Теплонакопительные свойства каминов — сравнение свойств материалов облицовок

Магазин » Теплонакопительные свойства каминов

Рассматриваем основные материалы, используемые при изготовлении облицовок печей-каминов и сравниваем их теплофизические свойства: плотность, теплопроводность, удельную и объемную теплоемкость. Для наглядности берем как материалы топочных камер отопительных приборов: чугун, железо, шамотный кирпич, глиняный кирпич на цементно песчаном растворе, так и непосредственно наиболее распространенные отделочные облицовочные материалы: талькохлорит (талькомагнезит), мрамор, гранит, доломит, известняк, ракушечник, песчаник, пенобетон, керамика, дерево, бетон на песке (искусственный камень). Теплопроводность (Вт/м°C) горных пород и строительных материалов показывает способность материи проводить энергию от более нагретой части к менее нагретой. Для камина — чем выше показатель, тем лучше — быстрее нагревание и теплообмен. В таблице наибольший коэффициент у талькохлорита (талькомагнезита) 5,8 Вт/м°C, гранита 3,4 Вт/м°C и мрамора 2,9 Вт/м°C.

Наименьший показатель у пенобетона 0,2 Вт/м°C (у дерева еще ниже 0,15 Вт/м°C, но это элемент декора) — серьезно рассматривать его как облицовочный материал не стоит. К сожалению, некоторые производители для удешевления стали использовать пенобетонные блоки внутри самой облицовки, для придания ей устойчивости и увеличения веса конструкции. В итоге такие облицовки из «натурального камня» (например, песчаника или мрамора) выполняют по большому счету только декоративные фунции — пенобетон задерживает тепло не отдавая его песчанику и мрамору, перераспределяя тепловые потоки в лучшем случае в отапливаемое помещение, а значительную часть просто в трубу. Также стоит отметить низкую теплопроводность шамотного кирпича 0,85 Вт/м°C, который зачастую используется как футеровочный материал топочной камеры — это удешевляет изделие и делает его более долговечным. Однако, шамот серьезно уменьшает теплообмен (для сравнения теплопроводность железа 75 Вт/м°C — почти в 100 раз выше), нераспределенное тепло при этом идет по наименьшему сопротивлению — через стекло на обогрев дома (что тоже хорошо, но с небольшим нюансом — а зачем нам тогда камин) или просто в трубу (это плохо).
В современных моделях для футеровки печей-каминов производители используют разновидности керамики с повышенной теплопроводностью или традиционный вариант — чугунные внутренние стенки (теплопроводность чугуна 52 Вт/м°C).

Материал

Плотность, кг/м3

Теплопроводность, Вт /м*°C

Теплоемкость удельная (массовая), кДж/кг*°C

Теплоемкость объемная (количество тепла на 1 градус),  кДж/м3*°C

Чугун

7200

52

0,5

3600

Железо

7800

75

0,45

3510

Талькохлорит (Медвежьегорск)

2900

5,8

1,09

3160

Доломит

2650

1,75

0,9

2390

Гранит

2600

3,4

0,88

2290

Мрамор

2400

2,9

0,84

2020

Песчаник

2200

1,8

0,8

1760

Дерево (дуб)

700

0,15

2,3

1610

Кирпич глиняный на цементно-песчаном растворе

1800

0,56

0,88

1590

Шамотный кирпич

1850

0,85

0,83

1560

Бетон на песке (искусственный камень)

2200

0,8

0,71

1560

Керамика

2000

1,5

0,77

1540

Известняк (ракушечник)

1600

0,6

0,84

1340

Пенобетон

1000

0,2

0,84

840

 

Теплопроводность древесины и других строительных материалов

Часто наши заказчики задаются вопросами: тепло ли будет в доме из дерева? Какая толщина стен необходима для того, чтобы дом был теплым? Какую породу древесины выбрать для строительства дома или бани? Для того, чтобы аргументировано ответить на эти вопросы, мы разместили на нашем сайте таблицы из строительного справочника (см.

ниже), в которых приведен коэффициент теплопроводности различных пород древесины, а также других строительных материалов. Чем меньше коэффициент теплопроводности, тем лучше материал удерживает тепло.

Из приведенных ниже таблиц можно сделать следующие выводы:

Лучше всего сохраняет тепло кедр, затем идет ель, далее лиственница и только потом сосна. Это не означает, что дом из сосны будет холодным. Это означает, что при прочих равных условиях (диаметр бревна, влажность древесины, подгонка и утепление межвенцовых стыков), сосна проиграет по теплопроводности кедру и лиственнице.

Стена из древесины сосны, толщиной 100 мм эквивалентна по теплопроводности стене из кирпичной кладки, толщиной 580 мм или стене из железобетона толщиной 1130 мм.

Межвенцовый джутовый утеплитель в 3,5 раза лучше удерживает тепло, чем древесина сосны. То есть стыки между бревнами, при условии плотного заполнения их джутовым утеплителем, будут самым «теплым местом» в стене.

При условии плохой герметизации межвенцовых стыков, в тех местах, где возможно образование инея, теплопотери будут в 3 раза выше, чем через деревянную сосновую стену.

Использование металлических нагелей (шкантов) не допустимо, так как теплопотери через них будут в 350 раз (!) выше, чем через деревянные шканты.

Подытоживая все вышесказанное можно отметить, что деревянный дом будет теплым, при соблюдении правильной геометрии бревен, качественном монтаже сруба и хорошем утеплении межвенцовых стыков.

Не все, доступные для строительства, породы древесины имеют одинаковую теплопроводность, то есть одни породы древесины лучше сохраняют тепло, а другие хуже. Эти характеристики древесины необходимо учитывать при выборе материала для строительства дома или бани.

Кроме коэффициента теплопроводности, древесина обладает и другими качественными показателями. Кедр, например, имеет благородный красноватый цвет, приятный аромат. Кроме этого его древесина мягче (лучше обрабатывается) всех остальных хвойных деревьев. Как уже упоминалось, кедр – самое «теплое» дерево.

Лиственница – самое тяжелое хвойное дерево, произрастающее в России. Древесина свежесрубленной лиственницы тяжелее воды, то есть тонет в воде. При этом, распространенное мнение, что дом из лиственницы будет холодным не верен, так как теплопроводность лиственницы хуже (она «теплее»), например, сосны. Кроме того, древесина лиственницы меньше других пород подвержена гниению, а также имеет очень красивую структуру.

Сосна – самое распространенное дерево в России. Это хороший и самый доступный материал для строительства дома или бани. Сосна хорошо обрабатывается, ее древесина имеет красивую структуру и будет долго радовать своим видом ценителя природной красоты.

Теплопроводность древесины (при -30/+40°C):

Древесина

λ, в 10 -3 Вт/(мК) = в мВт/(мК)

Береза

150

Дуб (поперек волокон)

200

Дуб (вдоль волокон)

400

Ель

110

Кедр

95

Клен

190

Лиственница

130

Липа

150

Пихта

150

Пробковое дерево

45

Сосна (поперек волокон)

150

Сосна (вдоль волокон)

400

Тополь

170

Теплопроводность строительных материалов (при -30/+40°C):

Стройматериалы

λ, в 10 -3 Вт/(мК) = в мВт/(мК)

Алебастр

270 — 470

Асбест волокнистый

160 — 240

Асбестовая ткань

120

Асбест (асбестовый шифер)

350

Асбестоцемент

1760

Асфальт в крышах

720

Асфальт в полах

800

Пенобетон

110 — 700

Бакелит

230

Бетон сплошной

1750

Бетон пористый

1400

Битум

470

Бумага

140

Железобетон

1700

Вата минеральная

40 — 55

Войлок строительный

44

Гипс строительный

350

Глинозем

2330

Гранит, базальт

3500

Грунт сухой глинистый

850 — 1700

Грунт сухой утрамбованный

1050

Грунт песчаный сухой =0% влаги /
очень мокрый =20% влаги

1100 — 2100

Грунт сухой

400

Гудрон

300

Железобетон

1550

Известняк

1700

Камень

1400

Камышит

105

Картон плотный

230

Картон гофрированный

70

Кирпич красный

450 — 650

Кладка из красного кирпича на
цементно-песчаном растворе

810

Кирпич силикатный

800

Кладка из силикатного кирпича на
цементно-песчаном растворе

870

Кладка из силикатного
одиннадцатипустотного кирпича

810

Кирпич шлаковый

580

Кладка из керамического
пустотного кирпича (1300 кг/м3)

580

ПВХ поливинилхлорид — «сайдинг»

190

Пеностекло

75 — 110

Пергамин

170

Песчаник обожженный

1500

Песок обычный

930

Песок 0% влажности — очень сухой

330

Песок 10% влажности — мокрый

970

Песок 20% влажности — очень
очень мокрый

1330

Плитка облицовочная

10500

Раствор цементный

470

Раствор цементно-песчаный

1200

Резина

150

Рубероид

170

Сланец

2100

Стекло

1150

Стекловата

52

Стекловолокно

40

Толь бумажный

230

Торфоплита

65 — 75

Фанера

150

Шлакобетон

700

Штукатурка сухая

210-790

Засыпка из гравия

360-930

Засыпка из золы

150

Засыпка из опилок

93

Засыпка из стружки

120

Засыпка из шлака

190 — 330

Цементные плиты, цемент

1920

Коэффициенты теплопроводности строительных металлов (при -30/+40°C)

Материал

в 10 -3 Вт/(мК) = в мВт/(мК)

Сталь

52000

Медь

380000

Латунь

110000

Чугун

56000

Алюминий

230000

Дюралюминий

160000

Коэффициенты теплопроводности инея, льда и снега

Материал

в 10 -3 Вт/(мК) = в мВт/(мК)

Иней

470

Лед 0°С

2210

Лед -20°С

2440

Лед -60°С

2910

Снег

1500

Теплопроводность — Проектирование зданий

Мы используем файлы cookie, чтобы обеспечить вам максимально удобные условия пользования нашим веб-сайтом. Вы можете узнать о наших файлах cookie и о том, как отключить файлы cookie, в нашей Политике конфиденциальности. Если вы продолжите использовать этот веб-сайт без отключения файлов cookie, мы будем считать, что вы довольны их получением. Закрывать.

Редактировать эту статью

Последняя редакция 09 ноя 2022

См. вся история

Теплопроводность (иногда называемая значением k или лямбда-значением (λ)) — это мера скорости, с которой разница температур передается через материал. Чем ниже теплопроводность материала, тем медленнее скорость, с которой разница температур передается через него, и, следовательно, тем эффективнее он как изолятор. В широком смысле, чем ниже теплопроводность ткани здания, тем меньше энергии требуется для поддержания комфортных условий внутри.

Теплопроводность является основным свойством материала, не зависящим от толщины. Измеряется в ваттах на метр-кельвин (Вт/мК).

Термическое сопротивление слоев ткани здания (R измеряется в м²K/Вт) можно рассчитать исходя из толщины каждого слоя / теплопроводность этого слоя.

Значение U элемента здания может быть рассчитано как сумма термических сопротивлений (значения R) слоев, из которых состоит элемент, плюс сопротивление его внутренней и внешней поверхности (Ri и Ro).

Значение U = 1 / (ΣR + Ri + Ro)

Значения U (иногда называемые коэффициентами теплопередачи или коэффициентами теплопередачи) используются для измерения того, насколько эффективно элементы строительной ткани являются изоляторами.

Стандартами для измерения теплопроводности являются BS EN 12664, BS EN 12667 и BS EN 12939. В отсутствие значений, предоставленных производителями продуктов после испытаний теплопроводности , данные теплопроводности получены из BS EN 12524 Строительные материалы и изделия. Гигротермические свойства.

Значения теплопроводности типичных строительных материалов показаны ниже.

Материал Вт/мК
Блоки (светлые) 0,38
Блоки (средние) 0,51
Блоки (плотные) 1,63
Кирпич (открытый) 0,84
Кирпич (защищенный) 0,62
ДСП 0,15
Бетон (пористый) 0,16
Бетон (ячеистый 400 кг/м3) 0,1
Бетон (ячеистый 1200 кг/м3) 0,4
Бетон (плотный) 1,4
одеяло из стекловолокна 0,033
стекло 1,05
пеностеклянный заполнитель (сухой) 0,08
пеньковые плиты 0,40
конопляный бетон 0,25
минеральная вата 0,038
раствор 0,80
фенольная пена (PIR) 0,020
гипс (гипс) 0,46
гипсокартон (гипс) 0,16
пенополистирол 0,032
пенополиуретан (PUR) 0,025
штукатурка (песок/цемент) 0,50
стяжка (цемент/песок) 0,41
сталь 16 — 80
камень (известняк) 1,30
камень (песчаник) 1,50
камень (гранит) 1,7 — 4,0
каменная крошка 0,96
тюк соломы 0,09
лесоматериалы (хвойные породы) 0,14
древесина (лиственная древесина — обычно используется) 0,14 — 0,17
древесноволокнистая плита 0,11
  • Условные обозначения для расчета линейного коэффициента теплопередачи и температурных коэффициентов.
  • г-значение.
  • Теплопередача.
  • Изоляция.
  • k-значение.
  • Ограничение параметров ткани.
  • Значение R.
  • Термический вход.
  • Термическая масса.
  • Значение U.
  • Условные обозначения U-значения на практике: рабочие примеры с использованием BR 443.
  • Поделиться
  • Добавить комментарий
  • Отправьте нам отзыв
  • Посмотреть история комментариев

Институт натурального камня — Какой натуральный камень лучше всего подходит для обогреваемых поверхностей

Stone Professionals

Тепло всегда течет от более теплых участков к более холодным. Перенос тепловой энергии через твердое тело называется теплопроводностью. Существуют определенные области применения, где теплопередача или теплопроводность природного камня становится важным фактором при выборе наилучшего материала и дизайна. Камень, окружающий камин или варочную панель, между источником тепла и горючим внешним материалом, является примером, когда перед выбором следует тщательно определить проводимость камня. Другим распространенным применением является система обогрева дорожного покрытия, где теплопроводность камня становится фактором, определяющим требования к системе для эффективного таяния снега и льда с поверхности дорожного покрытия. В этом бюллетене представлены измеренные значения теплопроводности (значение k) и теплового сопротивления (значение R) для наиболее распространенных типов природного камня, используемых в строительстве из обычных типов камня.

Тип материала Значение k
(Теплопроводность)
(Вт/мК)
Значение R
Эквивалент (R) 3
(часы • футы 2 • ºF / БТЕ)
Гранит (высокая ценность) 1 1,73 0,083
Гранит (низкая стоимость) 1 3,98 0,038
Гранит (барре) 2 2,79 0,052
Известняк (высокоценный) 1 1,26 0,114
Известняк (низкая стоимость) 1 1,33 0,108
Известняк (Салем) 2 2,15 0,067
Мрамор (высокая ценность) 1 2,07 0,070
Мрамор (низкая стоимость) 1 2,94 0,049
Мрамор (Халстон) 1 2,80 0,051
Песчаник (высокая ценность) 1 1,83 0,079
Песчаник (низкая ценность — Верия) 2 2,90 0,050
Кварцит (Сиу) 1 5,38 0,027

1. Холман Дж. П. Теплопередача. 7-е изд., Нью-Йорк: McGraw-Hill, 1900. (Приложение A.3)

2. Введение в теплопередачу. 2-е изд. Нью-Йорк: John Wiley & Sons, Inc., 19.90. (Приложение A)

3. Термическое сопротивление или значение R зависит от толщины материала. Эти значения были рассчитаны для образца камня толщиной 1 дюйм.

В центральной колонке приведенной выше таблицы указаны значения теплопроводности типов природного камня. Значение k представляет собой измерение скорости теплопередачи через твердый материал Если материал имеет k-значение 1,00, это означает, что 1 квадратный метр материала толщиной 1 метр будет передавать тепло со скоростью 1 ватт на каждый градус Кельвина разницы температур между противоположными сторонами. значение указывает на то, что материал является более проводящим, а низкое значение означает, что он является более изолирующим. В правом столбце в приведенной выше таблице указан эквивалент R-значения (R) камня толщиной 1 дюйм, измеренный в часах на квадратные футы в градусах.