

Цена

266 873 руб

296 526 руб

Подогрев бассейна 18 м3

Скидка 10%

Площадь бассейна 12 м2
Объем бассейна 18 м3
Тип коллектора Плоский
Кол-во трубок Абсорбер
Производитель SILA
Вес 120 кг

Цена

103 609 руб

115 121 руб

Подогрев бассейна 12 м3

Скидка 10%

Площадь бассейна 8 м2
Объем бассейна 12 м3
Тип коллектора Вакуумный
Кол-во трубок 30 шт
Производитель SILA
Вес 95 кг

Цена

76 606 руб

85 118 руб

Подогрев бассейна 24 м3

Скидка 10%

Площадь бассейна 16 м2
Объем бассейна 24 м3
Тип коллектора Вакуумный
Кол-во трубок 60 шт
Производитель SILA
Вес 184 кг

Цена

125 881 руб

139 868 руб

Подогрев бассейна 36 м3

Скидка 10%

Площадь бассейна 24 м2
Объем бассейна 36 м3
Тип коллектора Вакуумный
Кол-во трубок 90 шт
Производитель SILA
Вес 273 кг

Цена

175 156 руб

194 618 руб

Вакуумный коллектор SILA 20R5

Кол-во трубок 20 шт
Конденсатор 14 мм
Пл-дь апертуры 1,87 м2
Объем теплоносител 1,2 л
Габариты 1610х1980х110 мм
Вес 71 кг

Цена

48 034 руб

Солнечный коллектор SILA 30R5

Кол-во трубок 30 шт
Конденсатор 14 мм
Пл-дь апертуры 2,79 м2
Объем теплоносител 1,7 л
Габариты 2390х1980х110 мм
Вес 105 кг

Цена

54 750 руб

Солнечный коллектор SILA 20R1

Кол-во трубок 20 шт
Конденсатор 24 мм
Пл-дь апертуры 1,87 м2
Объем теплоносител 1,4 л
Габариты 1825х2020х150 мм
Вес 73 кг

Цена

58 473 руб

Солнечный коллектор SILA 30R1

Кол-во трубок 30 шт
Конденсатор 24 мм
Пл-дь апертуры 2,79 м2
Объем теплоносител 2,3 л
Габариты 2655х2020х150 мм
Вес 106 кг

Цена

68 182 руб

Жидкости-теплоносители для солнечных водонагревательных систем

Энергосбережение

Изображение

Жидкие теплоносители переносят тепло через солнечные коллекторы и теплообменник к резервуарам для хранения тепла в системах солнечного нагрева воды. При выборе теплоносителя вы и ваш подрядчик по солнечному отоплению должны учитывать следующие критерии:

  • Коэффициент расширения — относительное изменение длины (или иногда объема, если указано) материала на единицу изменения температуры.
  • Вязкость – сопротивление жидкости сдвиговым силам (и, следовательно, течению)
  • Теплоемкость – способность материи накапливать тепло
  • Температура замерзания – температура, ниже которой жидкость превращается в твердое вещество
  • Температура кипения – температура, при которой жидкость закипает
  • Температура вспышки – самая низкая температура, при которой пар над жидкостью может воспламениться в воздухе.
  • Коррозионная активность – совместимость с другими материалами и добавками для снижения коррозии
  • Токсичность – в системе питьевой воды можно использовать только нетоксичные жидкости.

Например, в холодном климате для систем солнечного нагрева воды требуются жидкости с низкой температурой замерзания. Жидкости, подвергающиеся воздействию высоких температур, должны иметь высокую температуру кипения. Вязкость и теплоемкость определяют количество необходимой энергии перекачивания. Жидкость с низкой вязкостью и высокой удельной теплоемкостью легче перекачивать, поскольку она менее устойчива к течению и передает больше тепла. Другими свойствами, которые помогают определить эффективность жидкости, являются стабильность и срок замены.

Иллюстрация солнечного водонагревателя.

Ниже приведены некоторые из наиболее часто используемых теплоносителей и их свойства. Проконсультируйтесь со специалистом по солнечному отоплению или местными властями, имеющими юрисдикцию, чтобы определить требования к жидкому теплоносителю в системах солнечного нагрева воды в вашем регионе.

  • Воздух
    Воздух не замерзает и не кипит, не вызывает коррозии. Однако он имеет очень низкую теплоемкость, требует большого теплообменника для нагрева воды и имеет тенденцию вытекать из коллекторов, воздуховодов и заслонок.
  • Вода
    Вода нетоксична и недорога. Благодаря высокой удельной теплоемкости и очень низкой вязкости его легко перекачивать. К сожалению, вода имеет относительно низкую температуру кипения и не имеет защиты от замерзания. Он также может вызывать коррозию, если pH (уровень кислотности/щелочности) не поддерживается на нейтральном уровне. Вода с высоким содержанием минералов (т. е. «жесткая» вода) может вызвать образование минеральных отложений в трубках коллектора и трубопроводах системы.
  • Смеси пропиленгликоля и воды
    Смеси пропиленгликоль/вода имеют отношение гликоля к воде 50%/50% и выше или ниже в зависимости от опасности замерзания. Этиленгликоль нельзя использовать из-за токсичности, поэтому используется нетоксичный пропиленгликоль. Эти смеси обеспечивают эффективную защиту от замерзания до тех пор, пока поддерживается надлежащая концентрация антифриза. Антифризы со временем ухудшаются, и обычно их следует менять каждые 3–5 лет. Эти типы систем находятся под давлением и должны обслуживаться только квалифицированным специалистом по солнечному отоплению. Ингибиторы коррозии добавляются для предотвращения коррозии, обеспечивая некоторую резервную щелочность для противодействия агрессивным кислотам.
  • Силиконовые жидкости
    Силиконовые жидкости имеют очень низкую температуру замерзания и очень высокую температуру кипения. Они не вызывают коррозии и долговечны. Поскольку силиконы имеют высокую вязкость и низкую теплоемкость, для их перекачки требуется больше энергии. Силиконы также легко протекают даже через микроскопические отверстия в солнечной петле.

Другие типы теплоносителей включают синтетические, минеральные или ароматические углеводородные жидкости; хладагенты, например, используемые в системах тепловых насосов; метиловый спирт; и аммиак. Многие из них токсичны, легко воспламеняются, строго регулируются или влекут за собой воздействие на окружающую среду. Хотя эти жидкости-теплоносители, возможно, имеют промышленное применение, их нельзя найти в бытовой солнечной системе нагрева воды.

Дополнительную информацию о жидких теплоносителях см. в разделе «Техническое обслуживание и ремонт систем солнечного водонагрева».

  • Узнать больше
  • Ссылки

Теплоносители для солнечных водонагревательных систем

Оценка стоимости и энергоэффективности солнечного водонагревателя Узнать больше

Размещение вашей солнечной системы нагрева воды Узнать больше

Строительные нормы и правила для систем солнечного водонагрева Узнать больше

Теплообменники для солнечных водонагревательных систем Узнать больше

Техническое обслуживание и ремонт системы солнечного водонагрева Узнать больше

  • Руководство для потребителей: нагрейте воду с помощью солнца
  • Солнечные водонагреватели ENERGY STAR

Солнечные тепловые коллекторы — Управление энергетической информации США (EIA)

Отопление с помощью солнечной энергии

Люди используют солнечную тепловую энергию для многих целей, включая нагрев воды, воздуха и внутренних помещений зданий, а также выработку электроэнергии. Существует два основных типа систем солнечного отопления: пассивные системы и активные системы .

Пассивное солнечное отопление помещений – это когда солнце светит через окна здания и согревает интерьер. Проекты зданий, которые оптимизируют пассивное солнечное отопление (в северном полушарии), обычно имеют окна, выходящие на юг, что позволяет солнцу светить на поглощающие солнечное тепло стены или полы в здании. Солнечная энергия поглощается строительными материалами и нагревает внутренние помещения зданий за счет естественного излучения и конвекции. Оконные навесы или шторы блокируют попадание солнечных лучей в окна летом, чтобы сохранить прохладу в здании.

Системы активного солнечного отопления перемещают нагретую жидкость (воздух или жидкость) внутрь здания или в систему хранения тепла, где тепло высвобождается при необходимости. Вентиляторы или насосы перемещают жидкость через коллекторы для нагрева, затем внутрь здания или в систему хранения тепла, а затем обратно в коллектор для повторного нагрева. Активные солнечные водонагревательные системы обычно имеют резервуар для хранения нагретой солнцем воды.

Неконцентрирующие и концентрирующие и солнечные коллекторы

Неконцентрирующие солнечные коллекторы

Солнечные энергетические системы, которые нагревают воду или воздух в зданиях, обычно имеют неконцентрирующие коллекторы , в которых площадь коллектора — площадь, которая перехватывает солнечное излучение, такая же, как площадь поглотителя — площадь, поглощающая солнечная энергия. Плоские коллекторы являются наиболее распространенным типом неконцентрирующих коллекторов для воды и отопления помещений в зданиях и используются, когда достаточно температуры ниже 200°F.

  • Плоская металлическая пластина, улавливающая и поглощающая солнечную энергию
  • Прозрачное покрытие, пропускающее солнечную энергию через покрытие и снижающее потери тепла от поглотителя
  • Слой изоляции на задней стороне поглотителя для снижения потерь тепла

Солнечные водонагревательные коллекторы имеют металлические трубки, прикрепленные к абсорберу. Теплоноситель прокачивается через трубы абсорбера для отвода тепла от абсорбера и передачи тепла воде в накопительном баке. Солнечные системы для нагрева воды в бассейне обычно имеют плоские коллекторы, которые не имеют крышек или изоляции для поглотителя, а вода в бассейне циркулирует из бассейна через коллекторы обратно в бассейн.

Солнечные системы воздушного отопления используют вентиляторы для перемещения воздуха через плоские коллекторы внутрь зданий.

Солнечные концентраторы

Площадь перехвата солнечного излучения на концентрирующих коллекторах больше, иногда в сотни раз, чем площадь поглотителя. Коллектор с высокой отражающей способностью фокусирует или концентрирует солнечную энергию на поглотителе. Коллектор обычно перемещается в течение дня, чтобы поддерживать высокую степень концентрации на поглотителе. Солнечные тепловые электростанции используют концентрирующие системы солнечных коллекторов, потому что они могут производить высокотемпературное тепло, необходимое для выработки электроэнергии.