Содержание

Управление уличным и наружным освещением. Способы осуществления | ENARGYS.RU

Перед системами управления уличным освещением стоят задачи по обеспечению бесперебойной работы освещения на дорогах, мостах и транспортных объектах, промышленных и других территорий для обеспечения безопасности людей.

При проектировании систем управления наружным освещением во главу угла ставиться задача по уменьшению или сведению к полнейшему минимуму средств, затраченных на техническое обслуживание светового оборудования.

Существует несколько типов автоматического управления уличным освещением.

Традиционные системы управления наружным (уличным) освещением

К управлению светильниками с газоразрядными с лампами используется традиционное управление в виде балласта или балластного сопротивления, применяются такие элементы управления для осуществления элементарных схем управления и основаны на ограничении мощности осветительных приборов до номинала.

Балласт индукционного или магнитного типа

К первому типу балластов относятся балласты индукционного или как его еще называют магнитного типа принцип работы основан на формировании броска электрического тока служащего розжигом для газоразрядной лампы. Индукционный балласт служит для ограничения мощности газоразрядной лампы при помощи сопротивления индуктивности. К недостаткам таких устройств можно отнести сдвиг фаз между током и напряжением за счет чего изменяется световой поток, зависящий от ее мощности. При использовании магнитного балласта иногда применяется ИЗУ (импульсное зажигающее устройство)

Рис 1. Схема включения балласта для газоразрядной лампы с применением ИЗУ

Балласт электронного типа

Применение электронного низкочастотного или высокочастотного балласта относят также к традиционным типам управления, используются без применения стартера. Электронный балласт повышает эффективность лампы, за счет понижения массы устройства снижается расход электроэнергии и понижение температуры, отсутствует шум при работе и мерцание лампы, к недостаткам относится искажение гармоник что приводит влияние на радиоволны.

Рис 2 Внешний вид и схема включения электромагнитного ПРА для газоразрядных ламп высокого давления.

Применение полупроводниковых устройств которыми являются электронные балласты, их применение обеспечивает последовательность подачи тока розжига лампы и поддержания нужного значения напряжения лампы. Электронный балласт зачастую оснащается средствами служащими для дистанционного управления осветительными приборами. Для автоматического управления применяются датчики уровня освещенности, в этом случае происходит обеспечение энергосбережения.

Недостаток таких систем является загрязнение ламп и фотоэлементов, сказывающееся на его чувствительности, проблемы с калибровкой датчика, невозможность использования энергосберегающего алгоритма освещения, заключающегося в выключении освещения вовремя, когда его наличие не требуется, то есть глухой ночью.

Автоматическое управление освещением при помощи системы глобального позиционирования

Для управления уличным освещением вместо фотоэлемента,возможно применение GPS-приемника и прибора служащего для вычисления точного времени восхода и захода солнца, в соответствии с географическим местоположением при его помощи освещение включает контроллер, за 15 мин до захода солнца и наступления сумерек, и выключает за 10 мин до рассвета, в любой точке координат на земном шаре.

Автоматическое управление при использовании календарного графика

Этот способ основан на применении графика включения и отключения освещения в зависимости от календарной даты, будничных и выходных дней недели, а также в зависимости от суточного времени. Такой способ применяется для освещения предприятий в выходные, рабочие и праздничные дни.

Дистанционное управление уличным (наружным) освещением

Автоматическое управление производится с помощью зонального контроллера или сервера. Контроллер служит для формирования сигнала для включения определенной группы наружных осветительных устройств, или уличных фонарей. Для передачи сигнала на исполнительный элемент, роль которого выполняет электронный балласт, применяются:

  1. Слаботочные сигнальные линии, которые управляют отдельными лампами, по цифровому протоколу управления, на использовании календарного графика. Надежность такого типа может подвергаться сомнению из-за накопления ошибок в отчетности по времени, на настройку которого отводятся большие трудозатраты. Применяется система обычно небольших городских районов или участков местности. Стоимость системы главным образом зависит от наличия в каждом фонаре индивидуального блока управления и, конечно же, постоянное корректирование таймера.
  2. Радиоканалы, применяется в групповом управлении по радиоканалу на приемник в шкафу управления. Недостаток заключается в наличии радиопомех, которые могут препятствовать управлению освещением, возможным только в зоне уверенного приема радиосигнала.
  3. GSM-канал, используются при управлении группами освещения при помощи телефонного звонка или СМС сообщения на контроллер в управляющем шкафу. К недостатку способа можно отнести загруженность сети GSM и ограниченность зоной охвата сотовой сети, затраты на системы не требуют вложения значительных средств из-за использования общей сети.
  4. Передача ВЧ-сигнала по силовому кабелю также для группового управления по кабельной силовой линии, подключенной к контроллеру в шкафу управления. Возможен риск ошибочного управления вследствие повреждения кабельной линии, для эффективного управления освещением необходима прокладка кабеля к каждому фонарю.

АСУНО автоматизированная система управления наружным освещением

АСУНО система, призванная управлять освещением по определенному графику включенном в программу работы специализированного контроллера, может оперировать «вечерним» или «ночным» освещениям, а также любыми другими типами освещения в зависимости от пожеланий заказчика.

Система может управлять освещением в дистанционном, автоматическом или ручном режиме. Система выявляет неисправности осветительных приборов, производит контроль за напряжением и рабочим током по всем фазам, мощность, потребляемую светильниками, рабочее состояние предохранителей.

Кроме основной функции система осуществляет функцию охраны, и может выполнять действия характерные для АСТУЭ или АСКУЭ, то есть делет работу информационно-измерительной системы. Работа системы основана на модульном принципе, который разрешает адаптировать ее к конкретно поставленным задачам по телеуправлению, диагностике или охране объектов.

Применение системы несет ощутимый экономический эффект за счет снижения расходов на оплату электроэнергии и технического обслуживания осветительных линий.

Управление уличным освещением с использованием программного комплекса «НТС-7000»

Использование процесса происходит на основе силовой линии распределительной сети 0,4 кВ при помощи PLC-технологии и сети Ethernet и GSM/GSRS-сетей.

Работа по управлению различными уровнями освещения осуществляется в автоматическом режиме телеуправлением с использованием заранее утвержденного графика. Оперативное управление, может также осуществляется централизованно и местном ручном режиме.

Решаются задачи по оптимизации структур управления, достижения максимального уровня освещенности улиц, соблюдения графика рациональной работы осветительных приборов, помогает анализировать потребление электроэнергии, выявляет и способствует устранению возникших неисправностей электрической сети.

Система управления освещением — Википедия

Система управления освещением — это интеллектуальная сеть, которая позволяет обеспечить нужное количество света, где и когда это необходимо[1]. Эта система широко применяется в коммерческой и жилой недвижимости, в промышленности и для внутренней и наружной рекламы.

Большинство таких систем способны автоматически регулировать освещение. Автоматизация представляет собой один из трех основных механизмов оптимизации освещения, наряду с использованием энергоэффективных ламп и грамотным расположением светильников.

[2]

Системы управления освещением используются для максимизации экономии энергии, в том числе с учетом строительных норм, стандартов зеленого строительства и энергосберегающих программ. Системы автоматического управления освещением часто встречаются под названием умное освещение.

Если термин «управление освещением» обозначает отдельные светильники, выключаемые и выключаемые вручную, или иногда оборудованные встроенными датчиками света или движения, то понятие «система управления освещением» предполагает светильники, датчики и прочие вспомогательные устройства, объединенные в единую интеллектуальную систему, которая при необходимости может работать самостоятельно.

Система управления освещением может включать:

  • умные выключатели, способные включаться и выключаться автоматически,
  • умные диммеры, способные автоматически менять мощность освещения,
  • умные лампы, способные автоматически включаться, выключаться, менять мощность, цветовую температуру и цвет,
  • светодиодные ленты (с теми же возможностями, что и умные лампы) и RGB-контроллеры для управления ими,
  • датчики движения,
  • датчики присутствия,
  • датчики открытия двери, окна, дверцы и так далее,
  • датчики света,
  • дополнительные дистанционные выключатели.

Она также может взаимодействовать с другими системами здания (такими как пожарная сигнализация или ОВК).

Управлять светом при этом можно как обычным способом (локально), так и специальные центральные пульты, сенсорные экраны, веб-интерфейсы и мобильные приложения (управление проходит через контроллер).

Контроль за эффективностью управления освещением в жилых помещениях осуществляется Консорциумом по энергоэффективности[3].

Основным преимуществом системы управления освещением над автономным управлением освещения или над обычным ручным переключением света является способность контролировать отдельные световые приборы или группы приборов из Единого пользовательского интерфейса устройства.

Возможность одновременно контролировать несколько источников света из одного устройства позволяет создать нужную световую атмосферу, в зависимости от предназначения помещения в тот или иной период времени.

Одним из важнейших преимуществ системы управления освещением является снижение энергопотребления.

Ещё одно преимущество — это увеличение продолжительности срока службы электрических ламп, за счет энергосбережения.

Беспроводные системы управления освещением также позволяют снизить затраты на установку и предполагают больше вариантов размещения датчиков и выключателей.[4]

Системы управления, как правило, предоставляют возможность автоматической регулировки освещения в зависимости от внешних условий, например автоматическое включение света по движению или по расписанию.[2]

Во многих случаях пользователь может сам настроить алгоритмы срабатывания света: условия включения и выключения, изменения цвета и мощности, скорость изменения параметров и так далее. В таких алгоритмах можно использовать сразу несколько условий, например поддерживать вечером приглушенное освещение в гостиной, если в ней кто-то есть и если естественного света мало (расписание + датчик света + датчик присутствия).

Чаще всего используются следующие механизмы:

механизм примеры использования пусковое устройство
расписание включить свет в 7 утра,
приглушить свет в 8 вечера,
выключить в полночь весь свет, кроме ночника
астрографик (рассвет / закат) выключить свет через час после рассвета
включить свет за час до заката
таймер выключить свет через 3 минуты после включения
количество естественного света включить свет, когда слишком темно, чтобы читать
поддерживать постоянный уровень освещенности
датчик света
присутствие / отсутствие людей включить свет, когда в комнату кто-то вошел,
выключить свет, когда в комнате никого нет
датчик движения,
датчик присутствия
открывание / закрывание двери включить свет, когда открылась входная дверь датчик открытия
сигналы от внешней системы
(пожарной, охранной и так далее)
включить весь верхний свет при пожаре,
заставить лампы мигать при взломе
датчик дыма,
пожарная сигнализация,
охранная сигнализация

Классификация систем управления освещением[править | править код]

В 1980-х техническое освещение стало модернизироваться. Оно должно было стать более управляемым и энергоэффективным. Изначально, был создан аналог современной системы, который позволял контролировать флуоресцентный баланс и интенсивность освещения. Это был первый шаг к созданию полноценной системы управления освещением, однако аналог требовал большое количество кабельной проводки, что было экономически неэффективно. Tridonic

[5] стала первой компанией, которая сделала цифровой протокол передачи данных в 1991 году (DSI). DSI стал основным интерфейсом для передачи команд по изменению освещения всех подключенных световых приборов. В отличие от его аналогового, данный интерфейс предполагал упрощенную систему использования кабеля. Таким образом, существует два типа систем:

Применение системы управления освещением в театре[править | править код]

Архитектурные системы управления освещением включают в себя двухпозиционный переключатель, контроль над интенсивностью освещения, и используются в основном для регулировки света на сцене. Системы управления могут быть расположены в различных частях одного здания и представляют собой как простую систему из нескольких переключателей, так и сложный интерфейс с сенсорным экраном.

Основное преимущество такой системы освещения для работников театра заключается в возможности управлять и регулировать свет на сцене, не прибегая к использованию пульта управления освещением. Таким образом, световые сигналы меняются и контролируются с помощью всего одной системы.

Автоматизированные системы управления уличным освещением

Преимущества автоматизированной системы управления освещением

Самым оптимальным решением для эффективного управления освещением является использование полностью автоматизированных систем управления и диспетчеризации наружного освещения (АСУНО).

Почему же автоматизированная система эффективнее классических методов управления? Сердцем АСУНО явля­ется программируемый логический контроллер, который производит управление коммутацией отходящих линий по заранее заданной программе. В программе контроллера хранится годовое расписание, поэтому освещение включается всегда в нужное время. Данные об энергопотреблении и авариях передаются в диспетчерский центр, поэтому всегда доступна информация о состоянии питания на вводе в подстанцию и значение потребляемой мощности. По снижению текущего энергопотребления относительно нормы можно оценить количество перегоревших ламп. При превышении нормы энергопотребления идентифицируется нелегальное подключение к электросети. Вся диагностическая информация доступна в диспетчерском центре, участие объездной бригады не требуется. Таким образом, снижается аварийность за счет превентивного мониторинга и экономятся средства на обслуживание.

 

Шкаф управления системой городского освещения во Владивостоке

Рис. 1. Шкаф управления системой городского освещения во Владивостоке

Системы автоматизированного управления освещением на базе решений от Phoenix Contact

Ядром системы управления является программируемый контроллер ILC 130 ETH. Контроллер имеет встроенные часы реального времени с возможностью синхронизации, что позволяет управлять контакторами линий освещения по заранее заданному расписанию. Разработанная программа управления освещением контролирует от одного до 26 контакторов. Причем переключение каждого контактора настраивается как по собственному отдельному расписанию, так и с возможностью объединения нескольких контакторов в групповое расписание. Расписание имеет возможность корректировки из диспетчерского центра. Каждый контактор может быть дистанционно включен, отключен или же временно переведен на альтернативное расписание.

Если вводить альтернативное расписание нецелесообразно, то произвести включение и выключение можно принудительной командой. Также заранее можно настроить возможность автоматического возврата на работу по расписанию, если при принудительном включении в течение заданного времени отсутствует связь с диспетчерским центром.

Связь с диспетчерским центром осуществляется по сети Ethernet. Для этого применяются любые доступные технологии, такие как оптоволоконные линии, сотовые сети 3G или ADSL. Для обеспечения защиты информации система управления может оснащаться межсетевым экраном с технологией VPN по протоколам IPSec или OpenVPN. Так как выделенные линии связи не всегда доступны, то наиболее часто связь осуществляется через Интернет, и шифрование данных с ограничением доступа необходимо для обеспечения безопасности объектов освещения. Связь по сети Ethernet имеет ряд преимуществ. Контроллеры доступны для программирования из сети, и для обслуживания или изменения программы под новое ТЗ нет необходимости выезжать на объект. Для синхронизации времени используется стандартный протокол NTP. Контроллер может подключаться к серверу точного времени в Интернете, к серверу времени диспетчерской или же к серверу времени своего локального маршрутизатора. Для наиболее эффективной синхронизации времени используются маршрутизаторы со встроенным приемником GPS/ГЛОНАСС TC MGUARD. Они получают координаты и точное время со спутников и передают эти данные на контроллер. Таким образом, кроме синхронизации времени, возможна точная привязка объекта к местности в модуле ГИС диспетчерского ПО в автоматическом режиме.

Структура системы управления освещение

Рис. 2. Структура системы управления

Контроллер имеет возможность подключения собственного модуля измерения параметров электросети или счетчиков электроэнергии по интерфейсу RS485, таких как «Меркурий» или ПСЧ. Как уже говорилось, по измеренным значениям энергопотребления можно судить о количестве сгоревших ламп или нелегальном подключении к электросети. При первом запуске системы контроллер запоминает номинальные значения при полной нагрузке и при полном отключении различных каскадов. В процессе эксплуатации контроллеру можно выдать команду на перезапись данных параметров. На каждую линию освещения опционально устанавливается реле контроля, обеспечивающее диагностику неисправности на всем каскаде.

Структура системы связи управления освещением

Рис. 3. Структура системы связи

Для обеспечения непрерывного функционирования системы в шкаф управления установлен блок бесперебойного питания, обеспечивающий автономную работу контроллера до 48 часов или более, в зависимости от батареи/аккумулятора. При наличии резервного ввода система управления может также выполнять функции АВР. При отсутствии напряжения на основном вводе система переключится на резервный.

Архитектура системы диспетчеризации управление освещением

Рис. 4. Архитектура системы диспетчеризации

 

Система мониторинга и управления

Система управления включает в себя специализированное программное обеспечение верхнего уровня, построенное на современных ИТ-решениях. Разработанный коммуникационный протокол позволяет контроллерам накапливать и передавать архивы событий и измеряемых величин, а также их текущие значения — как по запросу, так и спорадически. Для обеспечения эффективного управления большим количеством объектов в систему введена функция синхронизации. Ряд команд или изменений настроек, не требующих немедленного исполнения, заносятся в определенный регистр базы данных. Контроллер с определенной периодичностью запрашивает для себя новые параметры и получает их при следующей сессии синхронизации. Таким образом, если отсутствует связь с отдельными исполнительными пунктами (например, если система обесточена или перегружена сотовая связь), нет необходимости повторно передавать параметры на каждую станцию и отслеживать их применение. Новые данные, например, расписание, будут автоматически загружены в контроллер при очередном сеансе связи с диспетчерским пунктом.

Также контроллеры системы управления могут быть включены в любые системы диспетчеризации посредством стандартных протоколов, таких как Modbus, TCP, IEC 610870-5-104, OPC или XML.

Данная технология существенно облегчает ввод шкафов управления в эксплуатацию. Контроллер автоматически определяет свою конфигурацию и передает ее на центральный сервер. Администратору системы требуется лишь указать режим работы для новой станции. Система диспетчеризации выполнена на клиент-серверной архитектуре с использованием веб-технологий. Сервер ввода/вывода обеспечивает обмен данными с контроллером и запись параметров в базу данных. Сервер приложения и веб-сервер обеспечивают визуализацию работы системы. Использование веб-технологий позволяет производить мониторинг системы с любого компьютера, смартфона, или планшета. Например, если ответственный за эксплуатацию получает SMS-сообщение о неисправности, то, подключившись через VPN-соединение к центральному серверу из любой точки мира и открыв веб-страницу системы, он сможет точно определить неисправность, выдать соответствующие распоряжения и проконтролировать выполнение работ по возврату системы в нормальный режим.

Экраны системы диспетчеризации систему управления освещением

Рис. 5. Экраны системы диспетчеризации

* * *

Используя современные технологии от Phoenix Contact, можно добиться максимальной гибкости и функциональности при построении системы управления наружным освещениям, снижая затраты на электроэнергию и расходы на обслуживание. Возможности модернизации функционала системы практически не ограничены, что позволяет сделать ее еще более гибкой и эффективной.

Facebook

Twitter

Вконтакте

Google+

Как устроена система управления уличным освещением?

Уличное освещение окружает нас повсюду. Бесперебойной подачей света обеспечиваются дачные участки, дороги, мосты, промышленные территории. В ночное время суток для этой задачи используются фонари, светильники, прожекторы и фасадная подсветка. Управление уличным освещением в разы сэкономит и электроэнергию, и финансовые затраты.

Автоматизация освещения ставит перед собой некоторые задачи. К ним относятся:

  1. Бесперебойное, не создающее помех освещение улиц.
  2. Экономия энергии, расход в пределах разумного при сохранении качества освещения.
  3. Меньшие финансовые затраты, по сравнению с другими системами управления.

Современные системы автоматизации управления уличным освещением

Мощные осветительные приборы, благодаря автоматическому управлению способны отключаться и включаться в нужный момент. Помимо этого, система организации автоматической работы в ночное время имеет и другие преимущества.

В этой статье:

Достоинства автоматизированной работы систем освещения

  • Работа в автономном режиме.
  • Исключение человеческого фактора.
  • Отсутствие потребности в ручном отключении и включении уличного освещения.
  • Минимальная потеря электроэнергии.
  • Возможность использования самых современных приборов, которые сделают работу подсветки более эффективной.

Наружное световое оснащение реализуются не только на общественных территориях, но и на частных участках. Например, удобно применять автоматизированную систему освещения в условиях дома, коттеджа. Это не только создает качественную подсветку в ночное время, но и придает чувство безопасности. Можно с уверенностью перемещаться по освещенному участку, территории и проезжей части.

Какие существуют способы управления уличным светом?

Технологии в настоящее время развиваются далеко не семимильными шагами. Теперь существует не только ручное управление, но и система управления уличным освещением с использованием датчиков, реле времени и микропроцессорные механизмы. Расскажем о каждом чуть подробнее.

Ручное управление

Ручное управление осветительными приборами предполагает включение и отключение всех источников света специальными сотрудниками на месте. Управление осуществляется с помощью специального щитка, который располагается в оптимальном месте. Основной недостаток данного метода заключается в необходимости привлечения дополнительной рабочей силы, отсутствие удобства при выполнении операций. Ну и человеческий фактор, который может служить возникновением различных аварий.

Чтобы наиболее качественно использовать подсветку в данной автоматизированной системе управления (АСУ) на каждую линию необходимо подсоединить целую группу фонарей, которые будут работать в определенной зоне участка.

Щит уличного освещения

Щит ручного управления уличным освещением

Использование специальных датчиков

Управлению при задействовании специальных датчиков освещённости часто используются в качестве элемента охраны окружающей среды. Принцип их работы заключается в передаче сигнала о движении по радиоканалу. Инфракрасный или микроволновый датчик не выносится в специально отведенный щит. Одним из главных недостатков датчика является его реагирование не пыль, грязь и снег. Также при использовании датчиков вы не сможете применить энергосберегающие методы.

Управление при помощи фотореле

Регулирование освещения с применением фотореле можно назвать светочувствительным автоматом. Контактор реле устанавливается в щит для защиты от влажности, а само фотореле относят на улицу. Для соединения этих двух элементов используется катушка. На данный момент, фотореле наиболее эффективно справляется с задачей наружного освещения, нежели другие методы. Помните, что реле необходимо постоянно корректировать, так как его работа зависит от длительности дня и ночи, смены времен года.

Фотореле для включения фонаря

Схема управления уличным освещением с помощью фотореле

Таймер в управлении освещением

Использование таймера в управлении светом очень актуально в данный период времени. На рынке световых приборов представлен широкий ассортимент современных таймеров по самым разным ценам. Изначально их нужно запрограммировать на включение света в установленное время суток. Для правильной и эффективной работы нужно создать верную схему реагирования таймера к осветительным приборам.

Для удобства не так давно был создан цифровой астрономический таймер. Он сам рассчитывает время восхода, захода солнца и производит включение и выключение света.

Использование диммеров в управлении

Применение диммеров эффективно, если требуется освещение для небольшого участка. Для этого используются автономные диммеры. Они способны переключать освещение в режим ночного пониженного энергопотребления. Прибор устанавливается отдельно в каждую световую конструкцию. Существуют диммеры с установкой индивидуального режима работы.

Управление освещением на расстоянии

Дистанционное управление связано с наличием главного сервера и контроллера, который будет формировать сигналы для реакции и включения той или иной группы осветительных приборов. В передаче сигнала участвуют слаботочные сигнальные огни, радиоканалы, GSM-каналы и силовые кабели.

Помощь компьютера при регулировании света

Компьютеризированное управление светильниками хорошо подойдет для дачных участков и частных домов. Домашний ноутбук можно превратить в настоящую базу по управлению уличного освещения. Сигнал будет осуществляться по сети Интернет. На каждый световой прибор должны быть установлены специальные блоки с антеннами или переходники со встроенным модулем Wi-Fi. После назначения IP-адресов в несколько нажатий можно включить или выключить свет на любом участке территории.

Мобильная система управления освещением

Управление наружным освещением дома с помощью смартфона

Достижения техники позволяют управлять освещением не только с компьютера, но и с телефона или смартфона. Для этого используются специальные приставки, которые служат своеобразным «мостом» между сетью и прибором. Блок сети Wi-Fi есть почти в каждом доме, что позволяет управлять светом в зоне охвата роутера. Некоторые фонари, светильники для участка производители уже выпускают с блоками для подсоединения этим методом.

Достижение науки или солнечные батареи

Использование светильников на солнечных батареях является более практичным по сравнению с другими и всегда совмещается с пультами дистанционного управления. С помощью его можно сэкономить немало средств на покупке кабелей и монтировке распределительного щитка. Радиоуправление доступно при расстоянии в 100 метров. Помимо этого, можно использовать усилитель, который поможет в увеличении расстояния.

Выводы

Современные методы уличного освещения позволяют эффективно организовать работу подсветки. При желании с установкой систем можно справиться и собственными силами.

Управление наружным освещением | Проектирование электроснабжения

Наружное освещение – это светильники, фонари, прожекторы, подсветка зданий и многое другое, предназначенные для освещения улиц, парков, территорий,  площадей, фонтанов в вечернее и ночное время. Рассмотрим основные способы управления наружным освещением.


Управление наружным освещением должно быть четко организовано, иначе оно просто-напросто потеряет свое практическое назначение.

В зависимости от технического задания заказчика и назначения наружного освещения в каждом отдельном случаем можно выбрать один из наиболее подходящих способов управления.

Как можно управлять наружным освещением?

1 Ручное (неавтоматическое) управление.

Для управления светильниками устанавливают коммутационные аппараты в нужных местах. Включение и отключение производится обслуживающим персоналом. Коммутационные аппараты могут быть установлены по месту либо находится на посту охраны (в помещении с постоянно присутствующим персоналом). В случае с дистанционным управлением, целесообразнее коммутацию производить через  электромагнитный контактор, а в нужное помещение выводить лишь кнопку управления.

2 Управление при помощи фотореле.

В данном случае для управления наружным освещением понадобятся контактор (или реле) и фотореле (светочувствительный автомат). Контактор устанавливают в силовом щите, а фотореле – на улице. Контакт фотореле связывают с катушкой контактора. В ночное время срабатывает фотореле, которое включает контактор и тем самым загорается освещение. В простейшем случае можно обойтись и без контактора.

3 Управление от охранной сигнализации (датчиков движения).

Данный способ управления наружным освещение  практически идентичен предыдущему. Отличается лишь управляющим органов. Вместо фотореле выступает прибор охранной сигнализации или датчик движения. Такая схема позволит экономить электроэнергию, поскольку светильники  будут гореть лишь при срабатывании охранной  сигнализации.

4 Управление по таймеру.

В настоящее время изготавливают достаточно не дорогие программируемые таймеры, которые можно применить, в том числе и для управления наружным освещением. Допустим необходимо освещать площадку только в будние дни с 18-00 до 23-00. Реализовать подобное требование сможет лишь таймер, который в нужное время будет включать и отключать контактор.

5 Комбинированное управление.

Комбинированный способ включает в себя сочетание  нескольких возможных вариантов управления наружным освещением. Например, наружное освещение с ручным, дистанционным и автоматическим управлением.

Изучив все возможные способы управления освещением с легкостью можно сделать любую схему управления, по требованию заказчика.

А сейчас приведу реальный пример управления наружным освещением.

По заданию имеется несколько групп прожекторов, которые должны управляться следующим образом:

1 Освещение должно включаться в ночное время при условии, что сработала охранная сигнализация.

Схема управления группы прожекторов включающихся при заданных условиях представлена ниже:

Схема управления прожекторами в ночное время и от ОС

Здесь коммутацию питания выполняет промежуточное реле РЭК. При больших токах следует предусматривать контактор. Чтобы освещение включалось только в ночное время и при срабатывании охранной сигнализации, нужно последовательно с катушкой РЭК включить контакт фотореле и контакт охранной сигнализации.

2 Специальный светодиодный прожектор серии SP4812-38G в ночное время должен гореть в пол мощности, а при срабатывании охранной сигнализации загораться в полную мощность.

Данные условия способна реализовать следующая схема:

Схема управления прожекторами в ночное время при пониженной мощности

У прожектора серии SP4812-38G имеется специальный управляющий вход. Замкнутый контакт соответствует режиму пониженной мощности. Именно это мы и будет использовать.

Контакт фотореле включен последовательно с катушкой РЭК (Р1), а управляющий вход заведен на размыкающийся (нормально-замкнутый) контакт второго РЭК (Р2).  В таком случае в ночное время прожектор будет работать в режиме пониженной мощности, но как только сработает охранная сигнализация контакты РЭК (Р2) разомкнутся и прожектор включится на полную мощность.

Схема может быть упрощена, при условии, что у прибора охранной сигнализации имеется в наличии нормально-замкнутый контакт. Тогда реле Р2 из схемы можно исключить.

А как включить ручное управление в данные схемы я думаю вы и сами догадаетесь

P.S. Многие задачи способны решить комплектные шкафы наружного освещения (ШНО).

Советую почитать:

Схема управления наружным освещением | Проектирование электроснабжения

Для управления наружным освещением используют различные варианты схем. Сегодня вам хочу представить универсальную схему включения/отключения наружным освещением, которую можно применять практически всегда, внося минимальные изменения.

К примеру, различные варианты схем управления, я также шкафы управления уличным освещением я рассматривал в своем курсе по проектированию кабельных сетей и наружного освещения. Но сегодня универсальную схему я слегка модернизирую, чтобы выполнить дополнительное требование заказчика.

Любая нормальная схема управления наружным освещением должна иметь 3 режима работы:

  • ручной режим;
  • дистанционный режим;
  • автоматический режим.

Исходя из этого, предлагаю вашему вниманию универсальную (типовую) схему управления уличным освещением:

Универсальная (типовая) схема управления наружным освещением

Рассмотрим назначение всех коммутационных аппаратов и изделий.

QF –  автоматический выключатель, который предназначен для защиты цепей управления.

KM1 – электромагнитный контактор, который необходим для коммутации силовой цепи (включения/отключения наружного освещения).

KT1 – астрономический таймер либо фотореле, которые управляют освещением в зависимости от времени суток или освещенности.

SA1 – кулачковый переключатель выбора режима работы схемы управления.

SB1 – кнопка «Стоп» с размыкающим контактом без фиксации для отключения наружного освещения в ручном режиме.

SB2 – кнопка «Пуск» с замыкающим контактом без фиксации для включения наружного освещения в ручном режиме.

Схема работает очень просто. Изначально необходимо выбрать необходимый режим работы. В ручном режиме освещение включается и отключается кнопками «Пуск» и «Стоп», которые могут быть установлены на шкафу управления либо вынесены на пост охраны. В дистанционном режиме для управления освещением требуется «сухой контакт» от внешнего устройства. В автоматическом режиме управление осуществляется за счет реле (фотореле, астрономического таймера).

Если вам какой-либо режим не требуется, то схему очень легко упростить до требуемой конфигурации.

Однако, предположим, что наружное освещение должно включаться не только от таймера либо фотореле, но и от сигнала охранной сигнализации. Как будет выглядеть схема в таком случае?

Охранная сигнализация – это и есть дистанционное управление.  Но в нашем случае мы должны совместить дистанционный и автоматический режимы. Для этого вместо трехпозиционного переключателя нам достаточно применить двухпозиционный кулачковый переключатель, а вспомогательные контакты КТ1 и охранной сигнализации  должны быть подключены параллельно.

Схема управления наружным освещением по сигналу охранной сигнализации

В такой схеме наружное освещение может включиться в любое время суток при условии, что сработала охранная сигнализация.

Советую почитать:

Вы можете пролистать до конца и оставить комментарий. Уведомления сейчас отключены.

12 Управление освещением производственных помещений » СтудИзба

12. Управление освещением производственных помещений

Управление электрическим освещением административных, общественных, жилых зданий производится выключателями общего назначения.

Управление электрическим освещением в производственных помещениях осуществляется автоматическими выключателями, установленными в групповых щитках. Включение и отключение светильников производится рядами в зависимости от уровня естественной освещенности в помещении.

Дистанционное управление освещением

Для дистанционного управления электрическим освещением производственных цехов и участков, имеющих большие пролеты применяются пульты управления, схема которого представлена на рис. 12.1.

Пульты ПУ-Ин1 могут применяться совместно с осветительными щитками и могут управлять шестью трехфазными или однофазными линиями.

Напряжение питания пульта управления 220 В переменного тока.

Пульт имеет изолированную нулевую (N) и связанную с корпусом защитную (РЕ) шины, что позволяет применять их в трех-пятипроводной системе электроснабжения.

Пульт состоит из вводного автоматического выключателя QF1, шести выключателей с фиксированным положением типа «ТУМБЛЕР» и семи комплектов с сигнальной арматурой на светодиодных излучателях.

Для дистанционного включения и выключения групповых линий освещения требуется дополнительно к пульту управления применить электромагнитные пускатели, которые своими главными контактами и будут производить включение или отключение групповых линий. Пульт управления может быть установлен в помещении диспетчера или в другом помещении с дежурным персоналом цеха или участка, а электромагнитные пускатели непосредственно у осветительного группового щитка.

Работает схема следующим образом.

Включением автоматического выключателя QF1 (рис. 12.1) подается напряжение на цепи управления и сигнализации. При этом получает питание светодиодный излучатель VD8, сигнализируя о подаче напряжения «Напряжение ВКЛЮЧЕНО». При необходимости включения групповых линий – включаются в ручном режиме выключатели SB1…SB6 дежурным персоналом цеха. После чего включаются электромагнитные пускатели, которые включают групповые линии освещения. Катушки электромагнитных пускателей подключаются к выводам ХТ11…ХТ16 пульта дистанционного управления. Отключение производится этими же выключателями SB1…SB6. Включенное состояние групповых линий освещения сигнализируют светодиодные излучатели VD9…VD14.

Рис. 12.1. Схема электрическая принципиальная пульта
дистанционного управления ПУ-Ин1

Освещение производственных цехов и участков производится светильниками с мощными источниками света – лампами ДРЛ, ДРИ, ДНаТ мощностью 250, 400, 700, 1000 Вт, то питание групповых линий осуществляется по трехфазной системе напряжения с чередованием подключения светильников по фазам L1, L2, L3. В этом случае целесообразно будет применить предлагаемую схему (рис. 12.2) включения двух пускателей на одну трехфазную групповую линию. Тогда электромагнитным пускателем КМ1 производится управление светильниками, подключенными к фазам L1 и L2, а пускателем КМ2 – светильниками, подключенными к фазе L3. При одновременном включении пускателей КМ1 и КМ2 включаются все светильники групповой линии. Это позволит более гибко управлять групповыми линиями освещения.

Комбинация «включения – отключения» групповых линий в зависимости от уровня освещенности в помещении позволит существенно снизить электропотребление на электрическое освещение помещений производственных и других зданий.

Рис. 12.2. Фрагмент схемы электрической принципиальной дистанционного управления с помощью электромагнитных пускателей

Автоматическое управление

При включении пульта дистанционного управления ПУ-Ин1 совместно со светочувствительным автоматом (рис. 12.3) можно осуществить и автоматическое управление некоторых групповых линий внутреннего освещения в зависимости от уровня естественного и искусственного освещения производственных помещений.

Рис. 12.3. Схема автоматического управления осветительной
установкой внутреннего освещения

Светочувствительный сумеречный выключатель фирмы «ИНОСАТ-ЭНЕРГО» имеет два независимых канала с двумя нормами регулируемой освещенности. Используется для подачи команд на включение – отключение освещения двух групп светильников, когда освещенность датчика достигает заданного порога.

Технические данные сумеречного выключателя:

– напряжение 230 В переменного тока 50 Гц;

– пределы регулирования по каналу 1 – 2…150 лк, по каналу 2 – 150…7500 лк;

– номинальный ток контактов – 10 А;

– присоединение датчика кабелем 2´0,25 мм2 длиной до 100 м.

Освещение мест общего пользования

Освещение мест общего пользования жилых домов, т.е. подъездов и лестничных площадок этажных домов, общественных зданий выполнено по традиционной схеме. В домах до пяти этажей устанавливались светильники типа ПСХ-60 с лампами накаливания на каждой лестничной площадке по одному светильнику. В жилых домах выше пяти этажей устанавливались светильники с лампами накаливания по три светильника на каждой лестничной площадке или светильниками с люминесцентными лампами мощностью 1´18 Вт. Управление освещением, т.е. включение и отключение этих светильников производится выключателями общего пользования, которые устанавливаются на лестничной площадке при входе в подъезд и включают или отключают светильники одновременно на всех лестничных площадках. Даже если допустить, что человеческий фактор жильцов дома срабатывает четко и экономно – включение производится с наступлением сумерек, а отключение утром, то в летнее время рассвет наступает после трех часов утра и до движения жильцов освещение работает несколько часов при достаточном естественном свете, расходуя электрическую энергию не рационально.

Для улучшения рационального использования электрической энергии по освещению мест общего пользования жилых домов, общественных зданий можно применить лестничные автоматы.

Лестничный автомат, схема которого представлена на рис. 12.4, приспособлен для установки в щите освещения, предназначен для поддержания включенным  освещение лестничной площадки в течение заданного промежутка времени (в диапазоне от 0,5 до 10 мин.). По истечении заданной уставки времени освещение автоматически выключается, т.е. включение освещения производится вручную, а отключение – автоматически  с регулируемой выдержкой времени, которая позволяет подняться на свой этаж и открыть дверь квартиры.

Рис. 12.4. Схема электрическая лестничного автомата
управления освещением

Технические данные устройства:

– напряжение питания – 220 В;

– максимальный ток нагрузки – 10 А;

– задержка выключения, регулируемая – 0,5 – 10 мин;

– потребляемая мощность – 0,85 Вт;

– степень защиты – IP65.

Для установки лестничного автомата потребуется дополнительно установить на каждой лестничной площадке выключатели.

Управление наружным освещением

Для управления наружным освещением территории промышленных предприятий применяется, как правило, дистанционное неавтоматическое (ручное) или автоматическое включение и отключение из диспетчерских пунктов предприятия. Диспетчер по индивидуальным линиям осуществляет включение или отключение того или иного участка сети наружного освещения.

Управление наружным освещением населенных пунктов, города выполняется централизованным дистанционным или телемеханическим. В отличие от дистанционного управления, при телемеханическом управлении все команды в виде закодированных электрических сигналов от диспетчера, или управляющей ЭВМ передаются по одному каналу телефонной связи. На объектах управления эти сигналы с помощью специальной аппаратуры преобразуются в команды управления, контроля, измерения, сигнализации.

Включение наружного освещения улиц, дорог, площадей производится при снижении уровня естественной освещенности до 20 лк, а отключение – при повышении освещенности до 10 лк. Нормирование уровня освещенности позволяет автоматизировать управление наружным освещением с помощью фотореле, схема которого приведена на рис. 12.5. Схема блока автоматического управления состоит из фотореле А1, фотодатчика BL1, переключателя, магнитного пускателя сигнальной лампы и групповых автоматических выключателей. При достижении заданного уровня освещенности срабатывает фотореле и производит включение магнитного пускателя K1.1, который своими контактами включает групповые линии сети освещения.

Схема предусматривает также ручное управление с помощью переключателя SA1.

Рис. 12.5. Схема электрическая принципиальная управления
наружным освещением с помощью фотореле

Для управления уличным освещением применяются шкафы наружного освещения (ШНО) Шкафы наружного освещения  предназначены для приема, учета и распределения электрической энергии, а также защиты электрических установок при перегрузках и коротких замыканиях в осветительных сетях переменного тока частотой 50 Гц напряжением 380/220 В с глухозаземленной нейтралью.

Схемы шкафа ШНО предусматривают ручное и автоматическое управление электрическим освещением.

Ручное управление возможно при управлении кнопками, установленными на панели управления шкафа.

Автоматическое управление предусматривает два варианта управления наружным освещением:

– по освещенности и по временной программе осуществляется автоматическое управление с помощью фотодатчика и фотореле, срабатывающего при достижении заданного уровня освещенности, и программируемого реле времени, включающего и отключающего осветительную установку в заданные периоды времени;

– каскадное управление (с аппаратурой управления от предыдущего участка) – автоматическое управление осуществляется подачей сигнала от предыдущего участка осветительной сети на реле, управляющие в вечернем и ночном режиме освещения.

Включение вечернего освещение производится включением реле и двух магнитных пускателей. При ночном режиме управления – вечернее освещение отключается одним электромагнитным  пускателем и в работе остаются светильники наружного освещения, включенные, например в фазу А, т.е. каждый третий светильник.

Двухступенчатое управление с помощью фотореле и реле времени

Схема предусматривает  две ступени автоматического включения групповых линий светильников осуществляемое переключателем SA1 (рис. 12.8).

Рис. 12.8. Схема двухступенчатого управления наружным
освещением

С наступлением сумерек срабатывает фотореле и реле времени при этом включаются электромагнитные пускатели КМ1 и КМ2, включая освещение.

При истечении уставки реле времени, которая может быть настроена от 0,1 с до 24 часов, отключается пускатель КМ2 и отключает напряжение «фазы С». С наступлением светлого времени суток фотореле отключит все светильники.

Экономия электроэнергии достигается за счет отключения  светильников по программе ночного режима работы осветительной установки.