коэффициенты для разных видов материала

Проезжая по небольшим городкам, часто можно видеть еще сохранившиеся памятники социалистической эпохи: здания сельских клубов, дворцов, старых магазинов. Для обветшалых построек характерны огромные оконные проемы с максимум двойным остеклением, стены, изготовленные из железобетонных изделий относительно небольшой толщины. В качестве утеплителя в стенах использовался керамзит, причем в небольших количествах. Потолки из тонких ребристых плит также не способствовали сохранению тепла в здании.

При выборе материалов для конструкций проектировщиков эпохи СССР мало интересовала теплопроводность. Кирпича и плит промышленность выпускала достаточно, расход мазута на отопление практически не лимитировался. Все изменилось в считанные годы. «Умные» комбинированные котельные с многотарифными средствами учета, термошубы, рекуперационные системы вентиляции в современном строительстве – уже норма, а не диковина. Однако кирпич, хоть и впитал множество современных научных достижений, как был строительным материалом № 1, так им и остался.

Явление теплопроводности

Для того чтобы понять, насколько отличаются друг от друга материалы по теплопроводности, достаточно в холодный день на улице приложить руку поочередно к металлу, кирпичной стене, дереву и, наконец, к куску пенопласта. Однако свойства материалов передавать тепловую энергию – не обязательно плохо.

явление теплопроводности

Теплопроводность кирпича, бетона, дерева рассматриваются в контексте способности материалов сохранять теплоту. Но в некоторых случаях теплоту, напротив, необходимо передать. Это касается, например, кастрюль, сковородок и другой посуды. Хорошая теплопроводность гарантирует, что энергия будет тратится по назначению – на нагрев готовящейся пищи.

В чем измеряется теплопроводность ее физическая сущность

Что такое теплота? Это движение молекул вещества, хаотичное в газе или жидкости, и вибрированное в кристаллических решетках твердых тел. Если металлический прут, помещенный в вакуум, подогреть с одной стороны, атомы металла, получив часть энергии, начнут вибрировать в гнездах решетки. Эта вибрация станет передаваться от атома к атому, благодаря чему энергия постепенно распределится равномерно на всю массу. У одних материалов, например, у меди, этот процесс занимает секунды, у других же на то, чтобы тепло равномерно «растеклось» по всему объему, потребуются часы. Чем выше разность температур между холодным и горячим участками, тем быстрее идет передача тепла. Кстати, процесс ускорится при увеличении площади контакта.

Коэффициент теплопроводности (х) измеряется в Вт/(м∙К). Он показывает сколько тепловой энергии в Ваттах будет передаваться через один квадратный метр при разности температур в один градус.

Полнотелый керамический кирпич

Каменные строения отличаются прочностью и долговечностью. В каменных замках гарнизоны выдерживали иногда продолжавшиеся годами осады. Строения из камня не боятся огня, камень не подвержен процессам гниения, благодаря чему возраст некоторых сооружений превышает тысячу лет. Однако зависеть от случайной формы булыжника строители не хотели. И тогда на сцене истории появился керамический кирпич из глины – древнейший строительный материал, созданный руками человека.

полнотелый керамический кирпич

Теплопроводность керамического кирпича – величина не постоянная, в лабораторных условиях абсолютно сухой материал дает значение 0,56 Вт/(м∙К). Однако реальные условия эксплуатации далеки от лабораторных, есть множество факторов, влияющих на теплопроводность строительного материала:

  • влажность: чем суше материал, тем лучше он держит тепло;
  • толщина и состав цементных швов: цемент лучше проводит тепло, слишком толстые швы будут служить дополнительными мостиками промерзания;
  • структура самого кирпича: содержание песка, качество обжига, наличие пор.

В реальных условиях эксплуатации коэффициент теплопроводности кирпича принимают в пределах 0,65 – 0,69 Вт/(м∙К). Однако каждый год рынок прирастает не известными ранее материалами с улучшенными эксплуатационными качествами.

Пористая керамика

Сравнительно новый строительный материал. Пустотелый кирпич отличается от полнотелого собрата меньшей материалоемкостью в производстве, меньшим удельным весом (как следствие – уменьшение затрат на погрузочно-разгрузочные работы и удобство кладки) и меньшей теплопроводностью.

пустотелый керамический кирпич

Худшая теплопроводность пустотелого кирпича является следствием наличия воздушных карманов (теплопроводность воздуха ничтожна и составляет в среднем 0,024 Вт/(м∙К)). В зависимости от марки кирпича и качества изготовления показатель варьируется в пределах от 0,42 до 0,468 Вт/(м∙К). Надо сказать, что из-за наличия воздушных полостей кирпич теряет в прочности, однако многие в частном строительстве, когда прочность важнее тепла, просто заливают все поры жидким бетоном.

Силикатный кирпич

Строительный материал из обожженной глины не так прост в производстве, как может показаться на первый взгляд. Массовое производство выдает продукт с весьма сомнительными прочностными характеристиками и ограниченным числом циклов замораживания-размораживания. Изготовление же кирпича, способного противостоять атмосферному воздействию сотни лет, обходится недешево.

силикатный кирпич

Одним из решений проблемы стал новый материал, изготовленный из смеси песка и извести в паровой «бане» при влажности около 100%, и температуре около +200 °C. Теплопроводность силикатного кирпича очень сильно зависит от марки. Он, точно так же как и керамический, бывает пористым. Когда стена не является несущей, а задача ее состоит лишь в том, чтобы максимально удержать тепло, применяется щелевой кирпич с коэффициентом 0,4 Вт/(м∙К). Теплопроводность полнотелого кирпича, естественно, выше до 1,3 Вт/(м∙К), зато на порядок лучше его прочность.

Газосиликат и вспененный бетон

С развитием технологий стало возможным изготавливать вспененные материалы. Применительно к кирпичу это газосиликат и вспененный бетон. Силикатную смесь или бетон вспенивают, в таком виде материал затвердевает, образуя мелкопористую структуру из тонких перегородок.

строительные пеноблоки

Благодаря наличию большого количества пустот теплопроводность кирпича из газосиликата всего 0,08 – 0,12 Вт/(м∙К).

Вспененный бетон держит тепло чуть похуже: 0,15 – 0,21 Вт/(м∙К), зато строения из него долговечнее, он способен нести нагрузку в 1,5 раза больше той, что можно «доверить» газосиликату.

Теплопроводность разных видов кирпича

Как уже говорилось, теплопроводность кирпича в реальных условиях сильно отличается от табличных значений. В приведенной ниже таблице указаны не только значения теплопроводности для разных видов этого строительного материала, но и конструкций из них.

таблица теплопроводности

Снижение теплопроводности

В настоящее время в строительстве сохранение в здании тепла редко доверяется одному виду материала. Снижать теплопроводность кирпича, насыщая его воздушными карманами, делая пористым, можно до определенного предела. Воздушный, чрезмерно легкий пористый строительный материал не сможет держать даже свой собственный вес, не говоря уже об использовании его в создании многоэтажных конструкций.

Чаще всего для утепления зданий применяется комбинация строительных материалов. Задача одних – обеспечивать прочность конструкций, ее долговечность, в то время как другие гарантируют сохранение тепла. Такое решение более рационально, с точки зрения как технологии строительства, так и экономики. Пример: использование в стене всего лишь 5 см пенопласта или пеноплекса дает такой же эффект для сохранения тепловой энергии как «лишних» 60 см пенобетона или газосиликата.

Теплопроводность кирпича и на что влияет этот коэффициент

Водостойкость, морозоустойчивость, теплопроводность кирпича, а также другие характеристики этого материала делают его прочным и долговечным. Данный вид строительной продукции способен выдержать не только сильные нагрузки, но и долгое испытание временем в процессе эксплуатации конструкции.

Удержание тепла в доме зависит от материала стен. Кирпичные стены удерживают тепло на хорошем уровне.

Возможность материала пропускать через себя тепло независимо от температурных изменений, которым подвергается кирпич, — теплопроводность. Она, как и другие полезные свойства изделия, делает этот материал одним из лучших видов строительной продукции.

Краткое описание закона Фурье

Теплопроводность, как и водопоглощение или морозостойкость кирпича, играет очень важную роль при выборе строительного материала, необходимого для возведения несущих стен, каких-либо облицовочных работ, кирпичной кладки при устройстве межкомнатных перегородок. Изделие не только позволяет создать неповторимый стиль, но и обеспечивает тепло и уют в доме. Этот фактор является важным при его выборе.

Закон Фурье при расчете теплопроводности.

Показатели, позволяющие анализировать тепловой поток, находятся под влиянием различных температур. Это объясняется постепенным переходом тепловой энергии из горячего состояния в холодное. Если температура довольно высокая, то данный процесс можно наблюдать открыто. При высокоинтенсивной передаче тепла наблюдается градация в уровне температур.

Чтобы глубже исследовать теплопроводность и тепловой поток, учитывая площадь поперечного сечения, ученый Фурье открыл закон, который показывает, по каким причинам материалы способны прекрасно задерживать тепло, улучшая свою изоляцию. Степень переноса теплоты может быть обозначена специальным коэффициентом (КТ) — λ.

Значение тепловой энергии измеряется в таких единицах, как ватт, сокращенно Вт. Этот показатель способен уменьшать свой уровень на 1°С в результате прохождения расстояния в 1 мм при температурном различии. В процессе лабораторных исследований Фурье было обнаружено, что чем меньше коэффициент теплопроводности, тем выше уровень сохранения тепла строительным материалом, поэтому его можно отнести к более теплому.

Данный показатель, который важен в строительстве, в наибольшей степени обусловлен плотностью строительной продукции. Если уровень значения плотности материала понижается, это приводит к снижению его теплового показателя. Для плотных тяжелых экземпляров характерно повышенное значение коэффициента.

Если строительный материал обладает более легким весом и меньшей прочностью, то его величина является небольшой. Коэффициент, который зависит от плотности строительного материала, находится под влиянием таких характеристик, как водопоглощение кирпича и его морозостойкость.

Уровень показателя силикатных изделий

Теплопроводность основных видов кирпичей, и другие характеристики кирпича.

Сфера применения силиката зависит от его качественных характеристик. Сюда входят теплопроводность, водопоглощение и морозостойкость кирпича. Силикат обладает повышенной склонностью к водопоглощению, поэтому он не используется при кладке фундаментов, подвалов или цоколей, так как эти сооружения имеют высокий уровень влажности.

Сухой силикатный материал обладает теплопроводностью (Т), составляющей 0,8 Вт/м*К. Керамические изделия имеют более высокую величину данного параметра, поэтому Т кладки сооружений из них составляет 0,9 Вт/м*К, что на 0,2 Вт/м*К больше, чем в первом случае. Показатель, составляющий 0,35-0,70 Вт/(м°С), а также средняя плотность сухого силикатного кирпича находятся в линейной зависимости, поэтому данная величина не зависит от количества и расположения пустот.

Силикатные изделия имеют значение теплового показателя переноса энергии меньше, чем керамические, поэтому они применяются для отделки фасадов. Для получения теплоэффективных стен применяется многопустотный силикатный кирпич, а также камень. Их плотность не более 1450 кг/м³. Эффект достигается только при аккуратном ведении кирпичной кладки, предполагающей использование нежирного кладочного раствора, который наносится тонким слоем и имеет плотность не более 1800 кг/м³. Раствор не должен заполнять пустоты в изделии.

Величина показателя красного кирпича

Для полнотелого красного кирпича характерна самая низкая способность к сохранению тепла, составляющая 0,6-0,8 Вт/м*К. По этой причине возводить энергоэкономичные сооружения целесообразно из пустотелых изделий. Их показатели теплопроводности намного ниже и составляют около 0,56 Вт/м*К.

Теплопроводность кирпича зависит не только от производственной технологии. Этот показатель находится в зависимости от множества факторов: влажности, объемного веса, пористости (размера пор материала). Достаточная плотность и пустотность этого изделия, составляющая 40-50%, соответствует показателю Т, равному 0,2-0,3 Вт/м*К. При этом толщина стен должна быть значительно меньше, чем в постройках из силиката.

Коэффициент теплопроводности, единица измерения которого исчисляется в ваттах, определяет количество тепла, способного проникнуть через кирпичную стену, имеющую метровую толщину.

Разница температуры должна составлять в 1°C по обе стороны стены. Чем выше данное значение, тем хуже характеристики коэффициента.

Наиболее важным свойством шамотного кирпича является тепловой эффект, что следует учитывать в процессе кладки печей и каминов. Чтобы обеспечить тепло в жилье, необходимо выбирать строительные материалы, обладающие низким коэффициентом теплопроводности, единицей измерения которого являются Вт/м°С или Вт/м*К.

Заключение

Показатель указывает на то, до какой степени может сохраняться тепло кирпичных стен сооружения. Это свойство объясняет, как данный материал не только проводит, но и передает тепло. Определить этот показатель можно с помощью коэффициента теплопроводности кирпича, который был получен на основе лабораторных исследований ученых.

видео-инструкция по монтажу своими руками, фото и цена

В статье мы постараемся как можно больше узнать об облицовочном кирпиче: его физических характеристиках, способах производства и особенностях применения. Мы выясним, насколько хороши его теплоизоляционные и прочностные качества, и узнаем, как можно оформить фасад с его помощью.

Любопытный материал, не правда ли? Давайте познакомимся с ним ближе.

Любопытный материал, не правда ли? Давайте познакомимся с ним ближе.

Что это такое

Облицовочный, или лицевой – это кирпич, предназначенный для наружной отделки здания. От разнообразных видов декоративной плитки он отличается тем, что не навешивается на несущие нагрузку капитальные стены, а является их полноценным элементом.

Требования

Они вытекают из области применения материала.

  • Декоративные качества материала должны быть на высоком уровне. Предполагается, что он станет служить украшением фасада здания.

Уточнение: обычно тщательно обрабатывается лишь одна или две грани изделия. Есть ли смысл придавать всему кирпичу сложный рельеф и красивую окраску, если они все равно будут скрыты кладкой?

  • Высокая механическая прочность требуется уже потому, что нижним рядам кладки предстоит выдержать массу верхних. Кроме того, облицовка здания неизбежно подвергается постоянным ударам, трению и ветровой эрозии.
  • Низкое водопоглощение приветствуется. Необходимо, чтобы осадки не насыщали стену сыростью: влажная стена проводит больше тепла; к тому же кристаллизация воды при заморозках многократно ускоряет разрушение материала.
  • Высокая морозостойкость позволит кирпичу выдержать много циклов замерзания и оттаивания. Если строительный кирпич в толще стены может прогреваться теплом жилого помещения, то наружная часть кладки неизбежно будет охлаждаться до температуры окружающей среды.
Последствия низкой морозостойкости материала.

Последствия низкой морозостойкости материала.

  • Устойчивость окраски сохранит внешний вид фасада неизменным в течение многих лет.

Технологии производства

Лицевой пустотелый кирпич может производиться несколькими способами.

  • Керамический отличается от привычного нам красного полнотелого кирпича только и исключительно качеством обработки одной или нескольких поверхностей; кроме того, в глину могут добавляться минеральные красители, меняющие цвет изделия.
  • Глазурованный отличается тем, что перед обжигом на его лицевые грани наносится смесь каолина, кварца и полевого шпата. В процессе обжига на поверхности образуется исключительно прочный глянцевый слой, непроницаемый для влаги.
  • Клинкерный кирпич отличается высокой температурой обжига, при которой частицы глины спекаются особенно надежно. Полученный материал способен выдержать в 2-3 раза большее давление на сжатие по сравнению с обыкновенной керамикой.
  • Производство гиперпрессованного кирпича начинается с получения цементно-минеральной смеси,  которая затем прессуется и выдерживается в пропарочной камере. Прочностью этот тип облицовочного материала мало уступает клинкеру; поскольку сырье содержит очень мало воды, в процессе обжига в нем практически не образуется полостей.
  • Силикатный кирпич – бедный родственник среди конкурирующих решений. Единственное его преимущество – невысокая цена; механическая прочность материала невысока, а устойчивость к сырости оставляет желать лучшего. Строго говоря, от рядового силикатного кирпича лицевой отличается лишь обработкой фронтальной поверхности и, иногда, цветом.
В сущности, перед нами старый знакомый - двойной силикатный кирпич М 150, поменявший цвет и несколько более обычного гладкий.

В сущности, перед нами старый знакомый – двойной силикатный кирпич М 150, поменявший цвет и несколько более обычного гладкий.

Технология производства традиционна для этого вида строительных материалов: смесь кварцевого песка и извести формуется под давлением и пропаривается в автоклаве.

Обратите внимание:  независимо от технологии производства, лицевой кирпич в большинстве случаев изготавливается пустотелым. Цель – сделать его более легким, дешевым и менее теплопроводным.

raznye-vidy-oblitsovochnogo-kirpicha-obedinyaet-nalichie-pustot

Разные виды облицовочного кирпича объединяет наличие пустот.

Физические свойства

Они во многом определяются способом, которым произведен изучаемый нами материал.

Теплопроводность

Начнем с лирического отступления.

Теплопроводность облицовочного кирпича сильно зависит от степени его пустотности.  При пустотности, равной 20 процентам, и при 40-процентной материал будет проводить весьма разное количество тепла.

Мы приведем коэффициент теплопроводности на облицовочный кирпич без пустот; полости уменьшат его на 10-30 процентов.

  • Силикатный кирпич характеризуется теплопроводностью в 0,7 Вт/м*К.
  • Керамический проводит тепло в зависимости от марки: чем прочнее (и, соответственно, плотнее)  материал, тем выше его теплопроводность. Справочники предлагают значения от 0,5 до 0,8 Вт/м*К. Глазурованная поверхность, как нетрудно догадаться, никак не влияет на теплоизоляционные качества.
  • Клинкерный кирпич благодаря лучшему спеканию и несколько больше плотности проводит тепло лучше – 0,9 Вт/м*К.
  • Гиперпрессованный облицовочный материал, как мы помним, имеет минимум полостей и весьма прочен. На теплоизолирующих качествах это сказывается плачевно: 1 – 1,1 Вт/м*К.
Некоторые значения можно обнаружить в таблице.

Некоторые значения можно обнаружить в таблице.

Прочность

Сравнительная прочность всех материалов позволяет расположить их по убыванию в таком порядке:

  1. Клинкерный;
  2. Гиперпрессованный;
  3. Керамический;
  4. Силикатный.

Пустотность может внести коррективы в список. Точное значение прочности заложено в маркировке изделия: средняя прочность на сжатие кирпича марки М 100 равна 10 МПа, кликера марки М 1000 – 100 МПа.

Плотность

В общем случае она максимальна у полнотелого гиперпрессованного кирпича; затем идут в порядке убывания силикатный, клинкерный и керамический. Диапазон значений – от 1600 до 2400 кг/м3. Конкретное значение плотности пустотного облицовочного изделия зависит от процента полостей.

Способы кладки

Если вы планируете облицевать фасад с помощью кирпича своими руками, инструкция зависит от ваших целей. Возможны два сценария.

  1. Цельная кирпичная стена в два, два с половиной или три кирпича включает выделяющийся отделкой наружный слой. В этом случае способ кладки ничем не отличается от традиционного: с интервалом в четыре – пять рядов кладутся тычковые ряды, обеспечивая надежную перевязку слоев стены. Разумеется, тычком кладут облицовочный кирпич с обработанными торцами.
На фото - именно такой способ облицовки.

На фото – именно такой способ облицовки.

  1. Облицовка может представлять собой самостоятельную стену в полкирпича, с промежутком от основной на 10-20 сантиметров и стоящую на общем с ней фундаменте. Полость между стенами заполняется утеплителем; цельность конструкции обеспечивается анкеровкой: между горизонтальными рядами обеих стен, связывая их, закладывается рифленая арматура или оцинкованный перфорированный профиль.
Арматура связывает облицовку с основной стеной.

Арматура связывает облицовку с основной стеной.

Вывод

Как видите, под общим названием скрывается несколько материалов с сильно отличающимися физическими свойствами. Как обычно, в представленном видео в этой статье вы найдете дополнительную информацию по данной теме. Успехов в строительстве!

Теплопроводность кирпича | Строим из кирпичей

Из всех строительных материалов, кирпич является самым потребным и древним. Ведь не зря великие монументы и архитектурные шедевры прошлых времен были созданы с применением кирпича. Еще он известен своими декоративными элементами, которые пригождаются для узорной, лекальной, глазурованной и фигурной кладки.

Теплопроводность кирпича позволяет добиться красивого оформления фасада, и к тому же повышает свойства теплозащиты. Это придает материалу способность проводить тепло через собственный объем. Следует учитывать, что коэффициент теплопроводности определяется количеством объема и соответственно если его уровень высокий, то здание быстрее прогревается или остывает. Летом преимущество – спасает от жары, зимой от холода.

Высокий показатель теплопроводности во многом зависит от химического состава кирпича, влажности, температурного состояния самого материала и от плотности, которая выражается в его пористости. Нужно учесть то, что влажное сырье проводит тепло быстрее, нежели сухое.

Так, например коэффициент теплопроводности полнотелого силикатного кирпича, и именно в сухом виде составляет 0,56 Вт/(м*К), а кладка из него – 0,69Вт/(м*С). Теплопроводность кладки полнотелых керамических кирпичей – 0,98Вт/(м*С). Теплопроводность у силикатных кирпичей меньше, нежели у второго вида, отсюда следует вывод, что тепло они удерживают дольше. Именно поэтому для оформления и утепления фасадов зданий, лучше будет использовать силикатную модель, которая отличается теплоизолирующими свойствами.

Прежде чем приступить к строительным работам, следует изучить данные всех видов кирпичей, где теплопроводность измеряется в Вт/(м*С):

• силикатный вид с пустотами — 0,66;
• щелевой силикатный — 0,4;
• керамический (полнотелый) — 0,5-0,8;
• керамический вид с пустотами — 0,57;
• щелевой керамический — 0,34-0,43;
• поризованный кирпич — 0,22;
• клинкерный — 0,8-0,9;
• шлаковый — 0,58;
• кремнеземный — 0,15;
• сплошной — 0,6.

Выбрав материал, нужно приступать к расчетам теплосопротивления, это мера обратной теплопроводности. Проводит тепло хорошо, соответственно плохо ему сопротивляется. Следовательно, имеет высокую теплопроводность, низкий уровень теплосопротивления. При строительстве для лучшего сохранения тепла, специалисты рекомендуют применять материалы с низкой теплопроводностью.