Химические и физические свойства стекла


Стекло, как и любой материал, обладает особенными химическими и физическими свойствами. Для ознакомления с ними важно понимать из чего оно состоит, и какие процессы наделили его данными особенностями.

Обыкновенное стекло состоит из соды, кварца и извести. Белый кварцевый песок нагревают до температуры 900 градусов. От такого нагрева он становится вязким и плавно переходит в желеобразную фазу. После, в него добавляют соду. При возникшей химической реакции стеклянная масса приобретает более жидкую форму и поддается розливу и раскатке. Но соединение кварца и соды не устойчиво и в обыкновенной воде растворяется очень быстро. Для создания более устойчивого материала прозрачного типа в кипящую массу добавляется кальций, или известь. После вялотекущей химической реакции стекло готово и отсутствие в его массе газообразных пузырей говорит о готовности изготовления из него листового материала. После полного остывания

стекло приобретает твердость и хрупкость, наряду с прозрачностью и устойчивостью к атмосферным влияниям. Для придания стеклу определенных физических свойств  в процессе варки в его массу добавляют легирующие элементы – оксиды металлов.

Химические свойства стекла

Прозрачность стекла обусловлена кристаллизацией молекул кварца. По степени прозрачности различают следующие варианты стекол:

  • Флоат (Float) стекло. Обладает прозрачностью до 95%. Имеет зеленоватый или голубоватый оттенок.
  • Клиар (Clear) стекло. Обладает прозрачностью до 95%. Не имеет оттенков.
  • Оптивайт (Optiwhite) стекло. Обладает прозрачностью до 98%. Изготавливается с минимальным содержанием окиси железа.
  • Тонированные стекла Bronze, Silver, Green, Gley,  Darck обладают степенью прозрачности до 80% и имеют отличный от прозрачного цвет. Изготавливаются с добавлением в шихту окиси металлов или наделяются оттенками с помощью напыления или пленок с напылением.
  • Матовые стекла. Обладают прозрачностью до 15% и выполняются из прозрачного стекла методом пескоструйной обработки или травли высококачественной кислотой.
  • Рифленые стекла. Обладают эффектом светопреломления и искажают предметы через свою плоскость. За счет смещения фокусов стекла в процессе изменения прямолинейности поверхности, рифленое стекло обладает прозрачностью до 80%, но за его толщей невозможно увидеть четкие предметы.
  • Стекла лакобель (Lacobel) и мателак (Matelac) Обладают прозрачностью 0%. Изготавливаются методом нанесения лакокрасочных материалов на поверхность стела.

Хрупкость стекла.

Хрупкость стекла обусловлена поверхностным натяжением в молекулярных решетках. Стекла имеют определенный предел прочности. При критическом воздействии, кристаллическая решетка не выдерживает нагрузок, и междумолекулярные связи рушатся. Стекло трескается или разбивается на острые, опасные для человека осколки, которые имеют режущие  торцы и способны повреждать  белее мягкие материи.
Для того чтобы стекло, при крушении, не образовывало острых осколков, его закаляют в печах закалки стекла. Процесс закалки происходит под температурой критической точки перехода стекла в жидкое состояние. После достижения этой точки молекулярный состав стекла начинает формировать правильную кристаллическую  решетку. Благодаря действию силы тяжести все элементы молекул занимают четко одинаковые позиции. После мгновенного охлаждения молекулярная решетка буквально застывает в правильном положении. Стекло закаленного типа приобретает более высокие показатели прочности и при превышении предела прочности механическими нагрузками в его толще происходит последовательный разрыв всех молекулярных связей. В результате чего листовое стекло рассыпается на мелкие кусочки, которые уже не повредят человеку.

Водонепроницаемость

Водонепроницаемость стекла. Стекло обладает водонепроницаемостью за счет плотности кристаллической решетки и отсутствия пористых включений. Вся толща стекла имеет высокую степень сплоченности молекул и не пропускает воду, пар, газы и газообразные смеси.

Физические свойства стекла

Одним из физических свойств стекла,  является  способность преломления света. Направленный свет, проходя через поверхность

стекла, может преломляться сквозь его толщу, если разные поверхности одного изделия не параллельны друг другу. В противном случае степень искажения света незначительна.

Любое стекло можно наделить определенными свойствами. Например, титановое напыление на поверхность стекла дарит ему свойства отражения тепловых колебаний. Структура прозрачного стекла позволяет принимать и пропускать через себя различные колебания. Как известно, свет, тепло и звук – это волновые явления, которые обладают свойственной каждому явлению амплитудой колебательных движений. Слой титана позволяет перенаправлять тепловые волны и отражать большую их часть от поверхности стекла. Такие стекла называют энергосберегающими и используют для установки в оконные и дверные проемы.

Придать стеклу свойств, отражения световой энергии позволяют напыления из оксидов марганца, свинца и меди. Создавая на поверхности стекла

отражающую, зеркальную пленку, напыление способно отражать солнечный свет.

Способность отражать ультрафиолетовый спектр дневного света стеклу придает напыление из оксидов титана. Стекло может быть полностью прозрачным, но невидимый ультрафиолетовый спектр не буде проходить через его толщу, частично поглощаясь стеклом и частично отражаясь от него.

Само по себе стекло не обладает звуконепроницаемыми качествами, но, благодаря изготовлению из него стеклопакетов, которые состоят из двух стекол и разряженного между нами пространства, изделие может предотвращать проникновение звуковых волн и тепловой энергии.

Вот такие химические и физические свойства имеет стекло.

 

Смотрите статьи:

Зеркальные панно

Дверцы из стекла

Технические характеристики и сфера применения закаленного стекла

Закаленное стекло используют в тех случаях, когда необходимо не только не увеличивать обзор и обеспечить доступ света, но и защитить находящееся за стеклом объекты, в том числе и людей. Такое стекло получается благодаря использованию системы термической обработки, так называемому закаливанию на финальной стадии производства материала. При закалке такого стекла, его нагревают до 600-800 °C, а затем быстро охлаждают, в результате чего получается механически и термически прочный материал.

 Закаленное стекло примерно в пять-семь раз прочнее обычного стекла аналогичной толщины. Данное стекло разбивается на небольшие осколки с тупыми концами, поэтому в ходе несчастного случая довольно сложно получить серьезные травмы.

Закаленное стекло в процессе обработки приобретает три основные характеристики:

  • Термостойкость;
  • Повышенную механическую прочность;
  • Высокую ударную вязкость.

Конкретные технические характеристики данного стекла приведены в таблице 1:

Общие технические характеристики

Средние показатели

удельная теплопроводность стекла

0,93 вт/ м×к

коэффициент упругости стекла при изгибе

66 000 — 73 500 мпа

Плотность стекла

2,5 кг/ дм3

прочность на растяжение при изгибе

200 мпа

масса на 1 мм толщины

2,5 кг/ м2

разрушающие напряжения

200 мпа

термическое сопротивление

0,00534 м2 к/ вт

 

Применяют закаленное стекло для остекления различных объектов, требующих дополнительной защиты. Основными направлениями применения материала являются следующие объекты:

  • Стеклянные офисные перегородки;
  • Стеклянные ограждения;
  • Двери из стекла различных видов;
  • Душевые кабины и двери для саун.

Данный тип стекла имеет широкий спектр применения в интерьерах зданий, жилых домов, офисах, торговых залах и банках. Особенно широко закаленное стекло применяется для ограждения смотровых площадок, лестниц, балконов, защищая человека от падения и увеличивая обзор. Для защиты от кражи экспонатов в музее также используют закаленное стекло.

Этот вид стекла используется для изготовления раздвижных дверей, входных дверей в различных зданиях и помещениях. Кроме этого, такое стекло применяется в производстве дверей и перегородок для саун и душевых кабин и внутренних перегородок. Двери из закаленного стекла придают зданиям современный внешний вид, и они очень удобны и просты в использовании.

Готовое закаленное стекло нельзя подвергать дальнейшей обработке, разрезать или сверлить, а также подвергать химической обработке, так как это может привести к преждевременному разрушению материала. Такое стекло должно быть изготовлено изначально нужного размера с необходимыми отверстиями. При необходимости на таком стекле может выполняться и рисунок.

Такое стекло должно выдерживать падение мягкого тела массой примерно 45 кг. Обычно закаленное стекло подразделяется на классы защиты, которые зависят от высоты падения тела. Классы защиты приведены в таблице 2:

Класс защиты закаленного стекла

Высота падения тела

CM 1

300 мм

CM 2

700 мм

CM 3

1200 мм

CM 4

2000 мм

В зависимости от назначения объекта подбирают и закаленное стекло. Так на смотровых площадках устанавливают самое прочное стекло, высокого класса защиты. Для дверей или внутренних перегородок можно подбирать стекло класса защиты CM 1 и CM 2. Каждый лист стекла подвергают специальным испытаниям и тестируют по установленным стандартам. При этом лист стекла зажимают в горизонтальном или вертикальном положении и проводят специальные тесты.

В период эксплуатации закаленное стекло не допускается протирать тканью с абразивными химическими элементами. Температурный диапазон допустимых значений эксплуатации стекла достаточно широк – от минус 150 до плюс 300 °C. При необходимости использования стекла в других температурных диапазонах следует проводить дополнительные испытания стекла. Очень часто закаленное стекло используют в составе пуленепробиваемых, огнестойких и устойчивых к взрыву конструкциях.

Закаленное стекло пользуется огромным спросом для изготовления цельностеклянных конструкций и широко вошло в интерьеры современных зданий и квартир. При этом высокое качество и отличные характеристики закаленного стекла обусловлены строгим соблюдением технологии производства материала.

 

Свойства стекла (стр. 1 из 4)

1. Стекло

Стекло — один из прекраснейших материалов, изобретенных еще 3000 лет до нашей эры. Несмотря на «солидный возраст», оно до сих пор честно служит людям, с каждым годом, открывающим в нем новые качества. Стекло — это красивые дома и сверхпрочные материалы, художественные изделия и ткани. Это один из материалов, которым никогда не перестанут любоваться люди. Оно незаменимо в быту и лабораторной практике. О стекле написано сотни книг, проведены и проводятся научные исследования, но до сих пор нет точного определения термина «стекло».

Стеклом называются все аморфные тела, получаемые путем переохлаждения расплава, независимо от их химического состава и температурной области затвердевания, и обладающие механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым.

В стекловидном состоянии могут находиться вещества, как естественного происхождения, так и полученные искусственно. К естественным стеклам относятся: вулканическая магма, пемза, смолы. Искусственные неорганические стекла — переохлажденные расплавы, в состав которых входят окиси кремния, бора, фосфора, щелочных и щелочноземельных металлов.

Исходными материалами для получения искусственной стекольной массы являются кварцевый песок, кальцинированная сода, поташ, сульфат натрия, мел и известняк, карбонат магния, доломит, карбонат бария, натриевая и калиевая селитры. В некоторые сорта стекол вводят окись алюминия, окись свинца и окислы других металлов.

Основным компонентом стекла является двуокись кремния — кремнезем, температура плавления которого равна 1728°С. Содержание окиси кремния в стекле составляет 50—85%, а в кварцевом стекле 98,8—99,9%. Содержание других компонентов, входящих в состав стекол, приведено в таблицах 1 и 2.

Цветные стекла получают, вводя в шихту окислы или другие соединения разных элементов, например для окраски стекла в синий цвет вводят соединения кобальта, в зеленый — окись хрома, в фиолетовый — соединения марганца, в рубиновый—закись меди или металлическое золото.

Варят стекло в специальных печах при высоких температурах. Во время варки стекла происходят сложные химические и физические процессы, в результате которых шихта, претерпевая ряд изменений, превращается в осветленную и однородную стекломассу.

Процесс стеклообразования начинается при достижении 1200— 1240°С. В заводских условиях стекло варят при 1400—1450°С; осветление стекломассы происходит при 1500 °С. Особые сорта стекла варят при еще более высокой температуре.

2. Физические свойства

Физические свойства стекла зависят от его химического состава, условий варки и последующей обработки. Стекло не имеет определенной точки плавления. Оно переходит в жидкое состояние постепенно, становясь мягче при повышении температуры.

Часто применяют термин «температура размягчения» стекла. По-видимому, эта температура лежит выше температуры отжига стекла, но сама по себе эта величина довольно неопределенна.

Важнейшими свойствами стекла, определяющими условия его варки и дальнейшей обработки, являются вязкость и поверхностное натяжение.

Вязкость. Свойство жидкостей оказывать сопротивление их течению—перемещению одного слоя относительно другого — под действием внешних сил называют вязкостью и обозначают г). Таким образом, вязкость характеризует внутреннее трение, поэтому это свойство часто называют внутренним трением. Вязкость — понятие, обратное текучести. Количественно эту величину выражают силой, действующей на единицу площади соприкосновения двух слоев, которая достаточна для поддержания определенной скорости перемещения одного слоя относительно другого. В системе измерения СГС вязкость измеряется в пуазах; пуазы принято обозначать П: 1 пуаз = 1 дина-секунда/сантиметр = 100 сантипуаз = 10е микропуаз или 1П= 1 дн-с/см = = I г/ = 102 сП = 106 мкП. В единицах измерения СИ вязкость выражается в паскаль-секунда: 1П = 0,1 Па-с.

Вячкость стекла в обычных условиях равна Ю13—10ls П При нагревании вязкость стекла уменьшается, оно делается более мягким и тягучим, так что его можно формовать, подвергать тепловой обработке.

Обрабатывать на пламени стеклодувных горелок можно только размягченное стекло, вязкость которого лежит в интервале от 103 до 10* П. Механическое формование стекла производят при температуре 800—1100 °С и вязкости 104—4 -103 П.

При остывании стекло вновь твердеет. Температура, при которой вязкость стекла достигает 1013П, называется температурой стеклования.

Кривая изменения вязкости с уменьшением температуры должна быть относительно пологой, т. е. вязкость не должна изменяться слишком резко. В зависимости от вида кривой «вязкость — температура» стекла делят на «длинные» и «короткие». К «длинным» стеклам относятся сравнительно легкоплавкие стекла — свинцовые, № 23, молибденовые и др.; к «коротким» — стекла типа «пирекс». Самым «коротким» стеклом является кварцевое.

При быстром изменении температуры в стекле возникают неравномерные внутренние напряжения. Такое стекло очень непрочно и легко растрескивается. Напряжения в стекле снимают путем отжига. Для этого изделия помещают в печь в зону с температурой на 20—30 С ниже температуры стеклования, выдерживают при этой температуре некоторое время, а затем медленно охлаждают. Естественно, чем меньше вязкость стекла, тем меньше нужно его нагревать, чтобы снять внутренние напряжения.

Поверхностное натяжение. Поверхность любой жидкости, а следовательно и расплавленной стекломассы, всегда стремится сократиться за счет сил, которые называют силами поверхностного натяжения. Чтобы увеличить поверхность, требуется затратить работу. Размер этой работы, отнесенный к единице поверхности, называют поверхностным натяжением и обозначают о. В системе единиц СГС эту величину измеряют в динах на сантиметр, в СИ — в ньютонах на метр; 1 дин/см = = 1 ■ Ю-3 Н/м. Поверхностное натяжение стекла равно 220— —380 дин/см и зависит от его химического состава. При введении в состав стекла окисей алюминия и магния его поверхностное натяжение увеличивается, а при введении окисей калия, натрия, бария и фосфора — снижается. Поверхностное натяжение уменьшается при повышении температуры.

Чем больше поверхностное натяжение стекла, тем труднее его обрабатывать и тем сильнее приходится нагревать его стеклодуву при обработке.

3. Механические свойства

Плотность. Плотность определяется отношением массы тела к его объему. В системе единиц СГС ее измеряют в граммах па кубический сантиметр, в СИ — в килограммах на кубический метр: 1 г/см3 = 1-Ю3 кг/м3. Плотность стекла з, при котором тела теряют способность быть упругими.

Потеря упругости у разных материалов проявляется по-разному: одни после снятия усилия остаются деформированными; другие при достижении предела упругости разрушаются. Первые материалы называются пластичными, вторые — хрупкими. Стекла относятся ко второй группе материалов.

Хрупкость. Хрупкость — состояние материла, в котором под действием внешних сил материал совсем не проявляет остаточной деформации и разрушается. Большая хрупкость стекла весьма ограничивает его применение. Хрупкость увеличивается, если стекло неоднородно по составу или толщине, если в нем имеются вкрапления инородных тел, пузырьков воздуха, если поверхность его поцарапана.

Материал можно вывести из хрупкого состояния, изменив внешние условия. Например, хрупкое при обычных условиях стекло становится пластичным при нагревании. Другие материалы будучи пластичными при обычных условиях, становятся хрупкими при понижении температуры. Так, резина при охлаждении становится хрупкой и легко разбивается. Таким образом, одни и те же материалы при разных условиях могут находиться или в хрупком, или в пластичном состоянии. Этим пользуются при формовке и обработке стекла, при изготовлении из него разных деталей и приборов. Различные сорта стекла при этом требуется нагреть до разной температуры.

Свойства стекла

Свойства стекла

Шухтин Ю.Д. 1

1МОУ «Средняя общеобразовательная школа №1» города Котласа, 6 класc

Кривошапкина В.В. 1

1МОУ «Средняя общеобразовательная школа №1» города Котласа,

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Научно-исследовательская работа

Химия

СВОЙСТВА СТЕКЛА

Выполнил:

Шухтин Юрий Дмитриевич

учащийся 6 класса

МОУ «Средней

общеобразовательной

школы № 1» МО «Котлас»,

Архангельской области

Руководитель:

Кривошапкина

Валентина Владимировна

учитель МОУ «Средней

общеобразовательной

школы № 1» МО «Котлас»,

Архангельской области

Содержание

Введение………………………………………………………………….3

Теоретическая часть……………………………………………..3

Распространение в природе……………………………………..3

История стекла……………………………………………………4

Физические свойства…………………………………………….5

Состав стекла……………………………………………….……..6

Основные виды стекла и их применение ……………….…..….6

Практическая часть………………………………………… ..…7

Изучение школьной коллекции «Стекло»………………….…..7

Растворение стекла ……………………………………….….…..7

Плавление стекла ……………………………………………..….8

Получение цветных стекол…………………………………..…..8

Матирование стекла……………………………………………….8

Выводы……………………………….…………………………….8

Заключение……………………………………………………………….9

Литература…………………………………………..…….……………..10

Приложения………………………………………………………………11

Введение

Стекло — вещество и материал, один из самых древних и, благодаря разнообразию своих свойств, универсальный в практике человека. Стекло является самым широко применяемым материалом в быту, строительстве, на транспорте благодаря своим уникальным качествам: прозрачности, твердости, химической устойчивости к активным химическим реагентам, относительной дешевизне производства. Без него невозможно изготовить оптические приборы, телевизоры, космические корабли и др. Для своей работы я выбрал именно эту тему, так как считаю, что история возникновения и познания этого вещества тесно связана с историей человечества. Кроме того, эта тема меня заинтересовала, и я хотел бы как можно шире раскрыть ее.

Цель работы: доказать, что стекло – это уникальный материал, обладающий удивительными свойствами.

Для достижения заданной цели были поставлены следующие задачи:

1. Узнать историю открытия стекла

2. Изучить технологию изготовления стекла

3. Изучить состав стекла

4. Познакомиться с различными видами стекла

5. На основе полученных теоретических знаний выполнить практическую работу по изучению свойств стекла

Гипотеза: Стекло – материал, обладающий необычными свойствами.

При подготовке исследования я пользовался материалами:

Научных и публицистических изданий;

Периодических изданий;

Данными, опубликованными в сети Интернет.

3

Теоретическая часть

1.1 Распространение в природе

Как известно, стекло, используемое нами в повседневной жизни, – материал искусственный. Древние люди могли держать в руках стекло, даже не имея представления о его приготовлении, поскольку наряду с искусственным существует и природное (вулканическое) стекло – перлит, обсидиан. Из такого природного стекла делали режущий

инструмент и украшения. Обсидиан представляет собой застывшую вулканическую лаву или оплавленную скальную породу. Именно обсидиан использовался первобытными людьми для изготовления различных режущих инструментов, а также украшений.(1)

1.2 История стекла

История стекла уходит в глубокую древность. Известно, что в Египте и Месопотамии его умели делать уже 6000 лет назад. Вероятно, стекло начали изготавливать все же позже, чем первые керамические изделия, так как для его производства требовались более высокие температуры, чем для обжига глины. Если для простейших керамических изделий было достаточно только глины, то в состав стекла необходимо минимум три компонента.

Существует легенда, что первыми изобрели стекло финикийцы. Возвращаясь с дальнего плавания, они решили остановиться на близлежащем острове. Развели костёр для того, чтобы приготовить еду. А так как камней не было, они поставили под котёл глыбы соды. Через некоторое время финикийцы заметили, что ракушки, сода и песок превратились в какую-то жидкость. Это и было стекло. Но у этой легенды существует опровержение: учёные доказали, что при открытом огне нельзя добиться температуры плавления компонентов.

Изделия из стекла так же, как и из керамики, практически не подвергаются атмосферным воздействиям и хорошо сохраняются даже под слоем земли. Эти изделия оказались важнейшими документами далекого прошлого. Они донесли до нас бесценную информацию об уровне культуры и

4

техники древних народов. Благодаря стеклу до нашего времени дошли величайшие художественные произведения различных эпох культуры человечества.

Несмотря на то что возраст стеклоделия оценивается в 6 тыс. лет, прозрачное и бесцветное стекло люди научились варить лишь на пороге новой эры. До этого производилось непрозрачное окрашенное в различные тона стекло и из него изготавливались главным образом мелкие изделия: бусы, браслеты, пуговицы, кольца, печатки, шахматные фигуры и др. Стеклодувы античной эпохи начали широко применять холодную обработку стекла: рельефную резьбу, гравировку, шлифовку. Как только было получено прозрачное стекло, стеклоделы стали стремиться изготовить из него оконные пластины. Ученые предполагают, что оконное стекло вначале было цветным. Это объясняется тем, что бесцветное стекло получить было весьма непросто, так как сырье обычно содержит различные примеси, которые придают стеклу окраску. Особенно часто в

сырье присутствуют соединения железа. Получение пластин для остекления окон оказалось весьма непростым делом. Изготовление полых изделий довольно сложной формы путем выдувания для человека было более простой задачей, чем получение листового стекла. Эта задача была решена лишь к концу средневековья. При раскопках Помпеи, погребенной под пеплом вулкана Везувия в 79 г. н.э., было установлено, что в очень редких случаях в окна были вставлены пластины стекла, которые были довольно толстыми. По-видимому, тонкое листовое стекло итальянские стеклоделы еще не научились делать.

Считают, что метод выдувания так же, как и способ варки прозрачного стекла, был открыт в период смены летоисчисления. Поводов для его открытия было предостаточно. Для получения высоких температур в металлургии был уже известен способ дутья. При варке стекла, требующей также высоких температур, дутье, в частности, проводилось при помощи легких человека. Для

5

этого использовались длинные и полые тростниковые трубки, конец которых обмазывался глиной. Последнее было необходимо для того, чтобы трубка не загоралась. Таким образом, для открытия метода выдувания стеклянных изделий были созданы все предпосылки. Нужен был только случай, когда конец трубки прикоснется к жидкой стекольной массе. Если это произошло, то, продолжая дуть в трубку, человек должен получить что-то похожее на пузырь. Следующим шагом было помещение выдуваемого «пузыря» в деревянную форму, и полое стеклянное изделие почти готово.

Вероятно, метод выдувания изделий из стекла был изобретен в различных местах, где культивировалось стеклоделие, примерно в одно и то же время. Однако принято считать, что способ выдувания был изобретен в Александрии в I в. до н.э.

Первый стекольный завод в России был построен в 1636 г. близ г. Воскресенска под Москвой. На нем выдували оконное стекло и стеклянную посуду. Через 30 лет в селе Измайлово, также под Москвой, был построен завод, на котором изготовляли высококачественные стаканы, графины, фляги, рюмки, кувшины и др. Особенно быстро стеклоделие развилось при Петре I. В XVIII в. около Москвы действовало уже шесть стекольных заводов.

Физические свойства

Как и любой другой материал, стекло обладает рядом качеств, которые необходимо знать, прежде чем использовать его в той или иной области.

Плотность. Может варьироваться в зависимости от состава смеси и способа изготовления. Значение плотности стекла может колебаться от 220 до 650 кг/м3.

Хрупкость. Эта характеристика является отличительной особенностью стекла и ограничивает его применение в строительной области. В настоящее время учеными создаются более сложные сплавы, максимально увеличивающие прочность материала.

Термостойкость. Обычное стекло выдерживает температуру до 90 оС.

6

После обработки термические свойства материала значительно повышаются. Например, промышленное стекло способно выдерживать температуру более 200 оС.(2)

1.4 Состав стекла

Стандартный состав стекла представляет собой смесь чистого кварцевого песка, извести и соды. Для изменения свойств материала могут использоваться различные добавки. Но все-таки основным составляющим компонентом является именно чистый речной песок. Его количество составляет примерно 75% от всей смеси. Сода позволяет снизить температуру плавления песка почти в 2 раза. Известь защищает стекло от воздействия большинства химических веществ, а также добавляет прочности и блеска.

Дополнительные примеси:

Марганец (Mn) добавляют в стекло для получения специфического зеленого оттенка. Для получения других цветов может использоваться никель или хром.

Свинец (Pb) придает стеклу дополнительный блеск и характерный звон. Материал получается более холодным на ощупь. Стекло с примесью свинца называется хрусталь.

Оксид бора тоже придает материалу дополнительный блеск и прозрачность, при этом понижая коэффициент теплового расширения изделий.(3)

1.5 Основные виды стекла и их применение

Существует множество видов стекол, которые охватывают весь спектр применения их в народном хозяйстве.

Закаленное стекло, обладающее повышенной термостойкостью, получают путем нагрева стекла до температуры закалки (540-650˚ С) и последующего быстрого охлаждения. Термостойкость – до 175˚С. применяется в строительстве (двери, перегородки, ограждения), для остекления городского транспорта.

7

Термостойкое (борсиликатное) стекло содержит окись рубидия, окись лития и др. Термостойкие стекла имеют коэффициент линейного расширения в 2-3 раза меньше, чем обычное стекло. Изделия из таких стекол выдерживают перепады температур до 200˚С.

Их используют для изготовления термостойких деталей аппаратуры.

Теплозащитное стекло задерживает 70-75% инфракрасных лучей, оставаясь при этом прозрачным для видимого света.

Отражающее стекло используют для уменьшения нагрева солнечными лучами и регулирования освещенности. Эти свойства достигаются путем покрытия, наносимого на стекло в вакуумной камере и образующего с ним единое целое.

Триплекс – безопасное безосколочное стекло с повышенной тепло- и шумоизоляцией. Оно состоит из пакета, образованного из 2-х или более листов стекла, между которыми проложена прозрачная пластичная пленка, прочно соединенная со стеклом склеивающим составом.

Жидкое стекло – водный раствор силиката натрия Na2SiO3. Этим стеклом пропитываются ткани и дерево для придания им огнестойкости; оно применяется для изготовления кислотоупорного цемента, силикатных красок и глазурей, а также в качестве

конторского клея.

Есть еще много других видов стекол, таких как: оконное, фотохромное, витражное, хрустальное, кварцевое, пеностекло, стекловолокно, стеклопластики. (2)

2.Практическая часть

2.1 Изучение школьной коллекции «Стекло»

В школьной лаборатории есть учебная коллекция «Стекло», в которой представлены различные виды этого материала, некоторые из которых были охарактеризованы выше. В коллекции 12 разновидностей стекла. Оказывается, есть такие виды стекла, которые не обладают прозрачностью, пористые

8

(пеностекло), похожие на пластмассу (стеклопластики), в виде волокон (стекловолокно). Для меня оказалось интересным, что из стекловолокна можно изготавливать стеклоткани. (Приложение 1)

2.2 Растворение стекла.

Казалось бы, стекло – это нерастворимое в воде вещество. Ведь в стеклянные банки, бутылки можно не только наливать воду и различные растворы, но и хранить в них. Однако, и стекло можно растворить.

Для опыта мы использовали два вида стекла – оконное и пробирковое. Оба образца сломали и растерли в ступке до порошкообразного состояния. К растертому стеклу добавили воды и взболтали. Чтобы стекло быстрее растворилось, пробирки нагрели. Один из компонентов, используемых для получения стекла – сода, имеет щелочную реакцию среды. Для определения среды используют индикаторы – вещества, изменяющие цвет в растворах кислот и щелочей. Мы воспользовались фенолфталеином.

Результат. Раствор стал розовым. Это значит, что стекло растворилось, а сода, входящая в его состав дала щелочную реакцию. (Приложение 2)

2.3 Плавление стекла

Стеклянную трубку нагрели в пламени спиртовки.

Результат. Через некоторое время стекло размягчается. Мягкому стеклу можно придать различные формы. У меня получились изогнутые трубки. (Приложение 3)

Получение цветных стекол

Размягчили стеклянную трубку в пламени спиртовки и аккуратно растянули так,

чтобы получилась стеклянная нить. Растягивали до разрыва нити. Одну часть опустили в раствор хлорида кобальта розового цвета, другую в раствор сульфата меди. Затем снова внесли в пламя спиртовки.(6)

Результат. В пламени спиртовки нить сплавилась в шарик. В первом

9

случае шарик светло-голубого, во втором – светло-розового цвета. Чем длиннее получается нить, тем крупнее шарик. У меня получились шарики в диаметре примерно 1,5 мм. Интересно, что при использовании розового раствора, получается голубое стекло, а при использовании голубого раствора – розовое. (Приложение4)

Матирование стекла.

Стекло неактивное вещество, но может растворяться в плавиковой кислоте. В школьном химическом кабинете плавиковая кислота, как правило, отсутствует, однако ее можно получить в процессе нанесения рисунка.

Перед обработкой поверхность обезжиривают и сушат. Для работы готовят эмульсию, которая состоит из 1 г фтористого натрия, 1 г желатина и 200 мл горячей воды.

Стекло заклеили скотчем, с помощью скальпеля вырезали в скотче фигуру в виде звездочки. Стекло покрыли полученной эмульсией. После высыхания эмульсии на обрабатываемое стекло на 50-60 секунд наливают 5%-ный раствор соляной кислоты. Затем излишки реактива удаляют, а впитавшаяся в желатин кислота протравливает стекло. (7)

Результат. После промывания стекла в проточной воде и удаления скотча на стекле осталась звезда. (Приложение 5)

Выводы

— не смотря на свою «обычность» стекло обладает особенными свойствами;

— изучив свойства стекла и приложив некоторые старания, можно в школьной лаборатории изменить обычное стекло, поменяв форму, цвет и нанести рисунок

Заключение

Стекло, по праву, считается одним из самых удивительных материалов. Человек уже много веков назад научился изготавливать из него не только посуду, но и ювелирные украшения, правда в настоящее время все больше

10

используются пластики. Прошло много веков, но и в настоящее время стекло популярно в различных сферах деятельности человека: медицине, технике, науке, культуре, быту.

Моя гипотеза подтвердилась, цель работы достигнута. Я доказал, что стекло – это вещество с удивительными свойствам. Каждый из нас использует стекло с раннего детства, смотря на мир через окно, выпивая воду из стакана, украшая себя стеклянными бусами. И, наверное, по этой причине мы не замечаем необычного в обычных вещах.

11

Литература.

Кукушкин Ю. Н. Химия вокруг нас: Справочное пособие. – М.: Высшая школа, 2010.

Лисичкин Г. В., Бетанели В. И. Химики изобретают. – М.: Просвещение, 2012.

Стенин Б.Д. Занимательные задания и эффектные опыты по химии. – М. Дрофа, 2002.

Химия для гуманитариев. Сост. Н. В. Ширшина. – Волгоград: Учитель, 2010

Интернет-ресурсы:

http://chem21.info/info/682090/

http://www.mywebs.su/blog/riddles/23629.html

http://mash-xxl.info/article/242071/

12

Приложения

Коллекция «Стекло»

2.Растворение стекла

3.Плавление стекла

13

Получение цветных стекол

Матирование стекол

14

Просмотров работы: 258

Виды стекла

  Закаленное стекло Производится посредством высокотемпературного обжигания. Имеет повышенную устойчивость к механическим воздействиям. Относится к особо прочным видам стекла, а при разрушении образует множество фракций с тупыми кромками.  
  Триплекс (ламинированное стекло) Прочное стекло, отличающееся от остальных типов своим конструктивным решением – несколько листов склеиваются между собой ламинированной пленкой или специальной жидкостью, что не влияет на прозрачность стекла. Некоторые виды триплекса являются пуленепробиваемыми, что чрезвычайно важно, например, при производстве входных групп для банковских учреждений.  
  Флоат-стекло Отличается идеальной ровностью, пропорциональной толщиной и отсутствием оптических искажений. Производится двумя способами: горизонтальным на расплаве металла и вертикальным вытягиванием.  
  Узорчатое стекло Листовое стекло, одна или обе стороны которого имеют декоративную обработку в виде повторяющегося орнамента. Может иметь различные рисунки, цвета, толщину, коэффициент светопропускаемости (не менее 0,7) и глубину рельефных линий (0,5-1,5 мм). Узорчатое стекло можно ламинировать и закалять.  
  Солнцезащитное стекло Данный вид стекла поглощает или отражает излучение. Теплопоглощающее получают посредством добавления в стекломассу добавок, окрашивающих ее в серые или зеленовато-голубоватые тона. Такие виды стела пропускают до 75% света, а инфракрасных лучей – до 35%, причем способность поглощать и пропускать лучи также зависит от толщины листа.
Отражающее стекло имеет тонкое окиснометаллическое, керамическое или полимерное покрытие, которое наносится на одну из сторон бесцветного стекла.
 
  Теплосберегающее (селективное) стекло Пропускает коротковолновое излучение, но при этом отражает длинноволновое. К-стекло имеет слабую поверхностную дымку, заметную при ярком освещении. Низкоэмиссионный, энергосберегающий, защищающий от УФ-излучения вид стекла, изготавливаемый путем нанесения на его поверхность тонкого прозрачного покрытия, обладающего теплопроводностью.
I-стекло превосходит по своим характеристикам К-стекло, а их различие состоит в коэффициенте отражающей способности и технологии производства: I-стекло производится путем нанесения на поверхность обычного стекла вакуумного напыления.
 
  Армированное стекло Производится посредством помещения в середину листа металлической сетки с квадратными ячейками. Может использоваться как сварная или стальная проволока, так и проволока с защитным покрытием. Сторона ячейки – 12,5 или 25 мм. Сетка располагается на расстоянии более 1,5 мм от поверхности и по всей площади листа. Обладает такими свойствами как безопасность и огнестойкость. Качественное армированное стекло должно отламываться от линии разреза, не образуя трещин. Одна из его сторон может быть рифленой или узорчатой.  
  Эмалированное стекло (стемалит) Покрывается с одной стороны эмалевой керамической краской и подвергается последующей термообработке в стекольной мастерской, в результате которой краска оплавляется, прочно соединяясь с поверхностью. После закаливания не может подвергаться сверлению и резке.  
  Тонированное в массе стекло Технология производства данного вида стекла может выполняться двумя способами: путем наклеивания на поверхность тонировочной пленки или при помощи добавления в стекломассу оксидов металла. Во второй случае к сырьевому материалу могут добавляться следующие ингредиенты: никель и кобальт тонируют стекло в серый цвет, оксиды железа – в голубой, а трехвалентное железо придает желтый оттенок.  
  Цветное стекло (лакобель) Декоративное стекло, окрашенное с одной стороны краской, не содержащей в своем составе тяжелых металлов. Имеет повышенную огнестойкость и устойчивость к потере яркости цвета под воздействием УФ-излучения и воздействия света. Не используется при производстве стеклопакетов.  
  Матовое стекло Поверхность листа обрабатывается специальной кислотой или подвергается пескоструйной обработке, в результате чего достигается эффект однородной матовости, сохраняющий эстетичный внешний вид на протяжении всего срока эксплуатации изделия. Широко используется, например, при производстве фартуков для кухни из стекла.  
  Стеклопакет Конструкция, состоящая из двух или трех стекол, герметично соединенных друг с другом посредством дистанционной рамки. Однокамерный стеклопакет используется при производстве различных конструкций, например, входных тамбуров, к которым не предъявляются высокие требования к звуко- и шумоизоляции.  
  Поликарбонат Синтетический материал, являющийся сложным линейным полиэфиром фенолов и угольной кислоты. Сотовый поликарбонат – листы с ячеистой структурой (сотами), который обычно используется при производстве ограждающих светопрозрачных конструкций (зимние сады, навесы, козырьки, теплицы и пр.).
Монолитный поликарбонат представляет собой цельные, не имеющие полых каналов листы. Внешне такой пластик напоминает оргстекло, однако превосходит его по подавляющему большинству характеристик. Монолитный поликарбонат прочнее акрилового стекла в 11 раз, а обычного силикатного – в 210 раз, кроме этого он отличается пожаробезопасностью и продолжительным сроком эксплуатации.
 
  Акриловое стекло Бюджетный универсальный материал для производства различных конструкций, в том числе стеновых стеклянных панелей. Изготавливается двумя способами: литьем и экструзией. Оргстекло устойчиво к химическому воздействию, погодным условиям, отлично пропускает свет. Также оно в 2,5 раза легче обычного стекла, а его сопротивляемость удара в 5 раз выше. Кроме того акриловое стекло можно резать, формовать, сверлить, окрашивать, склеивать и т.д. Однако стоит учитывать технологические трудности при термоформовании оргстекла, что может стать причиной появления микротрещин, легковоспламеняемость материала и его склонности к поверхностным повреждениям (царапинам).  
  Стекло с изменяющейся прозрачностью (Smart glass) Представляет собой композит из нескольких листов стекла, в котором два прозрачных или тонированных листа разделяются внутренним слоем особого материала на жидкокристаллической основе. Элементы такого материала под действием электрического тока выстраиваются в определенной структуре так, что лучи света, проходя через них, делают конструкцию полностью прозрачной или слегка тонированной, что определяется наружными видами стекла. Как только сигнал отключается, жидкие кристаллы теряют свое стройное расположение и обретают хаотическую структуру, мгновенное закрывая доступ свету, в результате чего стекло становится прозрачным, матовым или тонированным, что определяется характеристиками второго, наружного стекла.  
  Оптивайт Обеспечивает максимальный уровень естественной светопередачи и светопропускания. Лишено каких-либо оттенков, а низкое содержание оксидов железа делает его популярным для коммерческого использования – от остекления фасадов до производства элементов мебели.  
  Антибликовое стекло Имеет не дающую бликов поверхность, являясь оптимальным видом стекла для фасадов, картинных рам, витрин, стоек магазинов, касс, досок объявлений и пр.  
  Шпионское стекло Имеет с одной стороны зеркальную поверхность. Применяется в случаях, когда смотрящий сквозь него человек не желает быть увиденным: супермаркеты, служба охраны, игровые клубы и пр.  
  Антибактериальное стекло Убивает 99,9% бактерий и предотвращает рост грибка. Бактерицидные свойства данного вида стекла обусловлены наличием в его верхнем слое ионов серебра. При попадании бактерий на поверхность прерывается процесс их деления, что приводит к их гибели. Бактерицидные свойства такого стекла со временем не ослабевают.  
  Самоочищающееся стекло Под действием УФ-лучей разрушает как органические, так и неорганические загрязнения, после чего они смываются дождевой водой, не оставляя на поверхности подтеков и пятен. Особое гидрофильное покрытие не стирается и не изнашивается.  
  Стекло с электронагревом Имеет особое электропроводящее покрытие, которое работает как сопротивление. При подключении к электросети этот вид стекла начинает нагреваться.  
  Моллированное (гнутое) стекло Изготавливается при помощи термообработки, что позволяет придать необходимый радиус изгибу. Стекло гнется на цельнометаллической форме заданного радиуса.  
  Увиолевое Пропускает ультрафиолетовое излучение, способное уничтожать различные виды патогенных микроорганизмов. Данный вид стекла пропускает около 25% солнечного излучения и изготавливается согласно ГОСТу 111-90.  

Классификация листового стекла и характеристика его видов

 

Листовым стеклом называется стекло, сделанное как плоский лист, у которого длина и ширина многократно больше толщины. Собственно говоря, к такому стеклу в строительстве мы и привыкли, ведь его производится более 50% от всего объёма стекла (в том числе и бутылочного) и более 80% от всего строительного. Но не будешь же один вид стекла ставить в оконную раму, витрину и правительственный автомобиль. В разных случаях от стекла требуются разные свойства. Перечислим основные виды листового стекла и дадим им краткую характеристику.

 

Оконное стекло нам встречается наиболее часто. Это стекло прозрачное, с обеих сторон гладкое. Оно должно быть химически устойчивым, достаточно прочным. На стройке листы разрезаются на нужные размеры, если сразу не идут в готовых окнах, дверях и т.д. Поставляются же листы следующими размерами:

  • — длина 400-2200 мм;
  • — ширина 400-1600 мм;
  • — толщина 2-6 мм.

 

БОльшие размеры  бОльшая толщина ― вот что, в основном, отличает витринное стекло от оконного. Применяют его не только в качестве витрин, но и для остекления больших проёмов в общественных зданиях. А раз в общественных местах, то среди требований к нему на первое место выходит безопасность. Его закаливают по специальной технологии, чтобы оно противостояло ударам, и оно получает название «сталинит», в честь вождя всех времён и народов.

Узорчатое стекло ― декоративное. Будучи гладким с одной стороны, с другой оно перед затвердеванием прокатывается валиком. Таким образом наносился узор или рисунок. Это стекло бывает как прозрачным, так и матовым или же окрашенным. В основном участвует в отделке интерьеров.

    Также менее восприимчиво ударам и обыкновенное закалённое стекло. Оно не только противостоит ударам. При этом оптические свойства этого стекла не меняются. Благодаря равномерному распределению внутренних напряжений, оно даже при разрушении безопасно: образуются мелкие осколки с тупыми краями.

Также безопасно многослойное безосколочное стекло, или триплекс. Это стекло трёхслойно: оно состоит из двух листов стекла, скреплённых между собой прозрачной органической плёнкой. Плёнка эластична, поэтому при разрушении стекла осколки не разлетаются, а остаются на этой промежуточной прокладке. Если в процессе сжатия применялась бутафоль-поливинилбутеральная плёнка, вакуум и высокие температуры, то этот способ называется ламинированием стекла.

 

  Не разлетаются осколки и при разрушении армированного стекла. У него внутри, между плоскостями поверхности, при изготовлении вставлена металлическая сетка. Эта сетка действует двояко, с одной стороны, придаёт стеклу механическую прочность, с другой ― не даёт разлетаться осколкам.  Это стекло часто используют в межкомнатных дверях, поэтому оно может производиться рифлёным, узорчатым и цветным.

   Производится также специальное листовое стекло, получаемое изменением его химического состава или нанесением на поверхность стекла покрытий. К примеру, тонированные стёкла получают нанесением плёнки. Уволиевые же стёкла, пропускающие ультрафиолетовые лучи, получают изменением механического состава и уменьшением примесей. Есть специальные стёкла теплопоглощающие (которые в дом пропускают больше тепла, чем из него уходит) и теплоотражающие, не пропускающие тепло внутрь дома.

 

   Листовое стекло может выпускаться по двум технологиям: Фуко и Флоат. Метод Фурко ― это когда стекло вытягивают и пропускают между двумя валиками. Сейчас почти не применяется эта технология. Более современен Флоат ― метод, при котором стекломасса выливается на расплавленное олово. Это создаёт условие для получения очень ровной и гладкой поверхности стекла. Нужные размеры нарезаются после остывания.

Еще о стеклах и изделиях из стекла:

 — Марблит. Стемалит. Узорчатое стекло. Облицовочные и мозаичные плитки из стекла

 — Оптические свойства стекла. Оптические стекла

 — Пеностекло

 — Художественное стекло в строительстве и архитектуре

 — Стекло, его классификация, состав и свойства

 — Трубы из стекла

 — Химические и электрофизические свойства стекла

 — Цветное листовое декоративное стекло. Накладное стекло

 — Витражные декоративные стеклоблоки

 — Стеклоблоки

 — Зеркало для дома и квартиры

 — Витражи

 — Триплекс и армированное стекло


загрузка…

Стекло неорганическое — Мегаэнциклопедия Кирилла и Мефодия — статья

В стеклообразное состояние можно перевести вещества различной природы. Это и расплавы ряда чистых оксидов и их смесей в бесчисленных вариантах, и солеобразные расплавы — галогенидные, нитратные и др. В стеклообразном состоянии легко могут быть получены и многие органические вещества. Стекла легко образуются водными растворами многих солей и их смесей. В последнее десятилетие стали известны металлические стекла, полученные особо быстрым охлаждением сплавов разных металлов. Таким образом, в стеклообразном состоянии могут находиться вещества самого разного химического типа, с самыми разными видами химических связей — ковалентных, ионных, металлических и разнообразными физико-химическими свойствами.Впервые человечество познакомилось с природным стеклообразным веществом — обсидианом — в доисторические времена. Как искусственный материал стекло впервые открыто в Египте ок. 4000 до н. э. На протяжении тысячелетий люди, используя различные добавки, добились большого разнообразия классов и разновидностей стекол. До XIX в. стекло применялось главным образом в изготовлении предметов утилитарного назначения и художественного стекла. В России становление науки о стекле и промышленного стеклоделия связано с именами М. В. Ломоносова и Д. И. Менделеева. Ломоносов первым в мировой практике стеклоделия обратил серьезное внимание на взаимосвязь свойств стекол и их химического состава. Заслугой Менделеева являются предвидение полимерного строения SiO2 и развиваемые им представления о химической природе стекла, которое он рассматривал в общем контексте разработки таких фундаментальных понятий химической науки, как определенное-неопределенное соединение, раствор, сплав и т.д.

Рентгенограммы кварцевого стекла лучше всего интерпретируются в рамках модели непрерывной беспорядочной сетки тетраэдров SiO4 (атом кремния, окружен четырьмя атомами кислорода), и отражают ближний порядок в структуре стекла. Рентгеновские и нейтронографические исследования показали, что наличие неупорядоченной сетки подтверждается применительно к структуре однокомпонентных стекол. В бездефектном кварцевом стекле существуют только мостиковые атомы кислорода. Для стекол, содержащих два или более компонентов, характерна химическая неоднородность. При введении в SiO2 оксида натрия в результате взаимодействия оксидов, несмотря на сохранение координации атомов кремния относительно кислорода, непрерывность кремнекислородной сетки нарушается за счет частичных обрывов связей Si-O-Si, соединяющих тетраэдры между собой.

По химическому составу неорганические стекла подразделяют на элементарные, халькогенидные и оксидные. Основу оксидного стекла составляет стеклообразующий оксид. К числу стеклообразующих оксидов относятся SiO2, В2O3, GeO2, P2O5. Наибольшее распространение получили силикатные стекла (на основе SiO2) благодаря высокой химической устойчивости, а также дешевизне и доступности сырьевых компонентов. Для придания определенных физических свойств в состав силикатных стекол вводят оксиды различных металлов (наиболее часто щелочных и щелочноземельных).

Физико-химические свойства стекла зависят от его состава и степени обработки. Наименьшую плотность (~2, 3 г/см3) имеет кварцевое стекло, состоящее только из оксида кремния. Наиболее тяжелые свинцовые стекла, содержащие много оксида свинца (до 80%), имеют плотность около 8 г/см3.

Предел прочности стекла при растяжении невелик (8.107Н/м2) и увеличивается при повышении содержания в нем SiO2 и CaO. Щелочные оксиды снижают прочность стекла. Сжатию стекло противостоит гораздо лучше, чем растяжению, и предел прочности при сжатии и растяжении может различаться на порядок.

Стекло очень хрупкий материал; наименьшей хрупкостью обладают боросвинцовые стекла. Кварцевое стекло остается хрупким при нагреве до температуры ~ 400°С, при дальнейшем нагреве стекло постепенно размягчается и становится вязкой жидкостью. Процесс перехода стекла из твердого состояния в жидкое не характеризуется сколько-нибудь определенной температурой плавления. При правильном охлаждении жидкого стекла этот процесс происходит в обратном направлении также без кристаллизации (деаморфизации).

Сырьем для изготовления стекла служат кварцевый песок SiO2, сода Na2CO3, поташ K2CO3, известняк CaCO3, доломит CaCO3.MgCO3, сульфат натрия Na2SO4, бура Na2B4O7, борная кислота H3BO3, сурик Pb3O4, полевой шпат Al2O3.6SiO2.K2O и др. Сырьевые материалы измельчают, отвешивают в нужных соотношениях и тщательно перемешивают. Шихта, как правило, содержит стеклянные осколки, остающиеся от предыдущей варки, и, в зависимости от целей дальнейшего использования стекла, окислители, красители, обесцвечиватели, осветлители, глушители, восстановители и окислители, ускорители варки или иные добавки. Красители придают стеклу нужный цвет. Для этого во время плавки в стеклянную массу добавляют окислы металлов. Например, железо сделает прозрачный материал голубовато-зеленым или желтым, марганец — желтым или коричневым, хром — травянисто-зеленым, уран — желтовато-зеленым (так называемое урановое стекло), кобальт — синим (кобальтовое стекло), коллоидное серебро — желтым, медь — красным. Полученную таким образом шихту загружают в стекловарочную печь. После этого шихту расплавляют при высокой температуре. Стекло варится путем выдерживания смеси сырьевых материалов при температурах от 1200 до 1600°С в течение продолжительного времени — от 12 до 96 ч. При нагреве шихта плавится, летучие составные части (H2O, CO2, SO3) из нее удаляются, а оставшиеся химически реагируют между собой, в результате чего образуется однородная стекломасса, которая идет на выработку листового стекла или стеклянных изделий. Стеклообразное состояние материала получается лишь при быстром охлаждении стекломассы. В случае медленного охлаждения начинается частичная кристаллизация, стекло теряет прозрачность из-за нарушения однородности, а отформованные изделия при этом обладают невысокой механической прочностью.

В процессе охлаждения расплава сильно изменяется вязкость стекломассы. Для любого стекла на графике температурной зависимости вязкости различают две характерные точки, соответствующие температурам текучести Тт и стеклования Тс. При температурах выше Тт у стекла проявляются свойства текучести, типичные для жидкого состояния. Вязкость различных стекол при температуре Тт примерно одинакова и равна 108 Па.с. Температуре стеклования Тс, ниже которой проявляется хрупкость стекла, соответствует вязкость порядка 1012 Па.с. Интервал температур между Тт и Тс называют интервалом размягчения, в котором стекло обладает пластичными свойствами. Для большинства применяемых в технике силикатных стекол Тс=400-600оС, а Тт=700-900оС, т. е. интервал размягчения составляет несколько сотен градусов. Чем шире интервал размягчения, тем технологичнее стекло, так как в этом случае легче отформовать изделия. Изготовленные стеклянные изделия подвергают отжигу с целью устранения возникшего при неравномерном остывании напряжения.

Если в древности варка стекла осуществлялась в глиняных горшочках глубиной и диаметром 5–7 см, то в настоящее время для производства оптического, художественного и других видов стекла специального состава применяют шамотные горшки больших размеров, вмещающие от 200 до 1400 кг шихты. В одной печи могут выдерживаться от 6 до 20 горшков, горшковые печи применяют для получения относительно небольшого количества стекла с точно выдержанным составом. В крупном производстве применяют ванные печи. Большие массы стекла варятся в ванных печах непрерывного действия. Такой режим обеспечивает протекание необходимых химических реакций, в результате чего сырьевая смесь приобретает свойства стекла. Постоянный уровень расплавленного стекла в ванне поддерживается путем непрерывной подачи шихты на одном из концов установки и извлечения готового продукта с той же скоростью из другого конца. В таком режиме некоторые стекловаренные печи работают до пяти лет. Крупные печи, иногда вмещающие несколько сот тонн расплавленного стекла, приспосабливают к интенсивному механическому производству. Как горшковые, так и ванные печи обычно нагревают сжиганием природного газа или мазута.

Силикатные стекла по составу, а в связи с этим и по электрическим, оптическим, механическим свойствам можно разделить на:

  • бесщелочные стекла (отсутствуют окислы натрия и калия). В эту группу входит чистое кварцевое стекло. Стекла данной группы обладают высокой устойчивостью к нагреву, высокими электрическими свойствами, но из них трудно изготавливать изделия, особенно сложной конфигурации;
  • щелочные стекла без тяжелых окислов или с незначительным их содержанием. Эта группа состоит из двух подгрупп: натриевые и калиевые или калиево-натриевые. В эту группу входит большинство обычных стекол. Они отличаются пониженной устойчивостью к нагреву, легко обрабатываются при нагреве, но имеют пониженные электрические свойства: снижается удельное сопротивление, возрастают диэлектрические потери;
  • щелочные стекла с высоким содержанием тяжелых оксидов (например, силикатно-свинцовые или бариевые).

Был открыт целый ряд необычных применений стекла в связи с тем, что ему можно придать свойство поверхностной проводимости. Это достигается напылением на поверхность стеклянного изделия тонкого, прозрачного, почти невидимого слоя оксида металла. Электропроводящая пленка (толщиной 0, 5 мкм), например, может быть получена напылением солей металлического серебра и нагревом стекла до температуры 500-700 °С. Такое покрытие весьма долговечно и имеет поверхностное сопротивление в пределах от 10 до 100 Ом/см2. После покрытия пленки тонким слоем люминофора стекло можно использовать в качестве светящегося элемента (с голубым, зеленым, желтым свечением). При обычных температурах можно использовать известковое стекло, а при высоких — боросиликатное. Изготовленные из такого стекла панели лучистого нагрева могут работать при температурах до 350° С. Подобные панели — хороший источник энергии длинноволнового инфракрасного излучения, которое большинство веществ и сред поглощает с эффективностью 90% и более. Таким способом изготавливаются настольные стеклянные излучатели и вспомогательные нагреватели для помещений. Проводящие покрытия, нанесенные на ветровые стекла самолетов, сохраняют их теплыми и свободными от льда. Кроме того, в качестве источника тепла используют стеклопакеты с внутренним слоем из электропроводящего стекла.

Стеклянные колбы широко используются в качестве оболочек для ламп накаливания и электронно-лучевых трубок. Проволочные резисторы, трансформаторы, конденсаторы, реле и переключатели могут заключаться в оболочки из отпущенного стекла с выводами через стеклянные изоляторы. Крупные проходные изоляторы массой до 22 кг, рассчитанные на сильные токи и высокие напряжения, изготавливаются путем центробежной отливки стекла вокруг металлических втулок. С применением стекла изготавливаются конденсаторы как постоянной, так и переменной емкости. В конденсаторах постоянной емкости используется листовое стекло толщиной до 0, 025 мм. Конденсатор переменной емкости состоит из изготовленной с жестким допуском стеклянной трубки, часть внешней поверхности которой металлизируется для образования одной обкладки. Внутрь трубки вставляется стержень из латуни или инвара, образующий вторую обкладку. Стеклянные трубки или стержни с нанесенной на них углеродной, металлической или металлооксидной пленкой используются в качестве резисторов.

Стекло, устойчивое к радиоактивному излучению, получают из шихты специального состава. Для поглощения рентгеновских лучей используют оптические стекла с высоким содержанием свинца и бора. Чтобы улучшить устойчивость стекла к излучению, в шихту добавляют 0, 25-1, 5% окиси церия. Защитные свойства стекла можно приближенно оценивать по их плотности. Например, тяжелое свинцовое стекло с объемной массой 6200 кг/м3, содержащее 80% окиси свинца, по своей защитной способности в отношении излучения эквивалентно стали. Стекла, поглощающие медленные нейтроны, должны содержать один из следующих окислов: окись бора, окись лития, окись кадмия и др. Стекло, устойчивое к действию радиоактивных излучений, применяют при сооружении атомных электростанций (например, при устройстве защитных смотровых окон) и предприятий по изготовлению изотопов.

В 1947 было обнаружено, что стекла некоторых составов при воздействии ультрафиолетового излучения образуют скрытое изображение, которое может быть проявлено путем нагрева стекла чуть выше температуры отжига. Например, на стекло можно наложить фотографический негатив и облучить его ультрафиолетом, а потом нагреть стекло; в результате в объеме стекла появится воспроизведенное в цвете изображение. Цвет изображения зависит от вида светочувствительного металла, введенного в шихту. Один из составов дает опаловое стекло такой природы, что разбавленная фтористоводородная кислота протравливает облученную часть раз в пятнадцать быстрее, чем необлученную. Эта огромная разница в растворимостях позволяет осуществлять химическое травление. Таким способом в стекле можно вытравливать отверстия размером меньше половины среднего диаметра человеческого волоса в количестве до 100 тыс. отверстий на 1 см2. Стекла этого типа используются для изготовления световых табло и элементов светового декора, а также в качестве чувствительных элементов дозиметров. После воздействия проникающего излучения некоторые из таких стекол ярко светятся при облучении ультрафиолетовым светом, а другие меняют свой цвет. Интенсивность флуоресценции или степень изменения окраски пропорциональна полученной дозе облучения.

Варьирование химического состава стекол, режимов отжига и последующей обработки разными растворителями позволило получать стекла с размером пор от нескольких десятков до 1000 ангстрем. Пористые стекла широко применяются как адсорбенты и как «молекулярные сита», которые пропускают мелкие молекулы и не пропускают более крупные. Молекулярные сита были использованы, например, при получении противогриппозных вакцин. При введении в поры каких-либо неорганических соединений и последующей термообработке при 1000 – 1200оС получаются разнообразнейшие материалы, называемые импрегнированными кварцоидами. Они представляют собой массивное, во многих случаях совершенно прозрачное стекло, в котором уже нет пор. Это стекло обладает особыми свойствами, определяемыми составом введенных в поры веществ.

Значительную долю в производстве оптического стекла составляет оптическое стекло со специальными свойствами:

  • лазерное стекло на силикатной и фосфатной основе с различными концентрациями активатора, позволяющее создавать твердотельные квантовые генераторы, которые используются в научных исследованиях, медицине, специальных дальномерах и прицелах;
  • бескислородные или халькогенидные стекла для инфракрасной области спектра, применяются в оптических и полупроводниковых системах. Созданы особо чистые высокооднородные стекла, которые применяются в рентгеновских установках для защиты от излучения, используются в создании оптических систем для микролитографии, и позволяют получить микросхемы с разрешающей способностью менее микрона и обеспечить цветопередачу ТВ-систем;
  • на основе стекловолокна изготавливают волоконно-оптические элементы для передачи света и изображения. Применяются в космических аппаратах, военной технике, цветном телевидении, медицине, приборах ночного видения.

Фотохромными называются стекла, изменяющие окраску под действием излучения. В настоящее время получили распространение очки со стеклами-«хамелеонами», которые при освещении темнеют, а в отсутствие интенсивного освещения вновь становятся бесцветными. Такие стекла применяют для защиты от солнца сильно остекленных зданий и для поддержания постоянной освещенности помещений, а также на транспорте. Фотохромные стекла содержат оксид бора B2O3, а светочувствительным компонентом является хлорид серебра AgCl в присутствии оксида меди Cu2O. При освещении в результате химической реакции выделяется атомарное серебро, что приводит к потемнению стекла. В темноте реакция протекает в обратном направлении. Оксид меди играет роль своеобразного катализатора. При интенсивном облучении стекла (в том числе и лабораторного) г-лучами нейтронами и в меньшей мере б-, и в-лучами также происходит окрашивание стекла (чаще в темные и черные цвета). Это связано с изменением структуры стекла и образованием ионов, которые играют роль «цветовых центров». При нагревании стекла до температур, близких к температуре размягчения, окраска исчезает. Иногда подобные стекла используют в качестве дозиметров больших доз излучений.

Считаются весьма интересной и перспективной в практическом отношении группой веществ, сочетающих в себе свойства стекол и кристаллических тел полупроводников. Известны они очень давно. Например, одно из первых упоминаний о такого рода стеклах относится еще к 19 в. (стекло состава As2S3). Однако как определенный класс стекол они стали изучаться лишь в 1970-х гг., когда было установлено, что сплавы халькогенидов — сурьмы, мышьяка и таллия — образуют обширную область стеклообразного состояния. Халькогенидные стекла могут быть получены на основе самых различных сочетаний. В совокупности они представляют весьма обширную группу стекол, обладающих весьма разнообразными физико-химическими, физическими, электрическими и оптическими свойствами. Электропроводность халькогенидных стекол в зависимости от состава может находиться в границах 10-14-10-1ом-1·см-1, т. е. быть выше электропроводности многих известных кристаллических проводников. Изучение электрических свойств этой группы веществ показало, что по ряду признаков (температурная проводимость, большое значение термоэлектродвижущей силы, и особенно внутренний фотоэлектрический эффект) они являются типичными электронными полупроводниками с дырочным механизмом проводимости. Соединения такого типа в последние годы стали применять в переключающих устройствах, нелинейной оптике и в качестве стеклообразующих полупроводников.

На основе стекол также получают: стеклокерамический материал — ситалл, ячеистый материал пеностекло, триплекс, и ряд других материалов.
  • Неорганические стекла, покрытия и материалы. — Рига: РПИ, 1989.
  • Фельц А. Аморфные и стеклообразные неорганические твердые тела. — М.: Мир, 1986.