Содержание

Ремонт инверторных сварочных аппаратов своими руками

Разница между старым сварочным трансформатором и новым инверторным сварочником примерно такая же, как между первыми автомобилями «Даймлер Бенц» и современным «Мерседесом». Инвертор значительно легче своего неподъемного предшественника, имеет встроенные функции, о которых ранее можно было только мечтать, например, возможность контроля величины сварочного тока или функция предотвращения залипания электрода. Но у великолепно задуманной идеи есть существенный недостаток – электронная начинка выходит из строя значительно чаще, чем у «старичков», а ремонт инверторных сварочных аппаратов требует немалых знаний и навыков. Любая попытка отремонтировать оборудование вслепую, без подготовки, чревата пожаром или даже травмой.

Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

Как правильно организовать ремонт сварочного инвертора

Разумеется, ситуации, когда электронный сварочный аппарат сгорает, как свечка, и не подлежит дальнейшему ремонту, случаются крайне редко. На практике ремонт сварочного аппарата может оказаться намного проще, чем казалось в первый момент. В 90% случаев из строя выходят силовые цепи, в 50% — чувствительные управляющие элементы схемы. Но чтобы выполнять ремонт инверторных сварочных аппаратов своими руками, мало одного желания, как минимум, потребуется следующее оборудование:

  • Цифровой тестер или мультиметр, все равно какой, можно с функцией проверки транзисторов;
  • Паяльная станция, можно самодельная, но обязательно с регулируемым по температуре феном и исправным низковольтным паяльником;
  • Нагрузочный реостат.

Кроме перечисленного, для работы может потребоваться шприц для откачки припоя, кисточка, спирт, лупа, сильный фонарик, лампа накаливания с проводами, ну и, конечно, справочники для заказа запасных частей.

Совет! У большинства профессиональных ремонтников имеется в распоряжении осциллограф. Для ремонта электроники, по сути, незаменимая вещь, если дело касается проверки работы системы управления аппарата.

Не факт, что осциллограф потребуется для ремонта сварочного аппарата своими руками, но в особо сложных случаях без него просто не обойтись.

Восстанавливаем сварочный инвертор, полный курс выживания

Перед тем как раскрывать аппарат и вникать в детали поломки, необходимо выяснить у сварщика две основные подробности. Во-первых, необходимо выяснить, как и в каких условиях произошла поломка сварочного инвертора, и во-вторых, были ли попытки выполнить ремонт другими специалистами.

Проблема заключается в том, что «любители» нередко заменяют заводские детали первыми попавшимися под руку компонентами. Без схемы восстановить номинал и марку детали, что крайне важно для качественного ремонта сварочного аппарата, очень сложно.

Процесс восстановления сварочного аппарата выполняется в три этапа:

  • Разборка устройства и осмотр внутренних повреждений;
  • Последовательная диагностика и устранение выявленных проблем;
  • Испытание и проверка работоспособности сварочного аппарата не на искру, как делает большинство любителей, а на балластный реостат большой мощности.
  • Нередко любительский ремонт сварочных аппаратов заканчивается проверкой, зажигается дуга или нет. Использование реостата позволяет проверить один из основных параметров работоспособности сварочного инвертора – способность к регулировке и подстройке сварочного тока под нагрузкой.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    Перед тем как приступать к ремонту, нужно разобраться и выяснить для себя, как устроен аппарат, и в чем особенности его работы. Например, посмотреть типовую схему или блок схему, тогда станет понятно, что и где находится на плате.

    Этап первый, определяем проблемы внешним осмотром платы

    Чтобы получить доступ к внутренней начинке сварочного агрегата, необходимо освободить электронную плату от корпуса и сетевого шнура.

    Совет! Если перед ремонтом аппарат включался в сеть для проверки, перед разборкой сварочного инвертора осторожно замкните выходные муфты под сварочные шланги с помощью пары проводов и обычной лампы накаливания 100-150 Вт. Это поможет избежать ударов током.

    Для разборки нужно снять два-четыре винтовых или саморезных крепления корпуса и вытащить из и соединительных фишек провода. Для ремонта остается голая плата, утыканная электронными деталями. Первым делом осматриваем ее, стараемся выявлять критические для ремонта сгоревшие или поврежденные элементы, подгоревшие дорожки платы, черные резисторы и раздувшиеся конденсаторы.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    В подавляющем большинстве случаев выходят из строя и подлежат ремонту следующие элементы платы сварочного аппарата:

    • Балластное мощное сопротивление, разряжающее конденсаторы в силовом блоке схемы. Если питающий блок исправен, то при попытке включить сварочный аппарат конденсаторы моментально наберут немаленькую емкость и напряжение под 300В. Если в ходе ремонта, при отсутствии резистора, включить аппарат сварочный и случайно коснуться руками клемм, получите крайне болезненный удар током, почти как электрошоком;
    • Полевые транзисторы-ключи. Их легко найти, они всегда установлены на массивных алюминиевых радиаторах. Если сгорело сопротивление, почти всегда требуется ремонт и замена как минимум одного из транзисторов;
    • Если не регулируется сварочный ток, то, скорее всего, потребуется ремонт драйвера, одного из его каналов или операционного усилителя, входящего в схему управления.

    Разумеется, приведенный перечень для ремонта является наиболее распространенным, но не исчерпывающим. Например, может сгореть термодатчик, следящий за перегревом сварочного аппарата, токовый трансформатор, работающий в паре с операционником, элементы входного диодного моста и многое другое. Поэтому ремонт сварочного аппарата необходимо начинать с прозвонки элементов по цепи.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    Второй этап ремонта, проверяем цепи прозвонкой

    В ходе ремонта нужно проверить самые нагруженные элементы платы. Переворачиваем ее тыльной стороной кверху и острыми щупами тестера, продираясь сквозь слой защитного лака, проверяем наличие короткого замыкания. Первоначально проверим, не пробит ли выпрямительный диодный мост на выходе. Ремонт диодов — довольно редкая вещь, если внутрь сварочного аппарата не попала вода или не произошло КЗ на шнуре. Аналогично меряем мост на входе.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    После блока питания переходим к самым ответственным местам силовой части схемы. Это пара мощных конденсаторов и ключи на полевых транзисторах. Для ремонта необходимо установить наличие сопротивления между коллектором и эмиттером, или правильнее – переходы сток-сток, сток-затвор. В 99% случаев полевые транзисторы выходят из строя первыми, как результат — короткое замыкание между коллектором и стоком.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    Кроме них, вторым кандидатом на ремонт и замену является драйвер платы сварочного аппарата. Но для его ремонта потребуются очень серьезные навыки и знания. Поэтому, если после замены транзисторов будут определены неисправности в каналах драйвера, лучше поручить его ремонт более квалифицированному специалисту.

    Как проверить целостность драйвера

    Забегая вперед, можно сказать, что после демонтажа ключей или полевых транзисторов потребность в ремонте драйвера первоначально определяют по состоянию опорных резисторов, соединяющих канал драйвера с затвором полевого транзистора — ключа. Для этого просто пальцем по плате проследим дорожку от места затвора до первого резистора. Проверяем его на обрыв, если сопротивления резисторов в каждом канале примерно совпадают, то на 99% можно считать, что устройство управления в рабочем состоянии.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    В противном случае для ремонта сварочного аппарата придется обращаться к специалисту.

    Простейший ремонт сварочного аппарата

    Для ремонта агрегата потребуется снять старые транзисторы и заменить их новыми деталями. Каждый ключ крепится к массивному алюминиевому радиатору болтиком. После снятия болтов выворачивают саморезы крепления радиаторов. Для ремонта потребуется аккуратно выпаять полевой транзистор с помощью фена паяльной станции, делается это с максимальной осторожностью, чтобы не повредить дорожки и навесной монтаж. При выпаивании транзистор должен выйти без усилия, в противном случае поднимутся дорожки, и стоимость ремонта сварочного аппарата может подскочить в несколько раз. Место выпайки нужно освободить от припоя с помощью груши или шприца и очистить от пригорелого лака.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    Перед установкой новых полевых транзисторов – ключей нужно выполнить ремонт балластного сопротивления. Вместо старого резистора, впаиваем новую деталь на 47 Ом, 10 Вт. Кроме того, прозваниваем конденсаторы и супрессоры, установленные по схеме на дорожках полевиков.

    Чтобы продолжить ремонт, необходимо проверить форму и размер сигнала, приходящего по каждому каналу драйвера на затворы своего ключа — полевого транзистора. Перед тем как подключить осциллограф, между стоком и затвором рекомендуется выполнить навеску в виде конденсатора в несколько сот пикофарад, тем самым имитируется емкость затвора транзистора. Такой способ позволяет в ходе восстановления платы сварочного аппарата оптимальным образом нагрузить каждый канал драйвера, поэтому сигнал приходит в том виде, в котором он существует в реальных условиях при проведении сварочных работ.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    После напайки конденсаторов подключаются щупы осциллографа, и включается питание платы сварочного аппарата.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    Форма сигнала подтверждает, что ремонт выполнен правильно, на затворы транзисторов приходит сигнал от драйвера нужной формы и величины.

    Осталось только закрепить новые полевые транзисторы с нанесенной теплоотводящей пастой на алюминиевых радиаторах. Радиаторы устанавливаются на плату, а ножки транзисторов поочередно запаиваются. Восстановление сварочного аппарата практически закончено, осталось только испытать устройство.

    Ремонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими рукамиРемонт инверторных сварочных аппаратов своими руками

    Заключение

    Для этого подключаем к выводным контактам платы сварочного аппарата лампу на 40 Вт и включаем ее, если лампа загорелась вполнакала, значит, восстановление выходных цепей выполнено успешно. Чтобы удостовериться в полной работоспособности аппарата, к муфтам сварочных шлангов подключают реостат и тестером измеряют напряжение на выходных клеммах. Если поворотом ручки напряжение на клеммах муфты плавно меняется от 60 В до 10 В, значит, аппарат полностью исправен, в противном случае нужно менять операционный усилитель в цепи регулировки.

    как починить аппараты Каскад и Лавр, а также другое оборудование? – Виды сварочных аппаратов на Svarka.guru

    Ремонт сварочных инверторов – ответственные работы, которые проводят в большинстве сервисных центров по ремонту оборудования.

    Однако обладая навыками обслуживания электротехнического оборудования, можно выполнить восстановительные работы своими руками.

    Рассмотрим основные узлы и особенности обслуживания.

    Общие сведения

    Инвертор – это продукт развития полупроводниковых технологий, например, Каскад и Лавр.  По сравнению с трансформаторами они выгодно отличаются следующими параметрами:

    • Малый вес;
    • Компактные габариты;
    • Качество шва;
    • Экономное потребление энергии;
    • Дополнительные функции.

    При домашней эксплуатации основным недостатком трансформаторов является повышенные требования к питающей сети, поскольку мощность данных аппаратов очень велика, порой она достигает 8 кВт. Кроме того, их работа сопровождается многочисленными перепадами напряжения, которые негативно влияют на целостность проводки и могут вывести из строя бытовые приборы, работающие от электричества.

    Благодаря последнему пункту инверторы ценят начинающие сварщики, ведь они способны облегчить процесс соединения материалов. На современных устройствах реализованы следующие функции:

    1. Горячий старт. Упрощает образование дуги, повышая уровень тока перед началом работ.
    2. Антизалипание электрода. При опасности залипания происходит автоматическое снижение уровня тока, позволяя продолжать соединение.
    3. Форсаж дуги. При увеличении длины дуги автоматика самостоятельно регулирует силу тока, предотвращая обрыв. Данная функция особенно полезна при вертикальном направлении шва.

    Устройство и особенности работы

    Принципиальная схема сварочного инвертора.

    Инверторы выдают высокочастотный ток, благодаря чему сварочная дуга отличается стабильностью, а шов имеет однородную структуру. Принцип работы основан на множественном преобразовании электрической энергии. В результате напряжение понижается, а ток увеличивается и выпрямляется, преобразуясь в постоянный. С его помощью выполняют соединительные работы.

    Для ремонта сварочных аппаратов необходимо иметь представление о строении оборудования. Основными узлами рассматриваемых агрегатов являются:

    1. Блок питания. Он отвечает за обеспечение энергией силовой части прибора. Состоит из выпрямителя, нелинейной зарядной цепи и емкостного фильтра.
    2. Силовая установка. Включает в себя инвертор, вторичный выпрямляющий блок, силовой трансформатор и выходной дроссель.
    3. Источник питания для приборов устройства, работающих на напряжении 12 В.
    4. Широтно-импульсная модуляция. Прибор для управления мощностью.
    5. Механизм защиты. Состоит из датчиков, отвечающих за регулировку температурного режима, а также приводов работы охлаждающих вентиляторов.

    Ремонт

    Сейчас в каждом населенном пункте можно найти множество центров различной величины, которые занимаются ремонтом инверторных сварочников. Это привело к тому, что ремонтом оборудования занимаются специалисты, мягко говоря, низкой компетенции

    . Известны случаи, когда вместо новых запчастей ставились бывшие в употреблении, либо вообще, делали перемычки. Все поломки делят по степени тяжести. Рассмотрим их в порядке возрастании сложности.

    Простые поломки

    Причиной подобных неисправностей является нарушения режима эксплуатации оборудования. Для диагностики не требуются специальные инструменты, достаточно проведения визуального осмотра. К легким неисправностям относятся:

    • Отсутствие питания;
    • Избыточная запыленность корпуса;
    • Потери мощности;
    • Слабая дуга;
    • Послабление болтовых соединений;
    • Брызги расплавленного металла.

    Сюда можно отнести конденсат на внутренних элементах агрегата. Если его не устранить, это приведет к более серьезным проблемам.

    Средние

    Данный тип характеризуется выходом из строя различных полупроводниковых элементов, а также электронных частей. Чтобы отремонтировать подобные неисправности необходимо уметь обращаться с паяльником. К средним поломкам относят проблемы со следующими частями:

    • Резисторы;
    • Конденсаторы;
    • Трансформатор;
    • Диоды;
    • Монтажная плата;

    Сложные

    Наиболее серьезными являются неисправности, которые невозможно выявить путем визуального осмотра. В этом случая от мастера требуются хорошие навыки в ремонте электрического оборудования. В противном случае необходимо заняться поиском места, где отремонтируют сварочный инвертор.

    Факторы, приводящие к выходу из строя

    Ремонт сварки – это неприятное событие, которое отнимает время и деньги пользователя. Чтобы избежать внеочередного ремонта следует знать причины, которые могут привести к выходу из строя. Их можно условно поделить на два типа:

    1. Нарушение эксплуатационного режима.
    2. Поломка узлов агрегата.

    Наиболее распространенными факторами, приводящими к проблемам, являются:

    1. Несвоевременное удаление влаги может вывести из строя электронные элементы системы.
    2. Чрезмерная запыленность приводит к нарушениям работы системы охлаждения.
    3. Превышение продолжительности включения аппарата приводит к перегрузкам.

    Наиболее распространенные неисправности, а также методы их устранения показаны на таблице ниже:

    Как выполнить самостоятельную починку?

    Ремонт сварки инвертора должен начинаться с тщательного изучения схемы устройства

    . После этого необходимо локализовать проблему – в подавляющем большинстве случаев причина кроется во внутренней части аппарата, поэтому необходимо демонтировать защитный корпус и внимательно изучить состояние всех узлов.

    В первую очередь качество соединений – возможна проблема лежит на поверхности, и ее устранение не отнимет много времени.

    Темные участки на электронной схеме, а также лопнувшие конденсаторы, говорят о выходе из строя данных элементов.

    Электронные или полупроводниковые элементы не подлежат ремонту – их меняют на аналогичные. За время эксплуатации маркировка может стереться. В этом случае используют специальные таблицы для подбора запчастей.

    Наиболее уязвимый элемент инвертора – силовой блок. Именно с него следует начинать диагностику. Для этих работ понадобится мультитестер, которым проверяют и прочие элементы устройства.

    Самый сложный узел инвертора – это управляющая плата, которая отвечает за функционирование всего устройства. Ее сигналы проверяют с помощью осциллографа.

    По окончанию работ необходимо проверка и зачистка всех контактов разъемов.

    Заключение

    Ремонт инверторных сварочных аппаратов – непростое занятие, которое требует от мастера определенных навыков. В большинстве случаев для локализации проблемы достаточно провести визуального осмотра узлов, в противном случае лучшим решением будет обращение к специалистам.

    Муж на час Глинский Артем Вадимович Опыт работы – 15 лет: «По своему роду деятельности довольно часто сталкиваюсь со сварочными работами, особенно в частном секторе. Для этого у меня есть инвертор, которому уже больше 7 лет. За это время было несколько неполадок, которые я всегда устранял сам. В одном случае не смог справится самостоятельно, нашел решение проблемы в интернете, правда ничего серьезнее сгоревшего резистора, слава богу, не было. Для решения более сложных проблем моих знаний не хватит».

    принципы и правила, как сделать своими руками

    Ремонт сварочных аппаратов Сварочные аппараты инверторного типа в наши дни являются надёжными помощниками в выполнении работ квалифицированными специалистами. Их поломка и последующий ремонт у мастера может затянуться, а время простоя — сказаться на оперативности выполнения работ и потере денег. Некоторые прибегают к самостоятельной починке аппарата.

    Ремонт инверторных сварочных аппаратов своими руками довольно прост, если знать типовые неисправности и иметь нужное оборудование и запчасти. Здесь помогут как измерительная техника вроде мультиметров и осциллографов, так и обычный мощный паяльник, качественный флюс и припой для замены повреждённых элементов. Это ведёт к значительной экономии средств на обслуживание, так как обращаться в специализированные сервисные центры придётся только в случае крупных или фатальных неисправностей.

    Как работает сварочный инвертор

    Ремонт сварочного инверторного аппарата  Инверторный аппарат — источник постоянного тока, обеспечивающий во время сварки конструкций и изделий из металла зажигание и непрерывность работы электрической дуги. Это достигается высокочастотной трансформацией тока большой силы, что приводит к

    уменьшению размера трансформатора и делает выходящий ток стабильнее. Нужные параметры тока достигаются в несколько этапов:

    • первичное выпрямление тока, поступившего из сети;
    • трансформация выпрямленного тока в высокочастотный;
    • увеличение силы тока высокочастотным трансформатором, что ведёт к уменьшению его напряжения;
    • вторичное выпрямление до заданной величины.

    Выпрямление тока происходит с помощью диодных мостов нужной мощности, частоту регулируют высокомощные трансформаторы, которые, имея высокую частоту, обеспечивают необходимую силу тока на выходе.

    Конструкция инверторных аппаратов

    Как варить сварочным инверторомБольшинство сварочных инверторов имеет блочное строение, где каждый из блоков можно, в свою очередь, разделить на собственные составляющие. Основных блоков три:

    • блок питания;
    • управляющий блок;
    • силовой блок.

    Блок питания стабилизирует входной ток. От других элементов его обычно отделяет металлическая перегородка. Он состоит из конденсаторов, накапливающих заряд, дроссельной системы управления, собранной на диодах, и управляемого транзисторами многообмоточного дросселя.

    В свою очередь, силовой блок, контролирующий процессы преобразования тока, состоит из таких частей, как:

    • первичный и вторичный выпрямители — собраны на основе диодных мостов, в случае первичного способных выдерживать ток силой до 40 ампер, напряжением до 250 вольт и частотой 50 Гц, а в случае вторичного — мощных диодов, способных поддерживать ток в 250 ампер с напряжением около 100 вольт;
    • инверторный преобразователь — силовой транзистор с пороговыми значениями силы, напряжения и мощности тока, соответственно, 32 ампера, 400 вольт и 8 киловатт;
    • высокочастотный трансформатор, состоящий из обмоток медной ленты, делающих возможным повышение силы тока до 250 ампер с напряжением во вторичной обмотке трансформатора не выше 40 вольт.

    Тепловая и силовая защита силового блока осуществляется термовыключателями и специальными платами, построенными на основе логических микросхем типа 561ЛА7 или её аналогов (CD4011 или К176ЛА7, например). Конденсаторы и резисторы входят в состав фильтров высокой частоты, защищающих преобразователи и выпрямители тока. Для охлаждения всех частей инвертора используются вентиляторы малого диаметра (до 60 мм) и радиаторы, отводящие тепло от самых горячих радиоэлектронных элементов плат.

    Управляющий блок, как правило, собирают на основе либо задающего генератора, либо широкоимпульсного модулятора. В его состав входят и резонансные дроссели и конденсаторы.

    Типовые неисправности инверторов

    Ремонт инверторного сварочного аппарата Ремонт сварочного инвертора своими руками следует начинать с установления причин выхода аппарата из строя. Таких причин может быть две: неправильно выбранный режим работы аппарата (например, когда его мощности не хватает для разрезания металла большой толщины) или неисправности в силовой и электронной части.

    Признаки неправильной работы аппарата помогают понять к какой причине относится неисправность. Так, если в процессе сварки в горении дуги наблюдается неустойчивость или разбрызгивается металл, следует проверить правильность выставленной величины силы тока. Её для каждого электрода нужно подбирать в зависимости от его длины, толщины и типа. От силы тока также зависит и скорость сварки.

    Если сварочный электрод прилипает к поверхности детали, но при этом величина силы тока установлена в соответствии с его характеристиками, следует проверить длину и толщину провода используемого удлинителя, так как для сварки должны использоваться электрические кабеля небольшой длины, не больше 40 метров, и сечением более 4 квадратных миллиметров. Ещё несколькими причинами этого могут быть упавшее напряжение в сети, плохо подготовленная поверхность сварки, окисление ключевых элементов схемы питания инвертора и плохой контакт блоков инвертора в панельных гнёздах.

    Если аппарат отключается при продолжительном выполнении сварки деталей, ему, скорее всего, нужно дать остыть, так как срабатывает защита от перегрева. Получаса достаточно для продолжения работ.

    Невозможность включить аппарат может говорить о многих проблемах. В первую очередь следует проверить стабильность напряжения в сети, так как если оно опускается ниже 190 вольт, инвертор работать не будет.

    Как отремонтировать сварочный инвертор своими руками

    Ремонт сварочного оборудованияПриступая к ремонту, в первую очередь необходимо снять корпус инвертора, осмотреть на предмет запылённости и проверить основные силовые элементы. Признаки окисления и потемнения вследствие перегрева на платах основных блоков, вспухшие конденсаторы, выгоревшие детали, канавки на ножках электронных элементов и отсутствие контактов ножек с платой в результате некачественной пайки, всё это может привести к потере работоспособности. Если есть возможность визуально определить такие элементы, они выпаиваются с плат.

    Кроме мощного паяльника здесь пригодятся отсос для припоя, легкоплавкие сплавы для упрощения съёма некоторых деталей, в пайке которых применялся, например, бессвинцовый припой, оплётки из медных нитей, позволяющие убрать крупные скопления припоя возле ножек элементов и, конечно же, качественный флюс, улучшающий теплопередачу и позволяющий припою на плате расплавляться легче.

    Замена производится на детали с такой же маркировкой или аналогичные, подбираемые с помощью сравнения основных характеристик — конденсаторы могут быть чуть более высокой ёмкости, например. Оборванные провода нужно соединять аналогичными по толщине сечения и использовать термоусадочные трубки в местах спайки двух проводом между собой.

    Если замена самых визуально заметных повреждений плат не помогла, следует приступить к прозвонке электронных схем. Самое уязвимое место, с которого следует начать прозвонку — это силовой блок с транзисторами. Если транзисторы не прозваниваются в соответствии с нормой, неисправность могла затронуть и драйвер, который их раскачивает.

    Самый сложный ремонт, с которым можно столкнуться, обслуживая инвертор — это ремонт платы управления ключами, подающей управляющие сигналы на шины затворов блока ключей. Здесь необходимо использовать осциллограф, так как только при его помощи можно увидеть наличие этих сигналов и стабильность их прохода на блок управления.

    Отремонтировать аппарат своими руками, имея определённые навыки и детали под рукой, не составляет проблем. Но если опыта работы с паяльником или понимания принципа работы радиоэлектронных деталей у вас нет, лучше всё же доверить такой ремонт профессионалам. Инвертор работает с токами большой силы и при неправильном ремонте может выйти из строя окончательно и грозить покупкой нового аппарата.

    Ремонт сварочных инверторных аппаратов своими руками: правила и особенности выполнения

    Ремонт сварочных аппаратовРемонт сварочных инверторов несмотря на некоторые сложности возможно выполнить самостоятельно. А когда домашний мастер сможет разобраться в конструктивных особенностях агрегатов данного типа, имеет представление о том, какие элементы в большинстве случаев выходят из строя, можно оптимизировать расходы на сервисное обслуживание.

    Для чего предназначено оборудование

    Инвертор WESTER Основное назначение аппарата — формировать постоянный сварочный ток, который получают путем преобразования высокочастотного переменного. Использование именно такого преобразованного переменного тока обусловлено тем, что сила такого тока может эффективно увеличиваться до нужных величин посредством небольшого трансформатора. Именно такой принцип работы дает возможность сохранить небольшие размеры устройств одновременно с высокой производительностью.

    Схема сварочного инвертора, от которой зависят технические характеристики, составлена из следующих компонентов:

    • первичного выпрямительного блока, его основание — диодный мост, выпрямляющий переменный ток с электрических сетей;
    • инверторного блока, элемент которой транзисторная сборка;
    • высокочастотного понижающего трансформатора, на котором при понижении входящего напряжения существенно возрастает сила выходящего тока;
    • выходного выпрямителя, собранного на базе силовых диодов (данный блок отвечает за выпрямление переменного тока, без чего не обойтись при сварочных работах).

    Техобслуживание и ремонт инверторов

    Сварочный инвертор РЕСАНТА Ремонт сварочных аппаратов, принадлежащих к инверторным, имеет ряд особенностей, связанных с особенностями их конструкции. У подобных аппаратов главная особенность следующая: все они электронные, что требует от сотрудников сервисных служб хотя бы минимальных радиотехнических знаний и навыков работы с измерительными приборами (вольтметр, цифровой мультиметр, осциллограф и т. п. ).

    При техническом обслуживании и ремонте в первую очередь проверяются все элементы схемы сварочного инвертора. Речь идет о транзисторах, резисторах, диодах, стабилитронах, трансформаторных и дроссельных устройствах, ведь иногда очень сложно или практически невозможно с точностью определить, что именно вышло из строя.

    Если возникают такие ситуации, то стоит в четкой последовательности проверять каждую деталь. Чтобы успешно решить задачу, нужно воспользоваться измерительными приборами, а также уметь читать электронные схемы. Когда вы не являетесь обладателем даже минимальных знаний и умений, то ремонт сварочного полуавтомата своими руками может привести к более серьезным поломкам.

    Что может привести к поломке

    Сварочный аппарат Атлант Существует два основных типа ситуаций, из-за которых агрегаты могут преждевременно выходить из строя:

    • неправильный выбор режима сварочных работ;
    • полный выход из строя отдельных деталей или их некорректная работа.

    После оценки собственных сил, знаний и опыта, решив взяться за самостоятельный ремонт сварочных аппаратов инверторного вида, стоит не только просмотреть обучающие видео, но и внимательно прочитать руководство пользователя, ведь именно из него можно узнать наиболее подробную информацию о модели, правильном выборе рабочего режима, характерных неисправностях и способах их устранения.

    Диагностику выполняют, постепенно переходя от простых операций к более сложным. После выполнения всех рекомендаций может случиться так, что агрегат по-прежнему не будет работать. Тогда можно предположить, что неполадки возникли из-за проблем с электросхемой инверторного модуля. В большинстве случаев причины следующие:

    • В устройство попала влага. Зачастую это случается при сварке во время осадков.
    • Если под корпусом скопится слишком большое количество пыли, то нарушится работа системы охлаждения. В зоне самого большого риска оборудование на строительных площадках, его придется постоянно очищать.
    • Пренебрежение рекомендуемыми нагрузками, что приводит к перегревам оборудования. Необходимо придерживаться советов производителя, которые находятся в инструкции.

    Причины частых поломок

    Как правило, к поломкам приводит длительное воздействие внешних факторов, неправильная настройка, пренебрежение рекомендациями относительно рабочего режима. Зачастую возникают такие ситуации:

    1. Горение сварочной дуги отличается неустойчивостью, либо материал электрода очень разбрызгивается. Такое возникает при неверном выборе тока. Исходить здесь нужно из диаметра и типа сварочного материала, скорости сварки. При слишком низкой скорости выбирается меньшая величина тока.
    2. Электрод сложно отвести от металла. Такое возникает из-за низкого питающего напряжения сети. Также могут отходить контакты модуля в гнездах панелей. Чтобы решить проблему, просто подтяните крепления или плотнее прикрепите вставки. Учтите и тот факт, что применение слишком длинного удлинителя не обеспечит качественного выполнения поставленных задач. Не рекомендуется использовать провода с длиной больше 40 метров.
    3. Индикаторы находятся в рабочем состоянии, но сварку проводить невозможно. Обычно это является свидетельством перегрева. Еще одной возможной причиной может быть отсоединение проводов или их повреждение.
    4. Сварочный аппарат не запускается. Такое случается в условиях слишком низкого напряжения, недостаточного для начала работы.
    5. Инвертор самостоятельно отключается при длительном непрерывном использовании. Это значит, что сработала защита от перегрева.

    Признак серьезной поломки — стойкий запах гари из корпуса аппарата. В таком случае рекомендуется немедленно отключить электропитание и обратиться к специалистам сервисной службы.

    Как произвести ремонт инверторного сварочного аппарата своими руками?

    Современные сварочные аппараты являются сложным электротехническим оборудованием. С целью уменьшения их массы и габаритных размеров они конструируются исключительно по инверторной схеме с применением в качестве силовых переключающих элементов полевых транзисторов. Возникающие в процессе эксплуатации инверторной сварки поломки могут быть следствием различных причин, разобравшись в которых, можно осуществить ремонт сварочного аппарата инверторного типа своими руками.

    Схема устройство инверторного сварочного аппарата

    Схема устройство инверторного сварочного аппарата.

    Основные причины возникновения неисправностей

    Основными критериями, которыми следует руководствоваться при выборе сварочного аппарата, являются его надежная работа и простота конструкции. Но рано или поздно даже в самых лучших устройствах возникают определенные поломки. Основными их причинами могут быть:

    • неправильное подключение агрегата;
    • неправильная эксплуатация;
    • нестабильная внешняя электросеть;
    • эксплуатация сварки в жестких погодных условиях (повышенная влажность, снег, дождь).
    Функциональная схема аппарата

    Функциональная схема аппарата.

    Неудовлетворительная работа сварочного аппарата необязательно должна быть вызвана его поломкой. Существует множество причин, по которым сварка будет работать ненадлежащим образом:

    • неправильно выбранный режим сварки может привести к разбрызгиванию металла электрода или к возникновению слабой дуги;
    • отсутствие дуги может быть следствием плохого контакта между свариваемой деталью и кабелем;
    • частое залипание электрода может говорить о слабом напряжении внешней электросети. Инверторные типы сварочных аппаратов очень чувствительны к изменению параметров электропитания. Их нестабильная работа может наступить при снижении напряжения на 10%;
    • срабатывание терморегулятора инвертора может наступить в результате длительной сварки. Температурная защита срабатывает при температуре выше 750-800 °C;
    • срабатывание внешней защиты по току может быть следствием несоответствия установленного предохранительного автомата требуемому технологией сварки.

    Вернуться к оглавлению

    Конструктивные особенности сварочного инвертора

    Упрощенная схема силовой части сварочного инвертора

    Упрощенная схема силовой части сварочного инвертора.

    Инверторные сварочные аппараты позволяют получить высококачественную сварку с минимальными физическими затратами сварщика и максимальным для него комфортом. Однако такие достоинства получены ценой достаточно сложной конструкции сварочного аппарата. Вследствие этого данные устройства являются менее надежными, по сравнению с выпрямителями и трансформаторами.

    В отличие от трансформаторного оборудования, которое в конструктивном плане является более электротехническим, инверторный аппарат представляет собой электронное устройство. Поэтому его диагностика и ремонт предполагают проверку стабилитронов, диодов, транзисторов, резисторов и других элементов, из которых конструируются электронные схемы.

    Особенностью ремонта инверторного сварочного аппарата своими руками является и то, что в большинстве случаев определить вышедший из строя элемент по внешним признакам практически невозможно, поэтому при возникновении неисправности приходится поочередно проверять все элементы схемы.

    Поэтому для успешного ремонта инвертора в домашних условиях необходимо обладать некоторыми познаниями в электронике и небольшим опытом работы с электросхемами.

    Вернуться к оглавлению

    Ремонт сварочного инвертора своими руками

    Электросхема сварочного инвертора

    Электросхема сварочного инвертора.

    Чтобы осуществить ремонт сварочного аппарата, необходимо приготовить такие измерительные приборы и инструменты:

    • осциллограф;
    • вольтметр;
    • мультиметр;
    • паяльник;
    • набор отверток.

    Принцип работы сварочного аппарата инверторного типа основан на поэтапном преобразовании электрического сигнала:

    1. С помощью входного выпрямителя осуществляется выпрямление сетевого тока.
    2. Инверторный модуль преобразовывает поступающий на вход выпрямленный ток в высокочастотный переменный.
    3. Высокочастотный силовой трансформатор понижает высокочастотное напряжение до сварочного значения.
    4. С помощью выходного выпрямителя происходит выпрямление переменного высокочастотного тока в постоянный сварочный.
    Схема сварочного инвертора с системой мягкого поджига

    Схема сварочного инвертора с системой мягкого поджига.

    Для того чтобы выполнить данные операции, инверторный сварочный аппарат должен включать в себя следующие модули:

    • модуль входного выпрямителя;
    • модуль выходного выпрямителя;
    • плату управления ключами;
    • корпус с вентилятором.

    Самыми ненадежными элементами любого инвертора выступают транзисторы, поэтому любой ремонт данных устройств начинается со вскрытия корпуса и проверки транзисторов. В большинстве случае вышедший из строя транзистор можно определить по треснутому корпусу и прогоревших выводах. В случае обнаружения такого элемента его необходимо заменить на новый. Транзистор монтируется на специальную термопасту, которая позволяет отводить тепло от данного элемента.

    Поломка транзистора может наступить вследствие некорректной работы драйвера. Его состояние можно определить с помощью омметра. Если обнаружено, что драйвер вышел из строя, его выпаивают и заменяют на новый.

    Входной и выходной выпрямители представляют собой смонтированный на радиатор диодный мост. Он является достаточно надежным и долговечным элементом инвертора, который выходит из строя крайне редко. Но в случае поломки сварочного аппарата его все равно рекомендуется проверять. Чтобы при проверке исключить возможность возникновения короткого замыкания, диодный мост нужно отпаять и снять с платы. Принцип его проверки достаточно простой: если диодный мост звонится накоротко, то следует по отдельности прозванивать каждый диод, чтобы найти пробитый.

    Самым сложным элементом инвертора является плата управления ключами, от нормального функционирования которой зависит работа всего аппарата. Начальную проверку платы можно осуществить без ее изъятия. Для этого сначала следует отключить питание преобразователя, для чего от входного моста отпаивается один из проводов, идущих от платы управления, и изолируется его оголенный конец изолентой.

    После этого к сварочному аппарату подключается питание, после чего через несколько секунд должен быть слышен щелчок. Если щелчка не слышно, то это может говорить о неисправности схемы мягкого включения. Также в этом случае рекомендуется проверить наличие питающего напряжения +15 В. Если питания нет, следует изъять источник питания, отремонтировать его или заменить на новый.

    Вернуться к оглавлению

    Основные виды неисправностей и методы их устранения

    Вышеперечисленные поломки встречаются достаточно редко, а для их устранения требуются специальные навыки. В большинстве случаев все может быть намного проще. Методы борьбы с каждой неисправностью известны и легко устранимы:

    1. Часто пропадает сварочная дуга, а зажечь ее повторно не получается, при этом возникают мелкие искры. Это может быть следствием пробоя обмотки, в результате чего на сварочную цепь подается большое напряжение. Для устранения данной неисправности нужно восстановить изоляционный слой или перемотать обмотку.
    2. Если в сети отсутствует нагрузка, но инвертор все равно потребляет много энергии, то это может быть результатом замыкания витков катушки. Для устранения неисправности следует поступить, как и в первом случае.
    3. Если рабочий ток имеет заниженное значение, то причиной может быть падение напряжения в какой-либо части электрической цепи. Для устранения неисправности нужно найти поврежденный элемент и заменить его.
    4. Иногда встречаются ситуации, когда сварочный инвертор чрезмерно греется. Когда это случается, на катушках начинает повреждаться изоляционный слой, в результате чего может возникнуть короткое замыкание и полное сгорание устройства. Причина такой неисправности может крыться в слишком долгой бесперебойной работе аппарата или использовании очень толстых электродов.

    При любой неисправности браться за ремонт лучше только тогда, когда вы полностью уверены в своих силах. В противном случае рекомендуется воспользоваться услугами специалиста, чтобы еще больше не ухудшить ситуацию.

    Устройство сварочного инвертора.

    Принцип работы сварочного инвертора

    В настоящее время стали очень популярны и доступны по цене сварочные аппараты инверторного типа.

    Несмотря на свои положительные качества, они, как и любое другое электронное устройство, временами выходит из строя.

    Чтобы отремонтировать инвертор сварочного аппарата нужно хотя бы поверхностно знать его устройство и основные функциональные блоки.

    В первых двух частях будет рассказано об устройстве сварочного аппарата модели TELWIN Tecnica 144-164. В третьей части будет рассмотрен пример реального ремонта сварочного инвертора модели TELWIN Force 165. Информация будет полезна всем тем начинающим радиолюбителям, которые хотели бы научиться самостоятельно ремонтировать сварочные аппараты инверторного типа.

    Дальше будет много букв – наберитесь терпения .

    Сам инверторный сварочный аппарат представляет не что иное, как довольно мощный блок питания. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX. Вы спросите: «Чем они похожи? Это ведь абсолютно разные устройства…». Схожесть заключается в принципе преобразования энергии.

    Основные этапы преобразования энергии в инверторном сварочном аппарате:

    • 1. Выпрямление переменного напряжения электросети 220V;

    • 2. Преобразование постоянного напряжения в переменное высокой частоты;

    • 3. Понижение высокочастотного напряжения;

    • 4. Выпрямление пониженного высокочастотного напряжения.

    Это кратко, так сказать, на пальцах . Такие же преобразования происходят в импульсных блоках питания для ПК.

    Спрашивается, а зачем нужны эти пляски с бубном (несколько ступеней преобразования напряжения и тока)? А дело тут вот в чём.

    Ранее основным элементом сварочного аппарата являлся мощный силовой трансформатор. Он понижал переменное напряжение электросети и позволял получать от вторичной обмотки огромные токи (десятки – сотни ампер), необходимых для сварки. Как известно, если понизить напряжение на вторичной обмотке трансформатора, то можно во столько же раз увеличить ток, который может отдать нагрузке вторичная обмотка. При этом уменьшается число витков вторичной обмотки, но и растёт диаметр обмоточного провода.

    Из-за своей высокой мощности, трансформаторы, которые работают на частоте 50 Гц (такова частота переменного тока электросети), имеют весьма большие размеры и вес.

    Чтобы устранить этот недостаток были разработаны инверторные сварочные аппараты. За счёт увеличения рабочей частоты до 60-80 кГц и более, удалось уменьшить габариты, а, следовательно, и вес трансформатора. За счёт увеличения рабочей частоты преобразования в 4 раза удаётся снизить габариты трансформатора в 2 раза. А это приводит к уменьшению веса сварочного аппарата, а также к экономии меди и других материалов на изготовление трансформатора.

    Но где взять эти самые 60-80 кГц, если частота переменного тока электросети всего 50 Гц? Тут на выручку приходит инверторная схема, которая состоит из мощных ключевых транзисторов, которые переключаются с частотой 60-80 кГц. Но чтобы транзисторы работали, необходимо подать на них постоянное напряжение. Его получают от выпрямителя. Напряжение электросети выпрямляется мощным диодным мостом и сглаживается фильтрующими конденсаторами. В результате на выходе выпрямителя и фильтра получается постоянное напряжение величиной более 220 вольт. Это первая ступень преобразования.

    Вот это напряжение и служит источником питания для инверторной схемы. Мощные транзисторы инвертора подключены к понижающему трансформатору. Как уже говорилось, транзисторы переключаются с огромной частотой в 60-80 кГц, а, следовательно, трансформатор работает также на этой частоте. Но, как уже говорилось, для работы на высоких частотах требуются менее громоздкие трансформаторы, ведь частота то уже не 50 Гц, а все 65000 Гц! В результате трансформатор «сжимается» до весьма малых размеров, а мощность его такая же, как и у здоровенного собрата, который работает на частоте 50 Гц. Думаю, идея понятна.

    Вся эта петрушка с преобразованием привела к тому, что в схемотехнике сварочного аппарата появляется куча всяких дополнительных элементов, служащих для того, чтобы аппарат стабильно работал. Но, хватить теории, перейдём к «мясу», а точнее к реальному железу и тому, как оно устроено.

    Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок.

    Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата. К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164. Фотографии аппарата и его начинки будут от TELWIN Force 165, так как именно он оказался в моём распоряжении. Исходя из анализа схемотехники и элементной базы, особых отличий между этими моделями практически нет, если не учитывать мелочи.

    Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.

    Внешний вид платы Telwin Force 165 с обозначением элементов схемы

    Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.

    Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).

    Схема силовой части сварочного аппарата Telwin Tecnica 144-164

    Сетевой выпрямитель.

    Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами. Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя. Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.

    Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V). Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.

    А что в железе?

    На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор. Через диодную сборку протекают большие токи и диоды, естественно, нагреваются. Для защиты диодного моста на радиаторе установлен термопредохранитель, который размыкается при превышении температуры радиатора выше 90С0. Это элемент защиты.

    В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I0) — 35А, обратное напряжение (VR) — 800V.

    Термопредохранитель на радиаторе диодной сборки

    После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.

    Помеховый фильтр.

    Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости. На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility). Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.

    Фильтр ЭМС

    Инвертор.

    Схема инвертора собрана по схеме так называемого «косого моста». В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET. Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла. Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.

    Полевой MOSFET транзистор на плате инвертора

    Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.

    Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.

    Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.

    Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.

    За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют. Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3. Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.

    Размеры этого самого трансформатора невелики.

    Импульсный понижающий трансформатор

    Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер! 

    Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.

    Выходной выпрямитель.

    Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).

    Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.

    В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFh40US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.

    Диоды выходного выпрямителя

    Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).

    Схема запуска и реализация «мягкого пуска».

    Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор. Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W). Эти резисторы понижают напряжение и участвуют при запуске схемы.

    Интегральный стабилизатор LM7815

    Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.

    Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».

    Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – «Зелёный»). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.

    Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.

    В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.

    Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.

    После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.

    На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V~).

    Элементы схемы мягкого запуска

    Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?

    Об этом мы узнаем из следующей части нашего повествования. Читать далее.

    Главная &raquo Мастерская &raquo Текущая страница

    Также Вам будет интересно узнать:

     

    Ремонт сварочных инверторов своими руками – основные положения + Видео

    1 Особенности ремонта сварочных инверторов

    Сварочные инверторные аппараты обеспечивают высокое качество сварки при минимальных профессиональных навыках и максимальном комфорте сварщика. У них более сложная, чем у сварочных выпрямителей и трансформаторов, конструкция и, соответственно, менее надежная. В отличие от вышеуказанных предшественников, являющихся в большей мере электротехническими изделиями, инверторные аппараты представляют собой достаточно сложное электронное устройство.

    Поэтому в случае выхода из строя какого-либо компонента этого оборудования неотъемлемой частью диагностики и ремонта будет проверка работоспособности диодов, транзисторов, стабилитронов, резисторов, прочих элементов электронной схемы инвертора. Не исключено, что потребуется умение работать не только с вольтметром, цифровым мультиметром, прочей рядовой измерительной техникой, но и с осциллографом.

    Рекомендуем ознакомиться

    Ремонт инверторных сварочных аппаратов отличается также следующей особенностью: нередки случаи, когда по характеру неисправности определить вышедший из строя элемент невозможно или трудно и приходится последовательно проверять все компоненты схемы. Из всего вышеуказанного следует, что для успешного самостоятельного ремонта необходимы познания в электронике (хотя бы на начальном, базовом уровне) и маломальские навыки работы с электросхемами. При отсутствии оных ремонт своими руками может обернуться напрасной потерей сил, времени и даже привести к появлению дополнительных неисправностей.

    В комплекте с каждым агрегатом идет инструкция, в которой содержится полный перечень возможных неисправностей и соответствующие способы решения образовавшихся проблем. Поэтому, прежде чем что-либо предпринимать, следует ознакомится с рекомендациями предприятия-производителя инвертора.

    2 Неисправности сварочных инверторов – основные виды и причины

    Все неисправности сварочных инверторов любого типа (бытовых, профессиональных, промышленных) можно разделить на следующие группы:

    • обусловленные неправильным выбором рабочего режима сварки;
    • связанные с выходом из строя или неправильной работой электронных компонентов аппарата.

    В любом случае сварочный процесс затруднен или невозможен. Неполадка в работе аппарата может быть вызвана несколькими факторами. Выявлять их следует последовательно, переходя от простого действия (операции) к более сложному. Если все рекомендуемые проверки выполнены, но нормальная работа сварочного аппарата не восстановлена, то велика вероятность неисправности электросхемы инверторного модуля. Основные причины отказа электронной схемы:

    • Попадание внутрь устройства влаги – чаще всего происходит из-за осадков (снег, дождь).
    • Пыль, скопившаяся внутри корпуса, нарушает нормальное охлаждение элементов электронной схемы. Как правило больше всего пыли попадает в аппарат при его эксплуатации на строительных площадках. Чтобы это не послужило причиной поломки инвертора, его необходимо периодически чистить.
    • Несоблюдение предусмотренного изготовителем режима непрерывности сварочных работ – также способно привести к выходу из строя электроники инвертора в результате ее перегрева.

    3 Наиболее распространенные неисправности инверторных аппаратов

    Чаще всего неисправности связаны с внешними факторами, настройками и ошибками в эксплуатации инвертора. Наиболее типичные ситуации:

    • Сварочная дуга горит неустойчиво или работа сопровождается чрезмерным разбрызгиванием материала электрода. Это происходит при неправильном выборе тока, который должен соответствовать диаметру и типу электрода, а также скорости сварки. Рекомендации по подбору силы тока производитель электродов указывает на упаковке. При отсутствии такой информации стоит применять простейшую формулу: подавать 20–40 А из расчета на 1 мм диаметра электрода. В случае уменьшения скорости сварки следует снизить величину тока.
    • Сварочный электрод прилипает к металлу – может быть вызвано несколькими причинами. Чаще всего такое происходит из-за слишком низкого питающего напряжения сети, к которой подключен аппарат, а в случае инвертора с возможностью работы при пониженном напряжении – снижение последнего при подключении нагрузки до уровня меньшего, чем предусмотренный минимум. Еще одна возможная причина – плохой контакт модулей аппарата в панельных гнездах. Устраняется подтягиванием креплений или более плотным фиксированием вставок (плат). Падение напряжения на входе аппарата может быть вызвано применением сетевого удлинителя, у которого провод имеет сечение менее 2,5 мм2, что тоже приводит к снижению питающего напряжения инвертора во время сварки. Также причиной может стать слишком длинный удлинитель (при длине удлиняющего провода более 40 м эффективная работа вообще невозможна из-за очень больших потерь в питающей цепи). Прилипание может происходить из-за подгорания или окисления контактов в цепи питания, что тоже приводит к существенному «просаживанию» напряжения. Эта проблема может проявить себя и в случае некачественной подготовки свариваемых изделий (оксидная пленка значительно ухудшает контакт детали с электродом).
    • Инвертор включен, его индикаторы работают, а сварки нет. Чаще всего это происходит из-за перегрева аппарата, когда свечение контрольного индикатора или лампы (при наличии) малозаметно, а звуковой сигнал у инвертора отсутствует. Вторая причина – самопроизвольное отсоединение сварочных кабелей или их обрыв (повреждение).
    • Отключение сетевого напряжения при сварке – в электрощитке установлен неправильно подобранный автоматический выключатель. Это устройство должно быть рассчитано на ток до 25 А.
    • Инвертор не включается – низкое напряжение в сети, недостаточное для работы аппарата.
    • Прекращение работы инвертора в процессе продолжительной сварки – вероятнее всего сработала защита по температуре, что не является неисправностью. Выдержав паузу в 20–30 минут сварку можно возобновить.

    4 Самостоятельный ремонт инверторных сварочных аппаратов

    О серьезной поломке инверторного модуля может свидетельствовать появившийся из его корпуса запах гари или дыма. В этом случае лучше обратиться за помощью к специалистам сервисной службы. Ремонт сварочных инверторов своими руками требует определенных навыков и знаний.

    Чтобы выявить и устранить причину неисправности, корпус аппарата вскрывают и производят визуальный осмотр его начинки. Иногда все дело только в некачественной пайке деталей, проводов, других контактов на платах схемы и достаточно произвести их перепайку, чтобы аппарат заработал. Поврежденные детали сначала пытаются определить визуально – они могут быть треснутыми, иметь потемневший корпус или прогоревшие на плате выводы, электролитические конденсаторы будут вздутыми в верхней части. Все выявленные неисправные элементы выпаивают и заменяют на такие же или аналогичные с подходящими характеристиками. Подбор производят по маркировке на корпусе или по таблицам. При выпаивании деталей использование паяльника с отсосом обеспечит максимальные скорость и удобство работы.

    Если визуальный осмотр не принес результата, то переходят к прозваниванию (тестированию) деталей с помощью омметра или мультиметра. Самыми уязвимыми элементами инверторных модулей являются транзисторы. Поэтому ремонт аппарата обычно начинают с их осмотра и проверки. Силовые транзисторы редко сами по себе выходят из строя – как правило этому предшествует отказ элементов «раскачивающего» их контура (драйвера), детали которого проверяют в первую очередь. Точно так же, посредством тестера, прозванивают остальные элементы платы.

    На плате необходимо проверить состояние всех печатных проводников на предмет отсутствия обрывов и подгаров. Подгоревшие участки удаляют и напаивают перемычки, как и в случае обрывов, проводом ПЭЛ (с сечением, соответствующем проводнику платы). Следует также проверить и в случае необходимости зачистить (стирательной белой резинкой) контакты всех имеющихся в аппарате разъемов.

    Выпрямители (входные и выходные), представляющие собой обычные диодные мосты, закрепленные на радиаторе, считаются достаточно надежными компонентами инверторов. Но иногда и они выходят из строя. Производить проверку диодного моста удобнее всего после отпаивания от него проводов и снятия с платы. Если вся группа диодов звонится накоротко, то следует искать пробитый (неисправный) диод.

    В последнюю очередь проверяют плату управления ключами. В инверторном модуле это наиболее сложный элемент и от его функционирования зависит работа всех остальных компонентов аппарата. Заключительным этапом ремонта инверторного сварочного устройства должна быть проверка наличия управляющих сигналов, поступающих на шины затворов блока ключей. Диагностируют этот сигнал с помощью осциллографа.

    При неясных и более сложных, чем описанные выше, случаях потребуется вмешательство специалистов. Пытаться устранить неисправность самостоятельно не стоит, особенно когда инверторный аппарат находится на гарантии.