Содержание

Когезия и адгезия

Явления смачивания и растекания тесно связаны с действием сил когезии и адгезии.

Когезией называют сцепление однородных молекул, атомов или ионов, которое включает все виды межмолекулярного и межатомного притяжения внутри одной фазы.

Когезия определяет существование веществ в конденсированном (твердом и жидком) состоянии. Такие состояния характеризуются высокой когезией. Газообразные вещества обладают малой когезией.

Адгезия (прилипание) – это молекулярное притяжение между поверхностями двух соприкасающихся разнородных твердых или жидких фаз. Адгезия является причиной склеивания двух разных веществ за счет действия физических или химических межмолекулярных сил.

Количественно когезию и адгезию характеризуют величиной работы когезии Wc и работы адгезии Wa.

Работа когезии равна энергии, которую нужно затратить на разрыв сил сцепления между молекулами данной фазы. Численно работа когезии равна удвоенному значению поверхностного натяжения.

Wc = 2 · σ

Работа адгезии – это работа, затрачиваемая на отрыв молекул одной фазы от молекул другой фазы

Wa = σА + σВ + σАВ

σА – поверхностное натяжение на границе вещества А с воздухом

σВ – поверхностное натяжение на границе вещества В с воздухом

σАВ - поверхностное натяжение на границе веществ А и В

Из уравнения видно, что работа адгезии тем больше, чем больше поверхностное натяжение каждой из фаз на границе с воздухом и чем меньше поверхностное натяжение на границе раздела между фазами А и В.

Рассматриваемые явления играют большую роль в таких процессах, как смачивание материалов, нанесение лакокрасочных и гальванических покрытий, получение материалов на основе связующих и наполнителей (бетон, резина, стеклопластики и др.), крашение, печатание, сварка и металлов.

Учитываются и используются адгезия и когезия в технологии лекарств, поскольку они влияют на взаимодействие компонентов в сложных лекарственных формах, на распадаемость таблеток, прочность покрытия их оболочками, на процессы растворения и в конечном итоге на эффективность терапевтического действия.

Заключение

К явлениям адсорбции близки явления смачивания и адгезии, определяющиеся интенсивностью взаимодействия между молекулами разных веществ. Количественными характеристиками смачивания являются краевой угол и теплота смачивания. По способности поверхностей избирательно смачиваться водой, их классифицируют на гидрофильные (θ < 90 0) и гидрофобные (θ > 90 0). Используя ПАВ можно провести инверсию смачивания.

Когезию и адгезию количественно оценивают работой, необходимой для разрыва связей между молекулами данной фазы или разных фаз.

Вопросы для самоконтроля

  1. Чем обусловлено смачивание?

  2. Что называется краевым углом смачивания? Как его определяют экспериментально?

  3. Какие поверхности называют гидрофильными, гидрофобными?

  4. Как можно осуществить инверсию смачивания?

  5. Чем отличается когезия от адгезии?

Когезия, сравнение с адгезией, ее работа и примеры

Карбамидо- формальде- гидный(КФ) Щавелевая кислота для холодного отверждения или хлористый аммоний для горячего отверждения Поли- конденсация Низкая стоимость клеев, высокая прочность соединений, малое время горячего отверждения Ограниченная водо- и теп лостойкость, хрупкость клеевого шва, большая усадка клея, коррозионность шва Производство рядовой фанеры для внутренних работ, стружечных плит, облицовка мебельных щитов
Феноло- формальде- гидный горячего отверждения (СФЖ) Без отвердителя Поли- конденсация Высокая водо- и атмосферостойкость клееной продукции Высокая токсичность, малая скорость отверждения Производство водостойкой фанеры и древеснослоистых пластиков
Феноло- формальде- гидный холодного отверждения Бензо- сульфокислоты (БСК) Поли- конденсация Высокая водо- и атмосферостойкость клееной продукции Токсичность смолы и отвердителя, малая скорость отверждения, малый сухой остаток Производство деталей клееных деревянных конструкций
Фенолоре- зорцино- формальде- гидный (ФРФ) Пара-формальдегид с древесной мукой Поли- конденсация То же, наличие щелочного отвердителя Высокая стоимость, большое время отверждения То же
Поливинил- ацетатный (ПВА) Без отвердителя Удаление воды и углубление поли-меризации Простота использования, малое время холодного отверждения, высокая пластичность шва, большой срок хранения клеев. Низкая водо и теплостойкость шва, ползучесть под нагрузкой Производство реечных щитов, облицовка ДСтП синтетическими материалами, производство мебели
Клеи - расплавы Без отвердителя Охлаждение расплава Отсутствие растворителей, большой срок хранения, экологическая безопасность, очень малое время отверждения Низкая водо и теплостойкость швов, невысокая когезия, высокая вязкость, ползучесть под нагрузкой, необходимость спец. оборудования Облицовка кромок стружечных плит пластиком, ребросклеивание шпона, приклеивание декора к лакированным поверхностям щитов
Полиуре- тановый Обычно двухкомпо-нентный Поли- меризация Высокая прочность, водо- и термостойкость Токсичен, малая скорость отверждения Склеивание металлов и неметаллических материалов в производстве мебели
Каучуковый Без отвердителя Удаление растворителя Эластичные и водостойкие клеевые швы, противостоящие ударам и вибрации Невысокая прочность, ползучесть под нагрузкой, малый сухой остаток Склеивание тканей и др. материалов в производстве мягкой мебели
Казеиновый Без отвердителя Гидратация Высокая прочность шва, нетоксичность, умеренная водостой кость, простота приготовления и использования клея Малая жизнеспособность клея, склонность к загниванию, жесткий клеевой шов Производство детской и медицинской мебели, игрушек, склеивание реечных щитов

Когезия (физика) — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Когезия.

Когезия (англ. cohesion от лат. cohaesus — «связанный», «сцепленный») — связь между одинаковыми молекулами (атомами, ионами) внутри тела в пределах одной фазы. Когезия характеризует прочность тела и его способность противостоять внешнему воздействию.

Когезия — это действие или свойство взаимного притяжения одинаковых молекул. Это внутреннее свойство вещества обусловленное формой или структурой его молекул, вызывающее изменение в распределении электронов молекул при их сближении, создавая электрическое притяжение, способное образовывать микроскопические структуры, например капли воды.

Когезионный характер водных капель (шариков) в условиях невесомости

Основой когезии могут являться силы межмолекулярного взаимодействия, включая водородную связь, и/или силы химической связи. Они определяют совокупность физических и физико-химических свойств вещества: агрегатное состояние, летучесть, растворимость, механические свойства и т. д. Интенсивность межмолекулярного и межатомного взаимодействия, а, следовательно, и сил когезии резко убывает с расстоянием. Наиболее сильна когезия в твёрдых телах и жидкостях, то есть в конденсированных средах, где расстояния между молекулами (атомами, ионами) малы, порядка нескольких ангстрем. В газах средние расстояния между молекулами велики по сравнению с их размерами, поэтому когезия в них незначительна. Мерой интенсивности межмолекулярного взаимодействия служит плотность энергии когезии. Она эквивалентна работе удаления взаимно притягивающихся молекул на бесконечно большое расстояние друг от друга, что в первом приближении соответствует испарению или сублимации вещества.

  • Когезия // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. С. 39.
  • Когезия // Химическая энциклопедия. Т. 2. — М.: Советская энциклопедия, 1990. С. 421.

5.2. Когезия и адгезия

Явления смачивания и растекания тесно связаны с действием сил когезии и адгезии.

Когезией называют сцепление однородных молекул, атомов или ионов, которое включает все виды межмолекулярного и межатомного притяжения внутри одной фазы.

Когезия определяет существование веществ в конденсированном (твердом и жидком) состоянии. Такие состояния характеризуются высокой когезией. Газообразные вещества обладают малой когезией.

Адгезия (прилипание) – это молекулярное притяжение между поверхностями двух соприкасающихся разнородных твердых или жидких фаз. Адгезия является причиной склеивания двух разных веществ за счет действия физических или химических межмолекулярных сил.

Количественно когезию и адгезию характеризуют величиной работы когезии Wc и работы адгезии Wa.

Работа когезии равна энергии, которую нужно затратить на разрыв сил сцепления между молекулами данной фазы. Численно работа когезии равна удвоенному значению поверхностного натяжения.

Wc = 2 · σ

Работа адгезии – это работа, затрачиваемая на отрыв молекул одной фазы от молекул другой фазы

Wa = σА + σВ + σАВ

σА – поверхностное натяжение на границе вещества А с воздухом

σВ – поверхностное натяжение на границе вещества В с воздухом

σАВ - поверхностное натяжение на границе веществ А и В

Из уравнения видно, что работа адгезии тем больше, чем больше поверхностное натяжение каждой из фаз на границе с воздухом и чем меньше поверхностное натяжение на границе раздела между фазами А и В.

Рассматриваемые явления играют большую роль в таких процессах, как смачивание материалов, нанесение лакокрасочных и гальванических покрытий, получение материалов на основе связующих и наполнителей (бетон, резина, стеклопластики и др.), крашение, печатание, сварка и металлов.

Учитываются и используются адгезия и когезия в технологии лекарств, поскольку они влияют на взаимодействие компонентов в сложных лекарственных формах, на распадаемость таблеток, прочность покрытия их оболочками, на процессы растворения и в конечном итоге на эффективность терапевтического действия.

5.3. Заключение

К явлениям адсорбции близки явления смачивания и адгезии, определяющиеся интенсивностью взаимодействия между молекулами разных веществ. Количественными характеристиками смачивания являются краевой угол и теплота смачивания. По способности поверхностей избирательно смачиваться водой, их классифицируют на гидрофильные (θ < 90 0) и гидрофобные (θ > 90 0). Используя ПАВ, можно провести инверсию смачивания.

Когезию и адгезию количественно оценивают работой, необходимой для разрыва связей между молекулами данной фазы или разных фаз.

5.4. Вопросы для самоконтроля

  1. Чем обусловлено смачивание?

  2. Что называется краевым углом смачивания? Как его определяют экспериментально?

  3. Какие поверхности называют гидрофильными, гидрофобными?

  4. Как можно осуществить инверсию смачивания?

  5. Чем отличается когезия от адгезии?

6. Сорбенты

Сорбент (от лат. sorbens — поглотитель, в родительном падеже sorbentis — поглощающий) - это жидкость или твердое тело, обладающее способностью избирательного поглощения (сорбции) из окружающей среды газов, паров или растворённых веществ. Поглощающее тело называется сорбентом, поглощаемое им вещество — сорбатом (или сорбтивом). Поглощение вещества из газовой среды всей массой твёрдого тела или расплава называется также окклюзией. В зависимости от типа сорбции различают следующие виды сорбентов.

Абсорбент – это тело, образующее с поглощённым веществом твёрдый или жидкий раствор. Наиболее распространенными являются абсорбенты, применяемые для ликвидации разливов нефти, нефтепродуктов и химических веществ: абсорбенты на основе стружки скорлупы кокосового ореха, торфяного мха, вспученного перлита, окисленного терморасширяющегося графита, полипропилена и др.

Адсорбент – это тело, поглощающее (сгущающее) вещество на своей сильно развитой поверхности. Наиболее распространены: активированный уголь, активированный оксид алюминия, силикагель, диоксид кремния (кремнезем) и др.

Химические поглотители (сорбенты) – это тела, которые связывают поглощаемое вещество (сорбат), вступая с ним в химическую реакцию.

Ионообменный сорбент (ионит) – это тело, поглощающее из растворов ионы одного типа с выделением в раствор эквивалентного количества ионов другого типа. Иониты – твердые и  нерастворимые вещества, обычно это синтетические органические смолы, имеющие кислотные или щелочные группы. Иониты разделяются на катиониты, поглощающие катионы, и аниониты, поглощающие анионы. В зависимости от природы матрицы различают неорганические (иониты природного происхождения, к которым относятся алюмосиликаты, гидроксиды и соли поливалентных металлов) и органические (синтетические ионообменные смолы) иониты. Наиболее распространенными неорганическими ионитами являются цеолиты (молекулярные сита).

Жидкие сорбенты применяются для осушки природных и нефтяных газов. Жидкие сорбенты должны иметь высокую растворимость в воде, низкую стоимость, хорошую антикоррозионность, стабильность по отношению к газовым компонентам, малую вязкость и способность регенерации. Большинству этих требований наилучшим образом отвечают следующие жидкие сорбенты: диэтиленгликоль (ДЭГ) и триэтиленгликоль (ТЭГ), в меньшей степени моноэтиленгликоль (МЭГ).

Твердые сорбенты подразделяются на порошкообразные (или гранулированные) и волокнистые. Волокнистые сорбенты обладают большей кинетикой сорбции за счет более высокой удельной поверхности и большей доступности функциональных групп. Также волокнистые сорбенты обладают лучшей регенеративной способностью - возможностью повторного применения, что особенно актуально для промышленных областей применения.

Когезия и адгезия. Характер разрушения адгезионного соединения. Условие разрушения адгезионного соединения. Уравнение Дюпре для работы адгезии.

Когезией называют явление сцепления молекул в объеме однородного тела. Чтобы установить связь поверхностной энергии с энергией межмолекулярного взаимодействия в объеме, вводят величину, называемую работой когезии Wk. Работа когезии — это обратимая изотермическая работа разрушения столбика жидкости с сечением, равным единице.

Адгезией называют явление взаимодействия двух разнородных конденсированных фаз, состоящее в приведении их в контакт и в образовании связей между ними за счет сил притяжения (Субстрат+адгезитив).

Количественной характеристикой адгезионного соединения является адгезионная прочность, т. е. напряжение, необходимое для разрушения адгезионного соединения, разделения его на компоненты Адгезионная прочность характеризует не интенсивность межфазного взаимодействия, т.е. работу адгезии, а систему в целом. Работа разрушения адгезионного соединения складывается из работы адгезии и работы, затрачиваемой на деформацию

Работа деформации несоизмеримо выше работы адгезии, поэтому энергия межфазного разрушения на несколько порядков выше энергии адгезионных сил.

Если разрыв произошел по первоначальной границе раздела, то такой характер разрушения называют адгезионным. Если разрыв произошел по одному из элементов, то такой характер разрушения называют когезионным. При когезионном разрушении разрыв происходит не по межфазной границе, а по менее прочной фазе, часть которой остается на более прочной фазе после разрушения.

Условие адгезионного разрушения можно записать в виде:

Согласно термодинамическому подходу, количественной характеристикой адгезионного соединения является работа адгезии, которая является термодинамической характеристикой адгезионного соединения. Работа адгезии определяется как обратимая изотермическая работа разделения двух конденсированных фаз вдоль межфазной поверхности, равной единице.

Определение работы адгезии может быть дано в терминах свободной энергии. работа адгезии — это свободная энергия равновесного обратимого разделения фаз на бесконечно большое расстояние в изобарно-изотермических условиях. При таком разделении образуются две поверхности раздела с газом и исчезает межфазная поверхность между конденсированными фазами. Таким образом, при рассмотрении адгезионного соединения, состоящего из твердой и жидкой фаз, работа адгезии равна (Уравнение Дюпре):

  1. Условие растекания жидкости. Коэффициент растекания по Гаркинсу.

Условие самопроизвольного смачивания, или растекания жидкости, которое выполняется при значении Ѳ=0, тогда . или Из уравнения Дюпре следует, что Следовательно

Коэффициентом растекания я по Гаркинсу:

  1. Лень

  2. Лень

  3. Правило выравнивания полярностей Ребиндера

Правило выравнивания полярностей Ребиндера определяет условия выбора того или иного адсорбента и структуру поверхностного слоя. Оно заключается в том, что процесс адсорбции идет в сторону выравнивания полярностей фаз и тем сильнее, чем больше первоначальная разность полярностей. Растворенное вещество обладает обычно промежуточной полярностью и способностью скомпенсировать существующий на границе раздела скачок полярностей двух разнородных веществ. При выполнении этого условия уменьшается межфазное натяжение и свободная поверхностная энергия, что и является причиной адсорбции.

Большое межфазное натяжение, большая мф энергия. Это создает благоприятные условия для адсорбции растворенного вещества, обладающего промежуточной полярностью, а не растворителя.

Глава 2.4 Адгезия. Когезия. Смачивание и растекание жидкости

Тема 2.4.1. Понятие когезии и адгезии. Смачивание и растекание. Работа адгезии и когезии. Уравнение Дюпре. Краевой угол смачивания. Закон Юнга. Гидрофобные и гидрофильные поверхности

В гетерогенных системах различают межмолекулярное взаимодействие внутри фаз и между ними.

Когезия - притяжение атомов и молекул внутри отдельной фазы. Она определяет существование вещества в конденсированном состоянии и может быть обусловлена межмолекулярными и межатомными силами. Понятие адгезии, смачивания и растекания относятся к межфазным взаимодействиям.

Адгезия обеспечивает между двумя телами соединение определенной прочности благодаря физическим и химическим межмолекулярными силами. Рассмотрим характеристики когезионного процесса. Работа когезии определяется затратой энергии на обратимый процесс разрыва тела по сечению равной единице площади: Wk=2, где Wk- работа когезии; - поверхностное натяжение

Так как при разрыве образуется поверхность в две параллельные площади, то в уравнении появляется коэффициент 2. Когезия отражает межмолекулярное взаимодействие внутри гомогенной фазы, то ее можно охарактеризовать такими параметрами как энергия кристаллической решетки, внутреннее давление, летучесть, температура кипения. Адгезия - результат стремления системы к уменьшению поверхностной энергии. Работа адгезии характеризуется работой обратимого разрыва адгезионной связи, отнесенной к единице площади. Она измеряется в тех же единицах, что и поверхностное натяжение. Полная работа адгезии, приходящаяся на всю площадь контакта тел: Ws=WaS

Таким образом,адгезия - работа по разрыву адсорбционных сил с образованием новой поверхности в 1м2.

Чтобы получить соотношение между работой адгезии и поверхностным натяжением взаимодействующих компонентов, представим себе две конденсированные фазы 2 и 3, имеющие поверхность на границе с воздухом 1, равную единице площади (рис. 2.4.1.1).

Будем считать, что фазы взаимно нерастворимы. При совмещении этих поверхностей, т.е. при нанесении одного вещества на другое происходит явление адгезии, т.к. система стала двухфазной, то появляется межфазное натяжение 23. В результате первоначальная энергия Гиббса системы снижается на величину, равную работе адгезии:

G + Wa=0, Wa= - G.

Изменение энергии Гиббса системы в процессе адгезии:

;

Gнач.= 31 + 21;

Gкон = 23;

.

- уравнение Дюпре.

Оно отражает закон сохранения энергии при адгезии. Из него следует, что работа адгезии тем больше, чем больше поверхностные натяжения исходных компонентов и чем меньше конечное межфазное натяжение.

Межфазное натяжение станет равно 0, когда исчезнет межфазная поверхность, что происходит при полном растворении фаз

Учитывая, что Wk=2, и умножая правую часть на дробь , получим:

где Wk2, Wk3- работа когезии фаз 2 и 3.

Таким образом, условие растворения состоит в том, что работа адгезии между взаимодействующими телами должна быть равна или больше среднего значения суммы работ когезии. От работы когезии надо отличать адгезионную прочность Wп.

Wпработа, затраченная на разрушение адгезионного соединения. Эта величина отличается тем, что в нее входит как работа разрыва межмолекулярных связей Wa, так и работа, затраченная на деформацию компонентов адгезионного соединения Wдеф:

Wп = Wa + Wдеф.

Чем прочнее адгезионное соединение, тем большей деформации будут подвергаться компоненты системы в процессе его разрушения. Работа деформации может превышать обратимую работу адгезии в несколько раз.

Смачивание - поверхностное явление, заключающееся во взаимодействии жидкого с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом.

Степень смачиваемости характеризуется безразмерной величиной косинуса краевого угла смачивания или просто краевого угла. При наличии капли жидкости на поверхности жидкой или твердой фазы наблюдаются два процесса при условии, что фазы взаимно нерастворимы.

  1. Жидкость остается на поверхности другой фазы в виде капли.

  2. Капля растекается по поверхности.

На рис. 2.4.1.2 показана капля на поверхности твердого тела в условиях равновесия. Поверхностная энергия твердого тела, стремясь к уменьшению, растягивает каплю по поверхности и равна31. Межфазная энергия на границе твердое тело - жидкость стремится сжать каплю, т.е. поверхностная энергия уменьшается за счет уменьшения площади поверхности. Растеканию препятствуют когезионные силы, действующие внутри капли. Действие когезионных сил направлено от границы между жидкой, твердой и газообразной фазами по касательной к сферической поверхности капли и равно 21. Угол  (тетта), образованный касательной к межфазным поверхностям, ограничивающим смачивающую жидкость, имеет вершину на границе раздела трех фаз и называется краевым углом смачиваемости. При равновесии устанавливается следующее соотношение

- закон Юнга.

Отсюда вытекает количественная характеристика смачивания как косинус краевого угла смачивания . Чем меньше краевой угол смачивания и, соответственно, чем большеcos , тем лучше смачивание.

Если cos  > 0, то поверхность хорошо смачивается этой жидкостью, если cos  < 0, то жидкость плохо смачивает это тело (кварц – вода – воздух: угол  = 0; «тефлон – вода – воздух»: угол  = 1080). С точки зрения смачиваемости различают гидрофильные и гидрофобные поверхности.

Если 0< угол <90, то поверхность гидрофильная, если краевой угол смачиваемости >90, то поверхность гидрофобная. Удобная для расчета величины работы адгезии формула получается в результате сочетания формулы Дюпре и закона Юнга:

;

;

- уравнение Дюпре-Юнга.

Из этого уравнения видна разница между явлениями адгезии и смачиваемости. Разделив обе части на 2, получим

.

Так как смачивание количественно характеризуется cos , то в соответствии с уравнением оно определяется отношением работы адгезии к работе когезии для смачивающей жидкости. Различие между адгезией и смачиванием в том, что смачивание имеет место при наличии контакта трех фаз. Из последнего уравнения можно сделать следующие выводы:

1. При = 0 cos = 1, Wa=Wk.

2. При = 900 cos = 0, Wa=Wk/2.

3. При =1800 cos = -1, Wa=0.

Последнее соотношение не реализуется.

Адгезия. Когезия. Смачивание и растекание жидкости

Понятие когезии и адгезии. Смачивание и растекание. Работа адгезии и когезии. Уравнение Дюпре. Краевой угол смачивания. Закон Юнга. Гидрофобные и гидрофильные поверхности

В гетерогенных системах различают межмолекулярное взаимодействие внутри фаз и между ними.

Когезия - притяжение атомов и молекул внутри отдельной фазы. Она определяет существование вещества в конденсированном состоянии и может быть обусловлена межмолекулярными и межатомными силами. Понятие адгезии, смачивания и растекания относятся к межфазным взаимодействиям.

Адгезия обеспечивает между двумя телами соединение определенной прочности благодаря физическим и химическим межмолекулярными силами. Рассмотрим характеристики когезионного процесса. Работа когезии определяется затратой энергии на обратимый процесс разрыва тела по сечению равной единице площади: Wk=2, где Wk- работа когезии; - поверхностное натяжение

Так как при разрыве образуется поверхность в две параллельные площади, то в уравнении появляется коэффициент 2. Когезия отражает межмолекулярное взаимодействие внутри гомогенной фазы, то ее можно охарактеризовать такими параметрами как энергия кристаллической решетки, внутреннее давление, летучесть, температура кипения, адгезия результат стремления системы к уменьшению поверхностной энергии. Работа адгезии характеризуется работой обратимого разрыва адгезионной связи, отнесенной к единице площади. Она измеряется в тех же единицах, что и поверхностное натяжение. Полная работа адгезии, приходящаяся на всю площадь контакта тел: Ws=WaS

Таким образом, адгезия - работа по разрыву адсорбционных сил с образованием новой поверхности в 1м2.

Чтобы получить соотношение между работой адгезии и поверхностным натяжением взаимодействующих компонентов, представим себе две конденсированные фазы 2 и 3, имеющие поверхность на границе с воздухом 1, равную единице площади (рис. 2.4.1.1).

Будем считать, что фазы взаимно нерастворимы. При совмещении этих поверхностей, т.е. при нанесении одного вещества на другое происходит явление адгезии, т.к. система стала двухфазной, то появляется межфазное натяжение 23. В результате первоначальная энергия Гиббса системы снижается на величину, равную работе адгезии:

G + Wa=0, Wa= - G.

Изменение энергии Гиббса системы в процессе адгезии:

Gнач.= 31 + 21;

Gкон = 23;

;

.

- уравнение Дюпре.

Оно отражает закон сохранения энергии при адгезии. Из него следует, что работа адгезии тем больше, чем больше поверхностные натяжения исходных компонентов и чем меньше конечное межфазное натяжение.

Межфазное натяжение станет равно 0, когда исчезнет межфазная поверхность, что происходит при полном растворении фаз

Учитывая, что Wk=2, и умножая правую часть на дробь , получим:

где Wk2, Wk3- работа когезии фаз 2 и 3.

Таким образом, условие растворения состоит в том, что работа адгезии между взаимодействующими телами должна быть равна или больше среднего значения суммы работ когезии. От работы когезии надо отличать адгезионную прочность Wп.

Wпработа, затраченная на разрушение адгезионного соединения. Эта величина отличается тем, что в нее входит как работа разрыва межмолекулярных связей Wa, так и работа, затраченная на деформацию компонентов адгезионного соединения Wдеф:

Wп = Wa + Wдеф.

Чем прочнее адгезионное соединение, тем большей деформации будут подвергаться компоненты системы в процессе его разрушения. Работа деформации может превышать обратимую работу адгезии в несколько раз.

Смачивание - поверхностное явление, заключающееся во взаимодействии жидкого с твердым или другим жидким телом при наличии одновременного контакта трех несмешивающихся фаз, одна из которых обычно является газом.

Степень смачиваемости характеризуется безразмерной величиной косинуса краевого угла смачивания или просто краевого угла. При наличии капли жидкости на поверхности жидкой или твердой фазы наблюдаются два процесса при условии, что фазы взаимно нерастворимы.

  1. Жидкость остается на поверхности другой фазы в виде капли.

  2. Капля растекается по поверхности.

На рис. 2.4.1.2 показана капля на поверхности твердого тела в условиях равновесия.

Поверхностная энергия твердого тела, стремясь к уменьшению, растягивает каплю по поверхности и равна 31. Межфазная энергия на границе твердое тело - жидкость стремится сжать каплю, т.е. поверхностная энергия уменьшается за счет уменьшения площади поверхности. Растеканию препятствуют когезионные силы, действующие внутри капли. Действие когезионных сил направлено от границы между жидкой, твердой и газообразной фазами по касательной к сферической поверхности капли и равно 21. Угол  (тетта), образованный касательной к межфазным поверхностям, ограничивающим смачивающую жидкость, имеет вершину на границе раздела трех фаз и называется краевым углом смачиваемости. При равновесии устанавливается следующее соотношение

- закон Юнга.

Отсюда вытекает количественная характеристика смачивания как косинус краевого угла смачивания . Чем меньше краевой угол смачивания и, соответственно, чем большеcos , тем лучше смачивание.

Если cos  > 0, то поверхность хорошо смачивается этой жидкостью, если cos  < 0, то жидкость плохо смачивает это тело (кварц – вода – воздух: угол  = 0; «тефлон – вода – воздух»: угол  = 1080). С точки зрения смачиваемости различают гидрофильные и гидрофобные поверхности.

Если 0< угол <90, то поверхность гидрофильная, если краевой угол смачиваемости >90, то поверхность гидрофобная. Удобная для расчета величины работы адгезии формула получается в результате сочетания формулы Дюпре и закона Юнга:

;

;

- уравнение Дюпре-Юнга.

Из этого уравнения видна разница между явлениями адгезии и смачиваемости. Разделив обе части на 2, получим

.

Так как смачивание количественно характеризуется cos , то в соответствии с уравнением оно определяется отношением работы адгезии к работе когезии для смачивающей жидкости. Различие между адгезией и смачиванием в том, что смачивание имеет место при наличии контакта трех фаз. Из последнего уравнения можно сделать следующие выводы:

1. При = 0 cos = 1, Wa=Wk.

2. При = 900 cos = 0, Wa=Wk/2.

3. При =1800 cos = -1, Wa=0.

Последнее соотношение не реализуется.