Материал | Коэффициент теплопроводности, Вт/(м·°C) | ||
В сухом состоянии | Условия А («обычные») | Условия Б («влажные») | |
Пенополистирол (ППС) | 0,036 — 0,041 | 0,038 — 0,044 | 0,044 — 0,050 |
Пенополистирол экструдированный (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Войлок шерстяной | 0,045 | ||
Цементно-песчаный раствор (ЦПР) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка обычная | 0,25 | ||
Минеральная вата каменная, 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Минеральная вата каменная, 140-175 кг/м3 | 0,037 | 0,043 | 0,046 |
Минеральная вата каменная, 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата каменная, 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Минеральная вата каменная, 25-50 кг/м3 | 0,036 | 0,042 | 0,045 |
Минеральная вата стеклянная, 85 кг/м3 | 0,044 | 0,046 | 0,05 |
Минеральная вата стеклянная, 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Минеральная вата стеклянная, 60 кг/м3 | 0,038 | 0,04 | 0,045 |
Минеральная вата стеклянная, 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Минеральная вата стеклянная, 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Минеральная вата стеклянная, 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Минеральная вата стеклянная, 20 кг/м3 | 0,04 | 0,043 | |
Минеральная вата стеклянная, 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Минеральная вата стеклянная, 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Пенобетон и газобетон на цементном вяжущем, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон и газобетон на цементном вяжущем, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон и газобетон на цементном вяжущем, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон и газобетон на цементном вяжущем, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон и газобетон на известняковом вяжущем, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Пенобетон и газобетон на известняковом вяжущем, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон и газобетон на известняковом вяжущем, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон и газобетон на известняковом вяжущем, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Медь | 382 — 390 | ||
Алюминий | 202 — 236 | ||
Латунь | 97 — 111 | ||
Железо | 92 | ||
Олово | 67 | ||
Сталь | 47 | ||
Стекло оконное | 0,76 | ||
Свежий снег | 0,10 — 0,15 | ||
Вода жидкая | 0,56 | ||
Воздух (+27 °C, 1 атм) | 0,026 | ||
Вакуум | 0 | ||
Аргон | 0,0177 | ||
Ксенон | 0,0057 | ||
Арболит | 0,07 — 0,17 | ||
Пробковое дерево | |||
Железобетон плотностью 2500 кг/м3 | 1,69 | 1,92 | 2,04 |
Бетон (на гравии или щебне) плотностью 2400 кг/м3 | 1,51 | 1,74 | 1,86 |
Керамзитобетон плотностью 1800 кг/м3 | 0,66 | 0,80 | 0,92 |
Керамзитобетон плотностью 1600 кг/м3 | 0,58 | 0,67 | 0,79 |
Керамзитобетон плотностью 1400 кг/м3 | 0,47 | 0,56 | 0,65 |
Керамзитобетон плотностью 1200 кг/м3 | 0,36 | 0,44 | 0,52 |
Керамзитобетон плотностью 1000 кг/м3 | 0,27 | 0,33 | 0,41 |
Керамзитобетон плотностью 800 кг/м3 | 0,21 | 0,24 | 0,31 |
Керамзитобетон плотностью 600 кг/м3 | 0,16 | 0,2 | 0,26 |
Керамзитобетон плотностью 500 кг/м3 | 0,14 | 0,17 | 0,23 |
Крупноформатный керамический блок (тёплая керамика) | 0,14 — 0,18 | ||
Кирпич керамический полнотелый, кладка на ЦПР | 0,56 | 0,7 | 0,81 |
Кирпич силикатный, кладка на ЦПР | 0,76 | 0,87 | |
Кирпич керамический пустотелый (плотность 1400 кг/м3 с учетом пустот), кладка на ЦПР | 0,47 | 0,58 | 0,64 |
Кирпич керамический пустотелый (плотность 1300 кг/м3 с учетом пустот), кладка на ЦПР | 0,41 | 0,52 | 0,58 |
Кирпич керамический пустотелый (плотность 1000 кг/м3 с учетом пустот), кладка на ЦПР | 0,35 | 0,47 | 0,52 |
Кирпич силикатный, 11 пустот (плотность 1500 кг/м3), кладка на ЦПР | 0,64 | 0,7 | 0,81 |
Кирпич силикатный, 14 пустот (плотность 1400 кг/м3), кладка на ЦПР | 0,52 | 0,64 | 0,76 |
Гранит | 3,49 | 3,49 | 3,49 |
Мрамор | 2,91 | 2,91 | 2,91 |
Известняк, 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Известняк, 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк, 1600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк, 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Туф, 2000 кг/м3 | 0,76 | 0,93 | 1,05 |
Туф, 1800 кг/м3 | 0,56 | 0,7 | 0,81 |
Туф, 1600 кг/м3 | 0,41 | 0,52 | 0,64 |
Туф, 1400 кг/м3 | 0,33 | 0,43 | 0,52 |
Туф, 1200 кг/м3 | 0,27 | 0,35 | 0,41 |
Туф, 1000 кг/м3 | 0,21 | 0,24 | 0,29 |
Песок сухой строительный (ГОСТ 8736-77*), 1600 кг/м3 | 0,35 | ||
Фанера клееная | 0,12 | 0,15 | 0,18 |
ДСП, ДВП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
ДСП, ДВП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДСП, ДВП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДСП, ДВП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДСП, ДВП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
Пакля | 0,05 | 0,06 | 0,07 |
Гипсокартон (листы гипсовые обшивочные), 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Гипсокартон (листы гипсовые обшивочные), 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Линолеум из ПВХ на теплоизолирующей подоснове, 1800 кг/м3 | 0,38 | 0,38 |
Теплофизические свойства строительных материалов | ДОМ ИДЕЙ
К ним относят те свойства материалов, что связаны с изменением температуры. В контексте снижения затрат на энергоносители в холодный период года важнейшими для любого владельца дома являются способность строительных материалов передавать (терять), а так же аккумулировать и держать тепло.
Теплопроводность строительных материалов
Это способность строительного материала передавать через свою толщу тепловой поток, возникающий вследствие разности температур внутри и снаружи здания. Это свойство имеет важное значение для строительных материалов, применяемых при устройстве ограждающих конструкций (стен, перекрытий, покрытий) и материалов, предназначенных для теплоизоляции.
Теплопроводность стройматериала зависит от его химического состава, структуры, влажности, пористости и характера пор, разности температур на противоположных его поверхностях и средней температуры при которой происходит передача тепла
Показателем теплопроводности служит коэффициент теплопроводности. Этот коэффициент равен количеству тепла, проходящего через образец материала толщиной 1 м, площадью 1 м2 в течение 1 часа при разности температур образца в 1°С. Чем он больше, тем хуже теплоизоляционная способность материала. Плотные стройматериалы, материалы с крупными порами и с закрытыми порами лучше передают тепло, поэтому для целей теплоизоляции стараются применять мелкопористые материалы и материалы с открытыми порами. Наличие влаги в порах увеличивает теплопроводность в десятки раз.
Коэффициент теплопроводности λ (Вт/мС): воздуха 0,023, древесины вдоль волокон 0,35 и поперек волокон 0,175, воды 0,59, керамического кирпича 0,82, льда 2,3. То есть воздушные поры в материале резко снижаются его теплопроводность, а увлажнение сильно увеличивает, так как коэффициент теплопроводности воды в 25 раз выше, чем у воздуха. При замерзании воды в порах теплопроводность материала увеличивается еще больше, так как лед примерно в 4 раза теплопроводнее воды и в сто раз теплопроводнее воздуха. Результат лучше всего заметен на примере неграмотно утеплённой мансарды. Можно увидеть, что сырая теплоизоляция в морозную погоду практически перестаёт работать.
Теплозащитные свойства конкретной конструкции определяются коэффициентом сопротивления теплопередаче, который связывает коэффициент теплопроводности с толщиной (B) стены, перекрытия или слоя теплоизоляции: R = B / λ. Из формулы видно, что чем больше теплопроводность, тем меньше коэффициент сопротивления теплопередаче и, следовательно, хуже теплозащитные свойства ограждающей конструкции.
Удельная теплоёмкость материалов
Равна количеству теплоты, необходимому для нагревания 1 кг материала на 1С. У органических материалов она обычно выше, чем у неорганических (кДж/(кг°С). Для древесины 2,38-2,72, для стали 0,46, для воды 4,187. Видно, что наибольшую теплоёмкость имеет вода, поэтому их теплоёмкость и возрастает с повышением влажности материалов. Кстати, высокая теплоёмкость воды делает её идеальным теплоносителем для системы отопления.
Тепловое расширение
Свойство материалов расширятся при нагревании и сжиматься при охлаждении, что приводит к изменениям линейных размеров и объема. Характеризуется коэффициентом линейного расширения, показывающим, насколько расширяется материал при повышении температуры на 1С.
В конструкциях, объединяющих несколько материалов, коэффициент теплового линейного расширения необходимо всегда учитывать. У стали (11-11,9) и бетона (10-14) он почти одинаков, поэтому эти материалы так хорошо сочетаются в железобетонных конструкциях. Если же коэффициенты линейного расширения отдельных компонентов значительно различаются, в таких конструкциях возникают напряжения, которые могут привести не только к появлению микротрещин и короблению, но и к полному их разрушению.
Аккумулирование тепла
Свойство материала при нагревании поглощать, а при охлаждении отдавать определённое количество теплоты называют теплоаккумулирующей способностью. Зависит она от удельной теплоемкости строительного материала, его средней плотности и толщины стеновой конструкции. Физический смысл теплоаккумулирующей способности (Qs) материала в возможности накопить и удержать в квадратном метре стены заданной толщины некоторое количество тепловой энергии, которая в дальнейшем может определенное время (время остывания ta) расходоваться на поддержание комфортного микроклимата в помещении.
Для более понятного восприятия можно провести аналогию с радиаторами отопления. Чугунные радиаторы благодаря тепловой инерции, то есть большей способности чугуна аккумулировать тепло, при отключении подачи теплоносителя остаются горячими более длительное время, расходуя накопленную энергию на прогрев помещения, чем стальные или алюминиевые.
Время остывания стен зависит от теплоаккумулирующей способности материала и сопротивления теплопередаче ta = Qs R, и чем Qs и R больше, тем более длительный промежуток времени в помещениях дома будет сохраняться приемлемые для жизнедеятельности условия. Полная формула расчёта времени остывания будет выглядеть так: ta = С γ В2 / λ. Где С — удельная теплоёмкость, γ — средняя плотность, λ — коэффициент теплопроводности, B – толщина стены
Теплофизические параметры некоторых строительных материалов
Материал | С (кДж/кг°С) | γ (кг/м³) | λ (Вт/м °С) |
Ячеисто-бетонные блоки D500 | 1.0 | 500 | 0.12 |
Хвойные породы дерева | 2.3 | 650 | 0.18 |
Керамический кирпич пустотелый | 0.88 | 1000 | 0.44 |
Силикатный кирпич | 0.88 | 1800 | 0.87 |
Железобетон | 0.84 | 2500 | 2.04 |
Подставляя приведенные в таблице данные в формулу и учитывая, что Вт=Дж/сек, получаем следующее соотношение времени остывания. Быстрее всего остывают железобетонные конструкции. Стена из ячеистых блоков будет остывать в 2,1 раза дольше, чем стена из пустотелого керамического и в 2,6 раза медленнее, чем из силикатного кирпича. На практике теплоаккумулирующая способность материалов видна на примере прогрева и остывания периодически отапливаемого здания, например, дачи.
Огнестойкость строительных материалов
Это способность строительного материала сохранять основные характеристики (несущая способность, прочность, твердость и пр.) под воздействием высоких температур, например, при пожаре. По степени огнестойкости строительные материалы делят на несгораемые, трудно сгораемые и сгораемые.
Несгораемые материалы (кирпич, бетон, сталь) под действием открытого пламени или высоких температур не воспламеняются, не тлеют и не обугливаются. Однако необходимо учитывать, под воздействием открытого пламени они теряют несущую способность. Некоторые несгораемые материалы (мрамор, стекло, асбестоцемент) при нагревании разрушаются полностью, а стальные конструкции сильно деформируются. Трудно сгораемые материалы (фибролит, асфальтобетон) тлеют и обугливаются, но после удаления источника пламени или высокой температуры тление прекращается.
Сгораемые материалы (дерево, пластики, битумы, бумага) воспламеняются или тлеют и продолжают гореть или тлеть и после удаления источника пламени или температуры. Для повышения огнестойкости эти материалы обрабатывают огнезащитными составами – антипиренами, которые при нагревании выделяют газы, не поддерживающие горения, или образуют на материале пористой защитой слой, замедляющий его нагрев. Но необходимо учитывать, что состав способен проникнуть вглубь древесины лишь на несколько миллиметров и не является панацеей от пожара. Он лишь задерживает распространение пламени.
В применении к зданиям и сооружениям говорят не об огнестойкости материалов, а об огнестойкости конструкций. Так как, например, конструкции, выполненные из сгораемых материалов, но обработанные антипиренами или защищенные от огня штукатуркой или облицовкой из несгораемых материалов, по своей огнестойкости относятся к трудно сгораемым.
Огнеупорность строительных материалов
Огнеупорностью называется способность материала выдерживать, не расплавляясь и не деформируясь, длительное воздействие высоких температур выше 1580°С. Огнеупорными являются шамотный кирпич, жароупорный бетон и др. Материалы, размягчающиеся при температуре ниже 1350°С, называются легкоплавкими. Материалы, выдерживающие температуру от 1350°С до 1580°С без заметных деформаций, называются тугоплавкими.
Алюминий (ГОСТ 22233-83) | 2600 | 221 | 897 |
Асбест волокнистый | 470 | 0.16 | 1050 |
Асбестоцементный лист | 1600 | 0.4 | 1500 |
Асбошифер с высоким содержанием асбеста | 1800 | 0.17…0.35 | — |
Асбошифер с 10-50% асбеста | 1800 | 0.64…0.52 | — |
Асбоцемент войлочный | 144 | 0.078 | — |
Асфальт | 1100…2110 | 0.7 | 1700…2100 |
Асфальтобетон (ГОСТ 9128-84) | 2100 | 1.05 | 1680 |
Аэрогель (Aspen aerogels) | 110…200 | 0.014…0.021 | 700 |
Базальт | 2600…3000 | 3.5 | 850 |
Бакелит | 1250 | 0.23 | — |
Береза | 510…770 | 0.15 | 1250 |
Бетон на гравии или щебне из природного камня | 2400 | 1.51 | 840 |
Бетон на каменном щебне | 2200…2500 | 0.9…1.5 | — |
Бетон на песке | 1800…2500 | 0.7 | 710 |
Бетон силикатный плотный | 1800 | 0.81 | 880 |
Бетон термоизоляционный | 500 | 0.18 | — |
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) | 1000…1400 | 0.17…0.27 | 1680 |
Блок газобетонный | 400…800 | 0.15…0.3 | — |
Блок керамический поризованный | — | 0.2 | — |
Бумага | 700…1150 | 0.14 | 1090…1500 |
Бут | 1800…2000 | 0.73…0.98 | — |
Вата минеральная легкая | 50 | 0.045 | 920 |
Вата минеральная тяжелая | 100…150 | 0.055 | 920 |
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 | 100…200 | 0.064…0.076 | 840 |
Вермикулит вспученный (ГОСТ 12865-67) — засыпка | 100…200 | 0.064…0.074 | 840 |
Вермикулитобетон | 300…800 | 0.08…0.21 | 840 |
Воздух сухой при 20°С | 1.205 | 0.0259 | 1005 |
Газо- и пенобетон, газо- и пеносиликат | 280…1000 | 0.07…0.21 | 840 |
Гипс формованный сухой | 1100…1800 | 0.43 | 1050 |
Гипсокартон | 500…900 | 0.12…0.2 | 950 |
Гипсоперлитовый раствор | — | 0.14 | — |
Глина | 1600…2900 | 0.7…0.9 | 750 |
Глина огнеупорная | 1800 | 1.04 | 800 |
Гравий (наполнитель) | 1850 | 0.4…0.93 | 850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 200…800 | 0.1…0.18 | 840 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 400…800 | 0.11…0.16 | 840 |
Гранит (облицовка) | 2600…3000 | 3.5 | 880 |
Грунт 10% воды | — | 1.75 | — |
Грунт 20% воды | 1700 | 2.1 | — |
Грунт песчаный | — | 1.16 | 900 |
Грунт сухой | 1500 | 0.4 | 850 |
Грунт утрамбованный | — | 1.05 | — |
Дуб вдоль волокон | 700 | 0.23 | 2300 |
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) | 700 | 0.1 | 2300 |
Дюралюминий | 2700…2800 | 120…170 | 920 |
Железо | 7870 | 70…80 | 450 |
Железобетон | 2500 | 1.7 | 840 |
Известняк (облицовка) | 1400…2000 | 0.5…0.93 | 850…920 |
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) | 300…400 | 0.067…0.11 | 1680 |
Изделия пенобетонные | 400…500 | 0.19…0.22 | — |
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ | 810…840 | 0.14…0.185 | — |
Камни многопустотные из легкого бетона | 500…1200 | 0.29…0.6 | — |
Камни полнотелые из легкого бетона DIN 18152 | 500…2000 | 0.32…0.99 | — |
Камень строительный | 2200 | 1.4 | 920 |
Картон асбестовый изолирующий | 720…900 | 0.11…0.21 | — |
Картон гофрированный | 700 | 0.06…0.07 | 1150 |
Картон плотный | 600…900 | 0.1…0.23 | 1200 |
Картон пробковый | 145 | 0.042 | — |
Картон строительный многослойный (ГОСТ 4408-75) | 650 | 0.13 | 2390 |
Картон термоизоляционный (ГОСТ 20376-74) | 500 | 0.04…0.06 | — |
Каучук вспененный | 82 | 0.033 | — |
Каучук натуральный | 910 | 0.18 | 1400 |
Кедр красный | 500…570 | 0.095 | — |
Керамзит | 800…1000 | 0.16…0.2 | 750 |
Керамзитовый горох | 900…1500 | 0.17…0.32 | 750 |
Керамзитобетон легкий | 500…1200 | 0.18…0.46 | — |
Керамзитобетон на керамзитовом песке и керамзитопенобетон | 500…1800 | 0.14…0.66 | 840 |
Керамзитобетон на перлитовом песке | 800…1000 | 0.22…0.28 | 840 |
Керамика | 1700…2300 | 1.5 | — |
Кирпич доменный (огнеупорный) | 1000…2000 | 0.5…0.8 | — |
Кирпич красный плотный | 1700…2100 | 0.67 | 840…880 |
Кирпич красный пористый | 1500 | 0.44 | — |
Кирпич клинкерный | 1800…2000 | 0.8…1.6 | — |
Кирпич облицовочный | 1800 | 0.93 | 880 |
Кирпич пустотелый | — | 0.44 | — |
Кирпич силикатный с тех. пустотами | — | 0.7 | — |
Кирпич силикатный щелевой | — | 0.4 | — |
Кирпич строительный | 800…1500 | 0.23…0.3 | 800 |
Кладка бутовая из камней средней плотности | 2000 | 1.35 | 880 |
Кладка газосиликатная | 630…820 | 0.26…0.34 | 880 |
Кладка из газосиликатных теплоизоляционных плит | 540 | 0.24 | 880 |
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе | 1600 | 0.47 | 880 |
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе | 1800 | 0.56 | 880 |
Кладка из керамического пустотного кирпича на цементно-песчаном растворе | 1000…1400 | 0.35…0.47 | 880 |
Кладка из малоразмерного кирпича | 1730 | 0.8 | 880 |
Кладка из пустотелых стеновых блоков | 1220…1460 | 0.5…0.65 | 880 |
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе | 1500 | 0.64 | 880 |
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе | 1400 | 0.52 | 880 |
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе | 1800 | 0.7 | 880 |
Кладка из ячеистого кирпича | 1300 | 0.5 | 880 |
Клен | 620…750 | 0.19 | — |
Краска масляная (эмаль) | 1030…2045 | 0.18…0.4 | 650…2000 |
Лед -20°С | 920 | 2.44 | 1950 |
Лед 0°С | 917 | 2.21 | 2150 |
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) | 1600…1800 | 0.33…0.38 | 1470 |
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) | 1400…1800 | 0.23…0.35 | 1470 |
Липа, (15% влажности) | 320…650 | 0.15 | — |
Лиственница | 670 | 0.13 | — |
Листы асбестоцементные плоские (ГОСТ 18124-75) | 1600…1800 | 0.23…0.35 | 840 |
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 | 800 | 0.15 | 840 |
Листы пробковые легкие | 220 | 0.035 | — |
Маты, холсты базальтовые | 25…80 | 0.03…0.04 | — |
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) | 50…125 | 0.048…0.056 | 840 |
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) | 100…150 | 0.038 | — |
Мел | 1800…2800 | 0.8…2.2 | 800…880 |
Медь (ГОСТ 859-78) | 8500 | 407 | 420 |
Мрамор (облицовка) | 2800 | 2.9 | 880 |
Настил палубный | 630 | 0.21 | 1100 |
Опилки древесные | 200…400 | 0.07…0.093 | — |
Пакля | 150 | 0.05 | 2300 |
Панели стеновые из гипса DIN 1863 | 600…900 | 0.29…0.41 | — |
Паркет дубовый | 1800 | 0.42 | 1100 |
Паркет штучный | 1150 | 0.23 | 880 |
Паркет щитовой | 700 | 0.17 | 880 |
Пенобетон | 300…1250 | 0.12…0.35 | 840 |
Пенопласт ПС-1 | 100 | 0.037 | — |
Пенопласт ПС-4 | 70 | 0.04 | — |
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) | 65…125 | 0.031…0.052 | 1260 |
Пенопласт резопен ФРП-1 | 65…110 | 0.041…0.043 | — |
Пенополистирол (ГОСТ 15588-70) | 40 | 0.038 | 1340 |
Пенополистирол (ТУ 6-05-11-78-78) | 100…150 | 0.041…0.05 | 1340 |
Пенополистирол Пеноплэкс | 22…47 | 0.03…0.036 | 1600 |
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) | 40…80 | 0.029…0.041 | 1470 |
Пенополиуретановые листы | 150 | 0.035…0.04 | — |
Пенополиэтилен | — | 0.035…0.05 | — |
Пенополиуретановые панели | — | 0.025 | — |
Пеностекло легкое | 100..200 | 0.045…0.07 | — |
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) | 200…400 | 0.07…0.11 | 840 |
Пенофол | 44…74 | 0.037…0.039 | — |
Пергамент | — | 0.071 | — |
Пергамин (ГОСТ 2697-83) | 600 | 0.17 | 1680 |
Перекрытие армокерамическое с бетонным заполнением без штукатурки | 1100…1300 | 0.7 | 850 |
Перекрытие из железобетонных элементов со штукатуркой | 1550 | 1.2 | 860 |
Перекрытие монолитное плоское железобетонное | 2400 | 1.55 | 840 |
Перлит | 200 | 0.05 | — |
Перлит вспученный | 100 | 0.06 | — |
Песок 0% влажности | 1500 | 0.33 | 800 |
Песок 10% влажности | — | 0.97 | — |
Песок 20% влажности | — | 1.33 | — |
Песок для строительных работ (ГОСТ 8736-77) | 1600 | 0.35 | 840 |
Песок речной мелкий | 1500 | 0.3…0.35 | 700…840 |
Песчаник обожженный | 1900…2700 | 1.5 | — |
Пихта | 450…550 | 0.1…0.26 | 2700 |
Плита бумажная прессованая | 600 | 0.07 | — |
Плита пробковая | 80…500 | 0.043…0.055 | 1850 |
Плитка облицовочная, кафельная | 2000 | 1.05 | — |
Плиты алебастровые | — | 0.47 | 750 |
Плиты из гипса ГОСТ 6428 | 1000…1200 | 0.23…0.35 | 840 |
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) | 200…1000 | 0.06…0.15 | 2300 |
Плиты из керзмзито-бетона | 400…600 | 0.23 | — |
Плиты из полистирол-бетона ГОСТ Р 51263-99 | 200…300 |
Статья о паропроницаемости, теплопроводности, теплоустойчивости строительных материалов
На микроклимат помещения влияют физические свойства материалов из которого оно построено, а так же их последовательность внутри ограждающей конструкции. Основные физические свойства материалов: плотность, паропроницаемость, теплопроводность, теплоустойчивость и теплоусвоение.
Паропроницаемость. Многие слышали, что «дышащие» стены – это вроде бы хорошо. Но далеко не все знают, что это вообще такое. Так вот материал называют «дышащим», если он пропускает не только воздух, но и пар, то есть имеет паропроницаемость. Керамзит, дерево и пенобетон имеют хорошую паропроницаемостью. Некоторой паропроницаемостью облажает кирпич и бетон, но очень маленькой. Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной, пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится.
На самом деле это не совсем так. В современном доме, даже если стены в доме из «дышащего» материала, 96% пара, удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обоями, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветреную погоду из дома выдувает тепло. А ещё они менее долговечны. Чем выше паропроницаемость материала, тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы» превращается в воду. Производители строительных материалов, таких как газоблок и пенобетон, хитрят, когда рассчитывают теплопроводность материала, они всегда считают, что материал идеально сухой. Теплопроводность отсыревшего газоблока увеличивается в 5 раз, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов вещь не только бесполезная, но и вредная.
В многослойной конструкции на паропроницаемость влияет последовательность слоев и расположение утеплителя. На рис 1 видно, что вероятность распределения температуры, давления насыщенного пара Рн и давления не насыщенного пара Рр предпочтительнее, если утеплитель находиться с фасадной стороны ограждающей конструкции. При расположении утеплителя внутри здания между ним и несущей конструкциеей образуется конденсат, который ухудшает микроклимат помещения и постепенно разрушает несущую сину.
Рис 1 — Расположение утеплителя внутри и снаружи ограждающей конструкции
Теплопроводность — один из видов переноса теплоты (энергии теплового движения микрочастиц) от более нагретых частей тела к менее нагретым, приводящий к выравниванию температуры. Если материал стен обладает высокой теплопроводностью, то жить в таком доме будет крайне не комфортно. Стены будут быстро проводить тепло или холод с улицы в помещение.
Теплоемкость – количество теплоты, которое нужно подвести к объему вещества, для изменения его температуры.
Теплоусвоение. Теплофизические свойства ограждающей конструкции выравнивать колебания температуры в помещении, за счет поглощения ее материалом стен. Это свойство особенно полезно в условиях теплого кубанского климата. Днем материал стен поглощает тепло и отдает прохладу, ночью поглощает прохладу, отдает тепло. Усвоение тепла материалом ограждающей конструкции определяется коэффициентом теплоусвоения и зависит от величины теплопроводности, теплоемкости и объемной массы стены. Чем выше эти параметры, тем сильнее материал будет сглаживать температуру. Из таблицы 1 видно, что наибольшим теплоусвоением обладают металлы, из каменных конструкций бетон и железобетон.
Теплоустойчивость. Свойство ограждающей конструкции сохранять при колебаниях потока тепла относительное постоянство температуры на поверхности, обращенной в помещение, называется теплоустойчивостью. От постоянства температуры на внутренней поверхности ограждающих конструкций зависит обеспечение условий комфорта для пребывающих в помещении людей.
Теплоустойчивость ограждающей конструкции обеспечивается преимущественно теплоемкостью слоя резких колебаний. В часы действия отопления тепло накапливается в этом слое, а при перерывах в работе отопительной системы поступает в помещение, согревая внутренний воздух и обеспечивая относительное постоянство его температуры.
Такая теплоемкость может быть названа активной. Если указанный слой будет выполнен из материала с большим теплоусвоением, то в значительной мере будет обеспечена теплоустойчивость всей ограждающей конструкции.
Таблица 1. Плотности, теплопроводности и паропроницаемости строительных материалов.
Материал |
Плотность, кг/м3 |
Теплопроводность, Вт/(м*С) |
Паропроницаемость, |
---|---|---|---|
Железобетон | 2500 | 1.69 | 0.03 |
Бетон | 2400 | 1.51 | 0.03 |
Керамзитобетон | 1800 | 0.66 | 0.09 |
Керамзитобетон | 500 | 0.14 | 0.30 |
Кирпич красный глиняный | 1800 | 0.56 | 0.11 |
Кирпич, силикатный | 1800 | 0.70 | 0.11 |
Кирпич керамический пустотелый (брутто1400) | 1600 | 0.41 | 0.14 |
Кирпич керамический пустотелый (брутто1000) | 1200 | 0.35 | 0.17 |
Пенобетон | 1000 | 0.29 | 0.11 |
Пенобетон | 300 | 0.08 | 0.26 |
Гранит | 2800 | 3.49 | 0.008 |
Мрамор | 2800 | 2.91 | 0.008 |
Сосна, ель поперек волокон | 500 | 0.09 | 0.06 |
Дуб поперек волокон | 700 | 0.10 | 0.05 |
Сосна, ель вдоль волокон | 500 | 0.18 | 0.32 |
Дуб вдоль волокон | 700 | 0.23 | 0.30 |
Фанера клееная | 600 | 0.12 | 0.02 |
ДСП, ОСП | 1000 | 0.15 | 0.12 |
ПАКЛЯ | 150 | 0.05 | 0.49 |
Гипсокартон | 800 | 0.15 | 0.075 |
Картон облицовочный | 1000 | 0.18 | 0.06 |
Минвата | 200 | 0.070 | 0.49 |
Минвата | 100 | 0.056 | 0.56 |
Минвата | 50 | 0.048 | 0.60 |
ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ | 33 | 0.031 | 0.013 |
ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ | 45 | 0.036 | 0.013 |
Пенополистирол | 150 | 0.05 | 0.05 |
Пенополистирол | 100 | 0.041 | 0.05 |
Пенополистирол | 25 | 0.038 | 0.05 |
Пенопласт ПВХ | 125 | 0.052 | 0.23 |
ПЕНОПОЛИУРЕТАН | 80 | 0.041 | 0.05 |
ПЕНОПОЛИУРЕТАН | 60 | 0.035 | 0.0 |
ПЕНОПОЛИУРЕТАН | 40 | 0.029 | 0.05 |
ПЕНОПОЛИУРЕТАН | 30 | 0.020 | 0.05 |
Керамзит | 800 | 0.18 | 0.21 |
Керамзит | 200 | 0.10 | 0.26 |
Песок | 1600 | 0.35 | 0.17 |
Пеностекло | 400 | 0.11 | 0.02 |
Пеностекло | 200 | 0.07 | 0.03 |
АЦП | 1800 | 0.35 | 0.03 |
Битум | 1400 | 0.27 | 0.008 |
ПОЛИУРЕТАНОВАЯМАСТИКА | 1400 | 0.25 | 0.00023 |
ПОЛИМОЧЕВИНА | 1100 | 0.21 | 0.00023 |
Рубероид, пергамин | 600 | 0.17 | 0.001 |
Полиэтилен | 1500 | 0.30 | 0.00002 |
Асфальтобетон | 2100 | 1.05 | 0.008 |
Линолеум | 1600 | 0.33 | 0.002 |
Сталь | 7850 | 58 | 0 |
Алюминий | 2600 | 221 | 0 |
Медь | 8500 | 407 | 0 |
Стекло | 2500 | 0.76 | 0 |
Подведем итог. Ограждающая конструкция дома (стена), должна обладать минимальной паропроницаемостью и теплопроводностью и в то же время быть теплоемкой и теплоустойчивой. Из таблицы видно, что такого эффекта нельзя добиться, используя для возведения стены один материал. Фасадная (наружная) часть стены должна сдерживать холод (минимальная теплопроводность) и не давать ему пройти к внутреннему теплоемкому материалу, который будет сглаживать температуру внутри дома. Для внутреннего материала идеально подходит армированный бетон, он обладает максимальной теплоемкостью и плотностью, также это один из самых прочных строительных материалов. Применение бетона для несущей стены позволит сгладить разницу дневной и ночной температуры в помещении (см. рис 2) и даст вам увеличение в полезной площади дома. (рис 3)
Рис. 2 — График колебания летних температур в краснодарском крае.
1 — колебания температуры на улице;
2 — коллебания температуры в помещении построенном из пено- или газоблока;
3 — температура в утепленном монолитном доме (система «ТЕХНОБЛОК»)
Как наружный утеплитель можно использовать пенополистирол, пенополиуретан или минвату, все три материала обладают небольшой теплопроводностью и давно используются в строительстве. Для защиты слоя утеплителя можно использовать штукатурку, мокрый фасад или облицовочные панели. Наша компания использует панели «ТЕХНОБЛОК», которые зарекомендовали себя как надежный материал, позволяют существенно сэкономить время и деньги.
Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка расы» так же расположена за пределами несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь. Все это предусмотрено в предложенной конструкции (рис 2).
Статья выполнена специалистами компании «ТЕХНОБЛОК».
коэффициенты – Советы по ремонту
Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.
Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов
Что такое теплопроводность?
Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения
Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.
Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков
Что влияет на величину теплопроводности?
Тепловая проводимость любого материала зависит от множества параметров:
- Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
- Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
- Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
Теплопроводность, плотность и водопоглощение некоторых строительных материалов
Применение показателя теплопроводности на практике
В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым
Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.
Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.
Теплопроводность готового здания. Варианты утепления конструкций
При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:
- стены – 30%;
- крышу – 30%;
- двери и окна – 20%;
- полы – 10%.
Теплопотери неутепленного частного дома
При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.
Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:
- Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
- Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме
Таблица теплопроводности строительных материалов: коэффициенты
В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.
Таблица коэффициента теплопроводности строительных материалов:
Таблица теплопроводности строительных материалов: коэффициенты