Содержание

Размеры керамзитобетонных блоков

На сегодняшний день блоки из керамзитобетона (стройматериал, изготовленный из легкого бетона) имеют различные размеры и конструкцию. Геометрические параметры блоков зависят от индивидуальных требований заказчика. Наиболее распространенные размеры — 19х39х9 см или 19х39х18,8 см (в качестве сравнения, один блок в среднем равнозначен обычной кирпичной кладке из трех-семи кирпичей). Применение эти блоки находят в строительстве жилых, гражданских зданий и промышленных сооружений.

Размеры керамзитобетонного блока отвечают технологическим регламентам, которые находятся в конкретных разрешенных пределах.

Возможные предельные отклонения габаритов:

  • Длина может отклоняться на + 44/-44 мм.
  • Ширина на +3/-3 мм.
  • Высота на +4/-4 мм.
  • Плоскость граней и прямолинейность ребер не более чем на 6 мм.

Отвечающие стандартным габаритам керамзитобетонные блоки, могут иметь трещины, которые пересекают хотя бы одну грань.

Отдельная их партия не должна составлять более 10%.

Применение керамзитобетонных блоков стандартных размеров

Сфера применения керамзитобетонных блоков, размеры которых составляют 39х19х18,8 см и 19х39х18,8 см, достаточно обширная, но в большей степени относится к строительству зданий жилого и промышленного назначения.

Керамзитобетонный блок пустотелый с 4-мя щелями используется при строительстве стен домов, гаражей и других построек. Помимо этого, данные размеры идеальны при монолитном и каркасном строительстве для заполнения стеновых проемов.

Блок из керамзитобетона полнотелый, размеры которого стандарты, используется при строительстве стен всех видов зданий и сооружений повышенной прочности (например, при возведении крупных торговых центров и многоуровневых гаражей). Если необходимо заполнение проемов стен при монолитном многоуровневом строительстве, то и в этом случае данный материал уместен.

Керамзитобетонный блок может быть и пустотелым перегородочным.

Он предназначен для возведения перегородок между комнатами в жилых зданиях и офисных помещениях. Имея при этом габариты 39х19х9 см, он не отстает от более крупных по прочностным характеристикам.

Блок стеновой может иметь габариты 20х20х40 см. Он часто используется при возведении несущих стен наружного типа. Размеры перегородочных блоков 10х20х40 см используются при возведении межкомнатных перегородочных стен.

Достаточно часто его применяют и как утеплитель. Структура керамзитобетона очень пористая и оштукатуривание с обоих сторон превращает стену в своего рода термос. Воздух в его порах не движется и поэтому хорошо сохраняет тепло.

Стандартный по габаритам блок, весьма удобно перевозить и хранить. Работать с ним несложно, так как отсутствует необходимость использования каких-либо специальных приспособлений и сложных механизмов.


Вес керамзитобетонных блоков согласно их габаритам:

  • Масса одного полнотелого стандартных размеров 39х19х18,8 см составляет 24,9 кг.
  • Масса щелевого габаритами 39х19х18,8 см составляет от 16,2 кг до 18,8 кг.
  • Масса полнотелого перегородочного толщиной 90 мм равна 11,7 кг.
  • Масса щелевой перегородки находится в пределах от 8 до 9 кг. Такая небольшая масса обеспечивает удобную перевозку и монтаж, что позволяет исключить дорогостоящее устройство массивного фундаментного основания.

Технические характеристики материала

Согласно государственному стандарту блок керамзитобетонный 39х19х18,8 см имеет следующие технические данные: вес от 15 до 27 кг; прочность на сжатие в соответствии с нормативами составляет от М-35 до М-100, теплопроводность А-7, морозостойкость в пределах от F-35 до F -50. Этот стройматериал, считается абсолютно экологически чистым. Его использование придает сооружению прочность, теплоизоляционную защиту, огнеустойчивость, что, является весьма немаловажным фактом.

Габариты этого стройматериала идеально подходят для скоростного строительства. Его размеры намного крупнее обычного кирпича, что весьма упрощает и ускоряет возведение стен и перегородок, экономит объем раствора при кладке. При устройстве стен из этого материала необходимое количество строительного раствора приблизительно в два раза меньше, а скорость работ в пять раз выше, вес одного метра кладки при этом в полтора раза меньше.

Размеры керамзитобетонных блоков

Основой для таких блоков служит керамзитобетон, который производится из обожженной и вспененной в особых туннельных печах глины, в результате чего она обретает низкую плотность и довольно высокую прочность. Керамзитоблоки производятся методом полусухого вибропрессования, что позволяет понизить водоцементное соотношение при их производстве. Данный метод позволяет изготавливать блоки, имеющие закрытые либо сквозные каналы (камеры), размеры пустот при этом могут достигать 40 %.

Размеры керамзитобетонных блоков

Размеры блоков зависят от потребностей заказчиков и конструкционного назначения, поэтому могут быть совершенно разными. Согласно ГОСТ 6133-99 «Камни бетонные стеновые. Технические условия», стандартный размер самых популярных в использовании керамоблоков составляет 390х190х190 мм.

Для постройки фундаментов загородных домов можно купить керамзитоблоки размером 200/400/200 мм, которые считаются довольно долговечными и сохраняющими свои эксплуатационные свойства свыше 50 лет.

При строительстве наружных стен и звукоизолирующих прегородок малоэтажных строений используют блоки размеров 30х40х24 см или 40х20х20 см. Причем, и стеновые, и фундаментные блоки имеют повышенные параметры по морозостойкости F25-F300.

Конструкция и размеры керамзитобетонных блоков, изготовляемых сегодня, довольно разнообразны.

По сути, вся номенклатура блоков из керамзитобетона может быть разделена на две основные группы:

  1. Стеновые керамзитоблоки.
  2. Перегородочные керамзитоблоки.

В приведенной таблице можно увидеть типовые формы блоков, а также их основные характеристики – вес, теплопроводность, плотность, морозостойкость, пустотность и марку по прочности, которая маркируется литерой «М» с цифрой, означающей способность блока выдерживать нагрузки. Например, керамоблок с маркой прочности М 50 выдерживает нагрузку 50 кг на 1 см3.

К содержанию ↑

Характеристики блоков из керамзитобетона

По своим физико-техническим параметрам и назначению керамзитобетоны бывают:

  1. Конструкционными.
  2. Конструкционно-теплоизоляционными.
  3. Теплоизоляционными.

Для керамзитобетонов их механические характеристики прописаны в ГОСТ 6133-99, 10180-90 и 12730.1-78.

За счет наличия воздушных камер в блоках повышаются их теплозащитные характеристики. Но не стоит забывать, что при снижении теплопроводности понижается и прочность блоков.

За счет высокой паропроницаемости этого материала, стены из него «дышат», а способность впитывать излишнюю влагу из окружающего пространства позволяет стенам из керамзитобетона поддерживать комфортный баланс влажности внутри помещений.

Резкие перепады температур и влажности керамзитобетону не страшны, поэтому он с успехом применяется в любых климатических поясах (см. Керамзитобетонные блоки — Отзывы)

К содержанию ↑

Сферы применения

В возведении стеновых конструкций повышенной прочности применяют полнотелые стеновые блоки из керамзитобетона.

Для стенового заполнения в монолитном и каркасном строительстве используются пустотелые блоки.

Блоки, имеющие сквозные отверстия используют в обустройстве систем вентиляции, а также их применяют в качестве опорных тумб садовых скамеек, бордюрного камня и в облицовке стеновых поверхностей.

Широкая цветовая гамма и разнообразная фактура этого материала позволяет широко применять его в возведении ограждающих сооружений и различных архитектурно – декоративных элементов из керамзитобетона.

Стоимость возведения домов из керамзитобетонных блоков гораздо ниже, чем из кирпича. Причем не только за счет более низкой цены самих блоков, но и за счет более высокой технологичности строительства таких строений. Большие размеры блоков позволяют укладывать их быстрее и проще, чем кладку из кирпича, а за счет их легкого веса сокращается потребность в рабочей силе и дополнительной технике, что позволяет сэкономить и на трудозатратах.

Рекомендуем к прочтению:

Керамзитобетонные блоки — характеристики и размеры

Керамзитобетонные блоки, характеристики которых по достоинству оценены строительными компаниями, возводящими дома малой этажности не только в России, но и в странах Европы. Они обладают рядом неоспоримых преимуществ: небольшим весом, высокими прочностью, низкой теплопередачей, хорошей теплоизоляцией, звукоизоляцией, огнеупорностью; устойчивостью к низким температурам и химическим воздействиям; долговечностью (до 75 лет), экологической безопасностью и доступной ценой. Керамзитобетон занимает определенную нишу в линейке строительных материалов – между кирпичом и блоками из газобетона и пенобетона.

Из чего делают керамзитобетонные блоки

Изготовление керамзитобетона заключается в добавке в цементный раствор керамзитового гравия, имеющего фракции от 5 до 20 мм, и крупного керамзитового песка. Размер наполнителя влияет на прочность и теплосберегающие характеристики блока: чем крупнее гравий, который добавляется в формовочную массу, тем менее прочным, но более теплым получается дом. Для повышения прочности, морозостойкости и пожаробезопасности в смесь также вводят различные химические и минеральные добавки.

Чтобы изделия из керамзитобетона соответствовали техническим характеристикам, состав раствора для приготовления конкретной марки жестко регламентируется ГОСТом. Перед покупкой блоков необходимо удостовериться, что соответствующий сертификат и стандарт качества на данную партию товара имеется. Это поможет вам избежать приобретения некачественного товара от недобросовестного производителя.

Классификация керамзитобетона

Керамзитобетонные блоки бывают трех типов: теплоизоляционные, конструкционно-теплоизоляционные и конструкционные.

При производстве теплоизоляционных блоков применяются крупные фракции керамзита. При обжиге этого типа используется специальная технология, которая обеспечивает вздутие компонентов, за счет этого образуются поры больших размеров. Панели этого вида не отличаются высокой прочностью, но обладают небольшим весом и высокими энергосберегающими показателями. Поэтому они используются в качестве теплоизоляции.

Конструкционно-теплоизоляционные блоки имеют повышенную плотность, что ведет к увеличению их веса, но повышению прочности. Чаще всего панели такого типа применяют для возведения межкомнатных перегородок.

Конструкционные блоки – самые тяжелые, но при этом самые прочные. Поэтому они предназначаются для строительства несущих и других конструкций, которые подвергаются воздействию больших нагрузок (домов, мостов, эстакад и так далее).

Технические характеристики

Размеры стандартных керамзитобетонных блоков:

  • стеновые – 188 х 190 х 390 мм;
  • перегородочные – 188 х 90 х 390 мм.

Габарит каждой поверхности блока может иметь допустимые отклонения в размере 6-8 мм.

По качеству поверхности боковых граней блоки делятся на:

  • рядовые – используются для возведения стен, требующих дополнительной внешней отделки;
  • лицевые – используются для сооружения зданий без последующей отделки фасада.

Еще одна деталь, которая является немаловажной – наличие пустот (от 0 до 40 %). Блоки бывают пустотелые, которые имеют сквозные или несквозные отверстия разной формы. Это снижает вес материала, но повышает его теплоизоляционные свойства. Полнотелые блоки, наоборот более тяжелые, но и более прочные. Именно из них производят кладку капитальных стен, которые воспринимают высокие нагрузки.

Плотность и прочность

Прочность керамзитобетона определяют опытным путем, то есть производят замеры максимальных нагрузок, при которых материал начинает разрушаться. Прочность варьируется от 25 до 300 кг/см². Маркировка данного показателя выглядит как буква М и цифровой индекс, обозначающий максимально допустимые нагрузки на материал в кг/см². Например, М150: цифра 150 говорит о том, что каждый квадратный сантиметр блока может выдержать давление в 150 кг, не подвергаясь угрозе разрушения. Наиболее прочной является марка М300. От прочности зависит надежность и долговечность несущих конструкций зданий.

Плотность керамзитобетона варьируется в зависимости от наполнителя (размера фракций). От этого показателя зависят теплосберегающие и звукоизолирующие свойства блоков.

Плотность и прочность различных керамзитобетонных блоков:

Теплопроводность

Коэффициент теплопроводности позволяет определить, насколько хорошо материал сохраняет тепло, и он полностью зависит от плотности: чем крупнее гравий добавляется в формовочную массу, тем более теплым становится строение. То есть с повышением плотности теплопроводность блоков керамзитобетона увеличивается и, как следствие, ухудшаются энергосберегающие свойства.

Морозостойкость и огнеупорность

Устойчивость к низким температурам и к огню – это те два показателя, которые влияют на долговечность материала.

Маркировка показателя морозоустойчивости выглядит как буква F и цифровой индекс, обозначающий количество циклов замораживания и размораживания, которые может без потерь прочности выдержать блок, пропитанный водой.

Что касается устойчивости к огню, керамзитобетонные блоки обладают характеристиками с самым высоким классом пожаробезопасности А1, а это значит, что конструкции из этого материала способны выдержать испытание огнем в течение 7-10 часов и не разрушиться.

Удельный и объемный вес

Такой показатель, как удельный вес керамзитобетона редко применяется на практике. Этот параметр зависит от вида применяемого наполнителя и его качества.

Для расчетов нагрузок на фундамент и перекрытия специалисты используют такой показатель, как объемный вес керамзитобетона, который показывает, сколько весит один кубический метр блоков.

В зависимости от плотности раствора, применяемого для изготовления блоков, наличия или отсутствия пустот вес керамзитобетона объемом 1 м3 варьируется в широких пределах:

Паропроницаемость

Еще один достаточно важный параметр, который показывает, насколько керамзитобетон является «дышащим» строительным материалом. Этот показатель находится в интервале от 0,094 до 0,256 мг/м*ч*Па при плотности соответственно от 1400 до 500 кг/м³. Кроме того КБ блоки могут удалять избыточную влагу из воздуха и возвращать ее в случае низкой влажности.

Пористость

Это соотношение объема пор к объемному весу, то есть керамзитобетон может быть тяжелым, легким и особо легким.

Маркировка

Все производители КБ блоков наносят маркировку на свою продукцию:

  • К – означает, что материал относится к виду искусственного камня;
  • С – стеновой;
  • П – перегородочный;
  • Л – лицевой;
  • Р – рядовой;
  • УГ – угловой, ПР – порядовочный, ПЗ – для перевязки швов, ПС – пустотелый;
  • длина блока в см;
  • марка прочности;
  • параметр морозостойкости;
  • показатель плотности.

Вооружившись этими знаниями, вы сможете узнать всю необходимую информацию о материале. Давайте рассмотрим маркировку следующего блока – КПР-УГ-ПС-39-35-15-500. Расшифровка будет выглядеть так: камень, перегородочный, рядовой, угловой, пустотелый, длиной 39 см, с показателем прочности 35 кг/см², морозостойкостью 15 циклов и плотностью 500 кг/м³.

Вес одного блока

Сколько весит керамзитобетонный блок, зависит от того, к какому типу керамзитобетона он относится, а также от его габаритов, пористости и количества керамзита в его составе. Вес одного керамзитобетонного блока может находиться в интервале от 5 до 29 кг.

Исходя из вышеизложенного, можно сделать вывод: керамзитобетонные блоки своими техническими характеристиками не уступают, а во многом и превосходят такого достойного конкурента, как кирпич, хотя стоят намного дешевле. При использовании блоков из керамзитобетона вместо кирпича происходит следующее:

  • нагрузка на фундамент уменьшается в 2 раза;
  • расходы на обогрев дома снижаются в 3 раза;
  • сроки строительства сокращаются во много раз;
  • трудозатраты снижаются в 4 раза (один блок равен кладке из 6-8 кирпичей).

Керамзитобетонные блоки: размеры, плюсы и минусы

Строительство – один из востребованных видов деятельности, который постоянно усовершенствуется. Объемные, неудобные, дорогие материалы уходят в прошлое, на их место приходят легкие, удобные в использовании. Стоящей заменой обычному кирпичу стали керамзитобетонные блоки.

Сфера использования

Керамзитобетонный блок – материал не новый. Впервые появился в 50-60 годы, но был благополучно забыт. Способ производства похож на изготовление пескоцементных блоков, но в состав современного материала входят мелкие гранулы керамзита, размером 5-10 мм. Срок службы керамзита до 75 лет.

Свободно применяются в возведении хозпостроек, коттеджей, фундамента, засыпке остова при цельном строении. Внешние, внутрикомнатные стены, системы вентиляции, облицовка здания, бордюр – немногие варианты построек, с которыми справится керамзит. Легкость состава, его обширные технические данные используют при создании декоративных элементов, ограждений. Размеры керамзитобетонных блоков отлично сочетаются с другими видами отделки, существенно повышают качество и уменьшают время строительства.

Вернуться к оглавлению

Разновидности материала

Керамзитобетон не стоит путать с пескоцементным материалом. Они различны по составу, но схожи по названию видов. На виды керамзитобетон разделяется по техническим характеристикам, предназначенный для сооружения конструкций (конструкционные) подразделяют:

  • Полнотелые (конструктивные), обладающие высокой плотностью. Отличительная характеристика – отсутствие пустот, отверстий. Данная особенность значительно увеличивает массу блока, но и повышает прочность. Самый дорогостоящий вид, так как в состав входит высококлассная марка бетона. Отсутствие дополнительного ухода за материалом – явное преимущество. Керамзитобетонную стяжку используют для возведения многоэтажных, сложных конструкций. Конструктивные керамзитобетонные блоки – отличная альтернатива обыкновенным пескоцементным блокам.
  • Пустотелые (теплоизоляционные) отличаются пустотами. Благодаря чему имеют низкую теплопроводность: зимой тепло, летом прохладу. Прочность низкая, поэтому они используются для возведения одноэтажных зданий, межкомнатных перегородок. Щелевым блокам свойственна отличная пластичность, позволяющая поддерживать любую форму. Укладываются вниз пустотами, на раствор из песка и цемента, для сохранения тепла.
  • Конструктивно-теплоизоляционные, как правило пустотелые, используются для теплоизоляции, возведения стен.

Назовем основные размеры керамзитобетонных блоков и их роль в строительстве:

Вернуться к оглавлению

Стеновые

Стройматериалы используются для возведения несущих конструкций. Материал отличается отличным коэффициентом прочности. Размеры стеновых блоков регулируются государственными стандартами, выложены (длинна, высота, толщина):

  • 39х 19х 18,8 см;
  • 28,8х 28,8х 13,8 см;
  • 28,8х 13,8х 13,8см;
  • 19х 19х 18,8 см;
  • 9х 19х 18,8 см.

Вес полнотелых материалов составляет около 26 кг, пустотелые с меньшим весом в 17 кг.

Вернуться к оглавлению

Перегородочные

Отличаются меньшим размером:

  • 59х 19х 18,8 см;
  • 39х 9х 18,8 см;
  • 19х 19х 18,8 см.

Большой нагрузки не несут, поэтому высота керамзитобетонного материала больше ширины. Вес между пустотелыми и полнотелыми блоками колеблется от 7 до 14 кг.

Вернуться к оглавлению

Облицовочные

Сокращают время строительства, используются для внешней отделки. Материал может иметь декоративную, цветную поверхность. Окрашенный состав содержит природную глину и добавки, обеспечивающие стойкость к природному воздействию, следовательно, длительный срок службы. Размеры 600х300х400 мм позволяют делать однослойную кладку. Разнообразие фактур и цветовой гаммы позволяет воплощать любые дизайнерские решения. Выполнить кладку легко получится своими руками, а выпускающиеся угловые элементы сэкономят время на распиливании.

Вернуться к оглавлению

Маркировка

Керамзитобетонные блоки отличаются рядом свойств, которые зависят от размеров, области применения. Все строительные материалы наделены специальной маркировкой, которая помогает установить вид, класс, характеристику.

Для примера рассмотрим маркировку КСР-ПР-ПС-39-75-F50-1300. Блоки керамзитобетонные обозначаются заглавными буквами КСР. Керамзитобетон для возведения стен маркируются ПР, пустотелые ПС, к ним относятся и облегченные. Дальше следует длинна, затем показатель коэффициента прочности, последним стоит показатель морозостойкости.

  • Плотность характеризуется маркой, средним размером выдерживаемого давления. Выражается в килограмм силе на см². Например марка стеновых не ниже М50, а простеночных М25.
  • Свойства морозостойкости показывают возможное количество замерзаний и оттаиваний без нанесения вреда стройматериалам. Марка морозостойкости обозначается буквой F. У производителя показатель колеблется от 15 до 100. Строительный материал с низким показателем не пригоден для внешних работ.
  • Отдельно стоит выделить теплопроводность. Не каждый производитель готов сразу дать данные по важной характеристике. Но от нее зависит характер кладки и возможное утепление. Согласно стандартам, теплопроводность составляет от 0,15 до 0,45. Стандартная теплопроводность составляет 0,21.

Стандартные технические характеристики изложены (теплопроводность, прочность, плотность, морозостойкость):

  • Пустотный 39х19х18,8; 0,35; М50; 1050; F50.
  • Щелевой 39х19х18,8; 0,35; М75; 1150; F50.
  • Полнотелый 39х19х18,8; 0,3; М1000; 1100; F50.
  • Щелевой перегородочный 39х19х18,8; 0,35; М50; 1050; нет нормы.
  • Перегородочный 39х19х18,8; 0,35; М75; 1300; нет нормы.
Вернуться к оглавлению

Преимущества и минусы материала

Сравнительно небольшой срок использования новых технологий вызывал много споров среди строителей. Рассмотрим плюсы и достоинства материала.

К плюсам можно отнести:

  • Сравнение теплоотдачи для различных стен.

    Маленький вес удобен в транспортировке и монтаже, снижаются затраты на заливку мощного фундамента.

  • Экологичность керамзитобетонных блоков не поддается сомнению, в производстве задействовано природное сырье: цемент, песок, керамзит, вода. Экологичный состав – стоящее преимущество для ценителей натурального сырья.
  • По звукоизоляции превосходит любой легкий бетон, этому способствуют особенности состава, и возведение дополнительных защит от шума не понадобится.
  • Материал имеет высокий коэффициент теплопроводности, накапливая тепло внутри, отдает его медленно и равномерно, поэтому его используют в теплых и холодных климатических условиях. Проведенные эксперименты показали, что использование керамзита сокращает потери тепла на 75 процентов и не требует дополнительного утепления, что во много раз превосходит свойства пескоцементного кирпича.
  • Особого ухода керамзитобетонные блоки не требуют – это не маленький плюс. Сохраняют свои технические характеристики на протяжении 50 лет, что существенно увеличивает срок службы.
  • Высокий коэффициент прочности – важное свойство, при М75 каждый квадратный сантиметр способен выдержать без разрушения нагрузку в 75 килограмм. До армированного бетона конечно далеко, но стеновому материалу это не нужно.
  • Гранулы керамзита при обжиге покрываются корочкой, именно она придает герметичность, низкое впитывание влаги, позволяет создавать свободный воздухообмен и таким образом регулировать уровень влажности.
  • Индивидуальные особенности увеличивают отличную сопротивляемость огню, что позволяет использовать керамзит в строительстве любой категории.
Вернуться к оглавлению

Минусы

Недостатков меньше, рассмотрим по порядку:

  • Первый недостаток – пористость. Сравнивая с тяжелым бетоном, заметная пористость негативно сказывается на плотности, морозостойкости.
  • Хрупкость приводит к уменьшению области применения. Многое зависит от общих характеристик и подбора вариантов крепежа.
  • Плохо поддаются обработке, трудно переносят динамическую и ударную нагрузку.

К недостатку можно отнести отсутствие инструкций по изготовлению керамзитных блоков самостоятельно, придется сильно постараться, чтобы найти технологию изготовления.

Физико-механические особенности керамзита не уступают кирпичу, дереву или бетону. Современный, долговечный материал пользуется спросом в развитых странах, и процент использования близится к 50. Принятие окончательного решения требует сравнения плюсов и минусов.

Любой минус можно сгладить дополнительными работами, важно узнать их стоимость. После всех расчетов может минус и не будет серьезным недостатком.

Размеры керамзитобетонных блоков: стандарты для керамзитных изделий

Сегодня широкое распространение получил такой материал, как керамзитобетон. Это обусловлено его привлекательными характеристиками, давно оцененными специалистами в области строительства. Наша статья посвящена широкому размерному ряду этого материала.

Особенности

Востребованность штучных материалов для строительства не вызывает удивления. Эти конструкции отличаются одновременно доступностью и превосходными техническими характеристиками. Изделия из керамзитобетона давно признаны одним из лучших вариантов для строительных работ.

Но чтобы построить долго служащее, стабильно эксплуатируемое здание, нужно обязательно разобраться с габаритами самих конструкций. Важно понимать, что марки изделий не указывают на их величину (как иногда ошибочно полагают начинающие строители), поскольку задаются совершенно другими ключевыми параметрами – стойкостью к морозу и механической крепостью.

Виды и вес материала

Керамзитные блоки делятся на стеновые (ширина от 15 см) и перегородочные (этот показатель менее 15 см) разновидности. Стеновые изделия применяются в несущих стенах, перегородочные нужны для того, чтобы сформировать коробку.

В обеих группах выделяются полнотелые и пустотелые подгруппы, различающиеся:

  • теплопроводностью;
  • массой;
  • акустическими характеристиками.

Размеры керамзитобетонных блоков четко расписаны в ГОСТ 6133, изданном в 1999 году. Для реального строительства требуется большое количество размерных групп, поэтому на практике можно встретить самые разные решения. Не говоря уже о том, что все заводы охотно берутся за выполнение индивидуальных заказов с особыми требованиями. Полностью отвечают положениям стандарта, например, изделия величиной 39х19х18.8 см (хотя есть и другие форматы). Округление этих цифр в каталогах и рекламной информации создало миф о керамзитобетонном блоке величиной 39х19х19 см.

В реальности же все размеры должны выдерживаться строго, есть только четко прописанные предельные отклонения от установленных линейных размеров блоков. Разработчики стандарта не зря приняли именно такое решение. Они обобщили продолжительный опыт строительства домов в различных случаях и пришли к выводу, что именно такие величины практичнее других вариантов. Так что никаких керамзитобетонных блоков, соответствующих стандарту, но имеющих при этом габариты 390х190х190 мм, в принципе не существует. Это всего лишь ловкий маркетинговый ход, рассчитанный на невнимательность потребителя.

Конструкции для перегородок могут быть суженной или продолговатой конфигурации.

Их стандартные габариты представлены четырьмя размерными группами (с небольшим отклонением):

  • 40х10х20 см;
  • 20х10х20 см;
  • 39х9х18.8 см;
  • 39х8х18.8 см.

Кажущаяся чересчур малой толщина блока никоим образом не сказывается на утеплении и защите от посторонних звуков. Что касается веса, то стандартный пустотелый блок из керамзитобетона имеет массу 14. 7 кг.

Повторим, речь идет об изделии со сторонами (в мм):

Сопоставимые размеры имеет кладка из 7 кирпичей. Тяжесть пустотелого кирпича – 2 кг 600 г. В общей сложности вес кирпичной кладки составит 18 кг 200 г, то есть на 3.5 кг больше. Если же говорить о полнотелом керамзитобетонном блоке все той же стандартной величины, то масса его составит 16 кг 900 г. Сопоставимая по величине кирпичная конфигурация будет тяжелее на 7.6 кг.

Масса щелевых керамзитобетонных изделий с габаритами 390х190х188 мм равняется 16 кг 200 г – 18 кг 800 г. Если толщина полнотелых перегородочных блоков из керамзитобетона равняется 0.09 м, то масса такой конструкции достигает 11 кг 700 г.

Выбор таких габаритных параметров не случаен: блоки должны обеспечивать скоростное строительство. Самый распространенный вариант – 190х188х390 мм подобран по очень простой методике. Стандартная толщина слоя раствора из цемента и песка в большинстве случаев колеблется от 10 до 15 мм. При этом типовая толщина стены при кладке в один кирпич составляет 20 см. Если сложить толщины керамзитного блока и раствора, то получаются те же 20 см.

Если 190х188х390 мм – самый широко употребляемый стандартный размер керамзитобетона, то вариант 230х188х390 мм, напротив, самый малоиспользуемый в строительстве. Этот формат блоков из керамзита выпускается немногими заводами. 390 мм – это кладка в 1.5 кирпича с добавлением раствора.

Габариты керамзитных изделий для внутренних перегородок и стен домов (зданий) составляет 90х188х390 мм. Наряду с этим вариантом, есть и другой – 120х188х390 мм. Так как внутриквартирные перегородки в домах и межкомнатные не несущие перегородки из керамзитобетона не переживают никаких механических нагрузок, за исключением собственной массы, их делают толщиной 9 см. Внутренние перегородки выкладывают из полублоков.

Размерный ряд

Есть несколько широко распространенных в Российской Федерации (закрепленных в ГОСТ или предусмотренных ТУ) габаритов строительных блоков для личного, жилищного и промышленного строительства:

  • 120х188х390 мм;
  • 190х188х390 мм;
  • 190х188х190 мм;
  • 288х190х188 мм;
  • 390х188х90 мм;
  • 400х100х200 мм;
  • 200х100х200 мм;
  • 390х188х80 мм;
  • 230х188х390 мм (исключительно редкий вариант изделия).

Керамзитный блок стандартных габаритов хорош не только в применении, но и в транспортировке, а также в хранении. Однако случаются ситуации, когда при строительстве может потребоваться материал нестандартных параметров. Решением данной проблемы может стать заказ индивидуального порядка. По нему изготовители могут сделать керамзитобетонную блочную продукцию для различных категорий и объектов строительной сферы, выпущенную в соответствии с техническими условиями. Кстати, стандартами в России регулируются не только общие линейные величины самих блоков, но и габариты сквозных отверстий, которые должны составлять строго 150х130 мм.

В продажу иногда поступают изделия из керамзитобетона размером 300х200х200 мм, это те же стандартные модули, но сокращенные по длине на 100 мм. Для изделий, производимых по техническим условиям, допускается более крупное отклонение, чем для расписанных в ГОСТ. Такое отклонение может достигать 10 и даже 20 мм. Но изготовитель обязан обосновать такое решение соображениями технологического и практического характера.

Действующий государственный стандарт указывает следующую размерную сетку керамзитобетонных блоков:

  • 288х288х138;
  • 288х138х138;
  • 390х190х188;
  • 190х190х188;
  • 90х190х188;
  • 590х90х188;
  • 390х190х188;
  • 190х90х188 мм.

Допустимые отклонения

Согласно указаниям раздела 5.2. ГОСТ 6133-99 «Камни бетонные стеновые», допустимые отклонения между реальными и номинальными размерами керамзитобетонных блоков могут составлять:

  • для длины и ширины – 3 мм в меньшую и большую сторону;
  • для высоты – 4 мм в меньшую и большую сторону;
  • для толщины стенок и перегородок – ± 3 мм;
  • для отклонений ребер (любых) от прямой линии – максимум 0.3 см;
  • для отклонений граней от плоскостности – до 0.3 см;
  • для отклонений боковых граней и торцов от перпендикуляров – максимум до 0.2 см.

Для контроля линейных параметров блоков из керамзитобетона должны применяться только измерительные инструменты с систематической ошибкой не выше 0.1 см.

Для этой цели могут применяться:

  • линейка, соответствующая ГОСТ 427;
  • штангенциркуль, отвечающий нормам ГОСТ 166;
  • угольник, соответствующий указаниям ГОСТ 3749.

Измерять длину и ширину полагается по взаимно противопоставленным ребрам плоскостей опоры. Для измерения толщины ориентируются на центральные части граней, расположенных сбоку и на торцах. Все промежуточные итоги замеров оценивают отдельно.

Чтобы определить толщину внешних стенок, измерение проводят штангенциркулем установленного образца на глубине 1-1.5 см. Определяя, насколько отклоняются грани от идеального прямого угла, учитывают самую большую итоговую цифру; продольные пазы керамзитобетонных блоков могут быть размещены минимум в 2 см от боковых поверхностей.

Из следующего видео вы узнаете больше о блоках на основе керамзита.

технические характеристики, вес и размеры, цена за 1 шт

Получить прочный, но легкий стройматериал можно и из бетонной смеси, если в качестве заполнителя использовать не тяжелый щебень, а вспученную глину. Так изготавливают керамзитобетон, который потом заливают в опалубку или в форму для производства строительных блоков. О применении последних мы сегодня и поговорим.

Оглавление:

  1. Описание разновидностей блоков
  2. Сфера использования керамзитобетона
  3. Цены и советы для покупателей

Виды и характеристики

Керамзитобетонные блоки классифицируют по их назначению, хотя такое разделение тесно связано с плотностью композитного камня (она же влияет и на прочие его параметры):

1. Теплоизоляционные.

Объемный вес этих изделий не превышает 350-600 кг/м3, а прочность – 5-25 кГс/см2. Для строительства ограждающих стен легкий керамзитобетон не годится, но для внутренних самонесущих перегородок – вполне. Такие конструкции хорошо удерживают тепло, пропуская всего 0,14-0,2 Вт/м·°С (как натуральная древесина).

2. Конструкционные.

Самые тяжелые керамзитобетонные блоки с объемным весом 1400-1800 кг/м3. Теплопотери у них достаточно высокие, зато и прочность на уровне – от 100 до 500 кГс/см2.

3. Конструкционно-теплоизоляционные.

Идут плотностью 600-1400 кг/м3 и используются для строительства построек в 1-2 этажа, а также в колодцевой кладке. Несмотря на относительно небольшой вес керамзитобетонного полнотелого блока, эти камни выдерживают сжимающую нагрузку до 35-100 кГс/см2.

Что касается прочих характеристик керамзитоблоков, то здесь можно ориентироваться на такие показатели:

  • Морозостойкость: F15-50 – для теплоизоляционных блоков, до 150 – у конструкционных.
  • Водопоглощение 5-10%.
  • Паропроницаемость керамзитобетона до 0,9 мг/м·ч·Па.
  • Усадка после возведения коробки – не больше 0,3-0,5 мм/м.
  • Огнестойкость – до 3 ч.
  • Шумопоглощение (для блоков размером 200х200х400) – 45-50 дБ.

Но вес стройматериалов не всегда определяет их технические характеристики. Есть простой способ получить легкий элемент с достаточной прочностью, но неплохими теплоизоляционными показателями. Для этого при производстве керамзитобетонного блока в его теле формируют пустоты (глухие или сквозные). Таким образом, сокращаются расходы на изготовление и транспортировку блоков, уменьшается цена за штуку, а сами камни получают более широкую сферу применения.

Существует отдельный вид стеновых материалов из керамзитобетона – вентиляционные. Несмотря на название, сквозные щели в них предназначены не для воздухообмена, а для скрытой прокладки коммуникаций. Один такой блок весит 11 кг и выпускается в размере 188х190х390 мм (очень близко к стандартным 200х200х400 с учетом растворного шва).

Применение

Основная сфера использования керамзитоблоков – возведение «теплых» перегородок и стен. Из них можно ставить коробки частных домов и высоток, выполнять внутреннюю утепляющую кладку, возводить межкомнатные и межквартирные перемычки.

Но несмотря на высокую прочность этих изделий, для строительства фундаментов даже легких объектов блоки из керамзитобетона не подходят. Всему виной их способность впитывать влагу, что привело бы к размыванию основания и сокращению срока службы всей постройки.

Стоимость блоков и рекомендации перед покупкой

Типы керамзитоблоковРазмеры, ммПлотность, кг/м3Цена за штуку, рубли
ПустотелыеДвухпустотный188х140х390100047
Трехпустотный200х200х400115043
Перегородочный188х90х390100029
18-щелевой140х250х380170059
11-щелевой200х200х400130055
7-щелевой188х190х39086057
Межквартирный188х240х390100065
ПолнотелыеСКЦ-1ПРП200х200х400165063
Перегородочный188х120х390175044

Цена за пустотный сквозной блок из керамзитобетона обычно ниже стоимости полнотелого за штуку, но здесь многое зависит от количества и размеров технологических отверстий. Дешевле всего можно купить камни с 2-4 крупными выборками – они наименее материалоемкие. Многощелевые же находятся в средней ценовой категории – между пустотелыми и цельными блоками.

При визуальном осмотре нужно проверить керамзитоблоки на отсутствие трещин и крупных сколов. На поверхности не должно быть и коричневых пятен «непрокрашенного» заполнителя, свидетельствующих о недомесе. Также желательно оценить точность геометрии камней, поставив несколько штук друг на друга.

Линейные параметры стеновых материалов тоже имеют значение. К примеру, керамзитобетонный блок размером 200х200х400 считается универсальным – с его помощью можно возводить любые конструкции практически без подгонки. Но если толщина стены должна быть 300 мм, придется купить камни с другими габаритами. Поэтому сперва стоит сопоставить размеры дома на плане и ассортимент керамзитоблоков в своем городе, чтобы определиться с поставщиком и сократить количество отходов при укладке.

Размер керамзитобетонного блока: стандартный, согласно ГОСТ

Размер керамзитобетонного блока и допустимые величины отклонения указаны в ГОСТ документации. По величинам при строительстве рассчитывают требуемое количество стройматериала. Стандартные размеры керамзитоблока могут быть изменены при надобности, для этого на производстве делают заказ на выполнение линейки товаров с заданными габаритами. Завод-изготовитель указывает в документации, что продукция выпущена в соответствии с ТУ и имеет индивидуальные отличительные особенности от стандартных параметров. Также в стандарте качества кроме размеров прописывают основную форму блоков – параллелепипед, которая может быть изменена на многогранник либо полукруг.

Виды керамзитобетонных блоков

Блоки из керамзитобетона делятся по размерам, составу и характерным качествам на такие типы:

  1. Назначение:
  • конструктивная группа, в которой числятся тяжелые и прочные элементы с удельной массой 1400-1800 кг/куб. м. Используют такой материал при сооружении отдельной опорной постройки, эстакады, моста;
  • конструктивно-теплоизоляционные панели с удельной массой 600-1400 кг/куб.м, используют при укладке стен;
  • теплоизоляционный тип изделий служит в качестве утеплительного материала, который входит в самую легкую группу. В состав блоков входит минимальное количество песка и портландцемента, их удельная масса составляет от 350 до 600 кг/куб.м.
  1. Сферы применения:
  • при возведении стен, такая продукция маркируется буквой «С». Данные блоки подойдут как для несущих, так и для внутренних конструкций с различными нагрузками;
  • панели для кладки межкомнатных перегородок имеют маркировку с буквой «П»;

  1. Геометрическая форма. Керамзитобетонные блоки имеют прямоугольную форму и производятся пустотелыми и полнотелыми.
  2. Тип укладки – лицевые и рядовые блоки.

Полнотелый тип укладывается в зонах с высокой нагрузкой на конструкцию. Стену возводят из пустотелых элементов, для уменьшения нагрузки на фундаментное основание. При этом характеристики надежности и прочности не пострадают.

Почему купленный товар из керамзитобетона имеет нестандартные размеры? Габариты блоков даже из одной партии могут иметь отличия на 1 см. Происходит это, потому что для изготовления элементов было применено устаревшее оборудование.

Сферы применения

Стройматериал, выполненный из керамзитобетона, универсален и имеет отличные прочностные и теплопроводные характеристики, которые подходят для постройки объектов различного предназначения. Приведем пример — фундаментная основа, выложенная из массивных армированных изделий, которые способны выдержать сильные нагрузки. Стены сооружают из специальных панелей, обладающими условиями для создания дополнительного утепления. Тип такого применения обусловлен разницей в компонентной части и сложности конструкций. Камни бетонные несущие и опорные производят с увеличенной массой и повышенной плотностью. Стеновые и утеплительные элементы бывают полнотелыми либо отличаются большим количеством пор и небольшим весом.

Блоки из керамзитобетона следует укладывать только на цементно-песчаную смесь, размеры швов будут составлять от 1 до 1,5 см. По этой причине, если приплюсовать эти числа к размерам стандартного блока 19х1.88х39 получится круглое число. При изготовлении блоков разных размеров всегда берут в учет швы с раствором.

Достоинства

  1. Стандартные габариты и прочие показатели позволяют производить укладку блоков по несложной технологии.
  2. Конструкции из пустотелых элементов рекомендуется усиливать арматурой. Для этого в тело блока вставляют металлические прутки.
  3. Большой размер блока позволяет экономить на растворе, при этом затраты труда значительно уменьшаются.
  4. Малый вес способствует постройке облегченного и недорогого фундамента.
  5. Дополнительное утепление не требуется.
  6. Керамзитобетонный материал обладает «дышащими» свойствами, благодаря этой особенности в комнатах, возможно, поддерживать оптимальные климатические условия без образования конденсата.
  7. Кладку из керамзитобетонных блоков отделывают различными вариантами стройматериалов. Поверхность обладает структурой, которая способна обеспечить надежное соединение слоев.
  8. Твердая каменная стена выдерживает разнообразные подвесные элементы.
  9. Усадка конструкции минимальна, что не повлияет на отделку.

Недостатки

  1. Размеры блоков из керамзитобетона бывают неидеально ровные из-за особенностей неоднородной структуры. При таких обстоятельствах понадобится производить кладку с особой тщательностью. Если показатели отклонений находятся в допустимых пределах по ГОСТ, то особых проблем при строительстве возникать не должно.

Стандарт на блоки

Наиболее распространенные размеры блоков – 19х18.8х39 см. Эти параметры рассчитаны на швы из цементной смеси, которая составляет 1-1.5 см. Стандартная толщина в один кирпич будет равна 20 см. Если прибавить к размерам толщины стены из керамзитобетона толщину шва с цементным раствором, также получатся 20 сантиметров. Параметры 23х18.8х39 считаются самыми невостребованными, по причине низкой производительности продукции заводами-изготовителями. Длину элементов 39 см применяют для постройки подвальных и цокольных конструкций.

Особенности строительной терминологии:

  1. «Стена толщиной в блок» означает, что толщина стены будет равняться 39 см. Строительная методика подразумевает укладку керамзитоблоков поперек, такая кладка существенно увеличивает прочность конструкции;
  2. «Стена толщиной в полблока» означает, что толщина стены будет составлять 19 см. Укладка элементов производится в продольном порядке.

Размер блока из керамзитобетона не будет оказывать влияние на показатели технических характеристик.

  1. По прочностным показателям изделия отличаются в зависимости от сферы, в которой они будут использоваться, по этой причине важно учитывать особенность назначения и показателя:
  • теплоизоляция 5-35 кг/см2;
  • конструкционная-теплоизоляция 35-100 кг/см2;
  • конструктивная 100-500 кг/см2.

  1. Объемная масса:
  • теплоизоляционная 350-600 кг/см3;
  • конструктивно-теплоизоляционная 600-1400 кг/см3;
  • конструктивная 1400-1800 кг/см3.
  1. Качества теплопроводности изделий из керамзитобетона составляет от 0,14 до 0,66 Вт/(м*К). Такие показатели зависят от количества песчаной и цементной доли, которые входят в состав камня. Соответственно чем их будет меньше, тем высшими способностями сохранять тепло будет обладать блок. Пустотелые изделия обладают самыми высокими показателями и дом, построенный из них, будет хорошо сберегать тепло.
  2. Морозоустойчивость будет зависеть от веса изделия – чем он тяжелее, тем большее количество этапов заморозки/разморозки будет выдерживать стройматериал:
  • теплоизоляционный 15-50 циклов;
  • конструктивно-теплоизоляционный 150 циклов;
  • конструктивный 500 циклов.
  1. Стандартный керамзитоблок имеет показатели водопоглощения до 10 %, эти данные можно снизить при помощи добавления в составляющую часть специальные пластифицирующие добавки и улучшители.
  2. Звукоизоляционные качества зависят от ячеистой структуры блоков. Если толщина перегородки составляет 9 см, это обеспечит защиту от звуков до 50 дБ.
  3. Допустимо возводить максимум 12 этажные строения.

Размеры блоков

Параметры керамзитобетонного блока будут такими же, как бетонные, пенобетонные и газобетонные элементы. Стандартный размер блоков при надобности изменяют, для этого нужные параметры и форму заказывают на производстве. Изделие может, имеет такую форму:

  • параллелепипед с плоскими сторонами;
  • параллелепипед, имеющий пазогребневую систему;
  • многогранник;
  • полукруг.

Когда приобретается товар нестандартной формы, производитель должен указывать в документах, о соблюдении ТУ при производстве продукции, которая отличается от стандартных размеров.

Когда известны размеры блоков, можно без трудностей рассчитать нужное количество и объемы цементной смеси.

Стеновые

Заводы-изготовители выпускают два вида изделий из керамзитобетона, которые представляют собой:

  • монолитные блоки применяют для конструкций с повышенными нагрузками, например постройка цоколя;
  • пустотелые используют при возведении стен.

Такие блоки применяют для постройки несущих стен для наружных и внутренних работ. Размеры керамзитобетонных блоков для несущих стен составляют 19х18.8х39 см. В редких случаях используют изделия с размерами 23х18.8х39 см.

Стандартный стеновой блок равен четырем кирпичам, эта особенность способна уменьшить давление на фундаментное основание, и увеличит скорость кладки. Технические характеристики:

  • параметры по ГОСТ составляют 39х19х18.8 см;
  • марка прочности М 50;
  • вес 13.5 кг;
  • средние показатели плотности 1050 кг/м3;
  • морозоустойчивость f100;
  • размеры частиц керамзита от 5 до 10 мм.

С такими же параметрами идут и утолщенные типы блоков. Данный вид относится к четырехщелевому модулю, отличается лишь маркой прочности – М 75, массой 15 кг и размерами толщины внутренних стенок, это плюс один сантиметр.

Стеновые модули используют при возведении зданий жилого и нежилого предназначения. Если сравнивать полнотелые изделия с пустотными. Первый вариант будет отличаться высокой прочностью, что необходимо при постройке многоэтажных домов, которые должны выдерживать большие нагрузки.

Перегородочные

Размер керамзитобетонного блока предназначенного для строительства перегородок составляет:

  • 9х18.8х39 см;
  • 12х18.8х39 см.

Элементы, предназначенные для перегородок, в отличие от стеновых обладают улучшенной геометрической формой и разнообразными цветовыми решениями.

Перегородка внутри помещения — это несущая межкомнатная конструкция, на которую не влияют посторонние нагрузки, кроме собственного веса. Стандартная ширина такой стены составляет 9 см. Изделия, применяемые для постройки внутренней перегородки, носят название полублок, по тому, что его толщина с растворным слоем составляет 1?2 от толщины стандартных блоков. Выпускается полублок двух видов:

  1. Лицевой.
  2. Рядовой.

Модели отличаются ассортиментом оттенков и гладкой лицевой поверхностью, при этих особенностях прочностные качества керамзитобетонных блоков не теряются.

Технические характеристики изделий из керамзитобетона соответствуют всем требованиям ГОСТ 6133-99. В такой документации указана характеристика и свойства стройматериала, соблюдая которые, можно контролировать качество производства, производится маркировка, обозначают свойства сырья и компонентов для изготовления. Также в документах указаны условия перевозок и хранения готовых изделий.

блоков ECA, LECA | Легкие бетонные строительные блоки

  • Дом
  • Агрегат керамзитобетонный
  • Строительные блоки ECA ®

Керамзитовый наполнитель (ECA ® ) Легкий строительный блок для кладки

БЛОКИ из вспененной глины (ECA ®) — это блоки для каменной кладки, изготовленные с использованием заполнителя из вспененной глины (ECA ® ) , зольной пыли класса F и цемента .Применяются для ненесущей кладки стен.

После применения высокопроизводительной инновационной технологии в процессе производства и постотверждения, БЛОКИ из вспененного глиняного заполнителя (ECA ®) приобретают превосходные свойства материала.

Он также предлагает без уменьшенной усадки и превосходную огнестойкость и химическую стойкость, добавляя ряд преимуществ, включая долговечность, универсальность, скорость и простоту использования, а также экономическую выгоду и экологические соображения.

Керамзитовый наполнитель (ECA ® ) Строительный блок для кладки доступен в 2 размерах

Размеры: 600 X 200 X 225 мм (дюймы: 24 «X 8» X 9 «) — 1 CMT: 36 блоков по 9 дюймов
600 X 200 X 100 мм (дюймы: 24 дюйма X 8 дюймов X 4 дюйма) — 1 CMT: 83 Количество блоков по 4 дюйма

Мы часто видим клиентов, у которых возникают вопросы перед окончательной доработкой строительных материалов или при поиске поставщиков легких бетонных блоков.Общие вопросы, которые возникают при выборе легких бетонных блоков для их строительства: сколько стоят бетонные блоки? Или каков размер бетонного строительного блока? Есть ли в их районе поставщики блоков из легкого бетона? Или есть разница между шлакоблоком и бетонным блоком? Или есть в продаже поставщик дешевых бетонных строительных блоков?

Долгое ожидание окончено в поисках прочных блоков из легкого бетона в Индии.Решением для всех являются твердые строительные блоки из керамзитового заполнителя.

Впервые в Индии предлагаются бетонные строительные блоки, которые являются не только легкими бетонными блоками, но также входят в премиальный сегмент массивных строительных блоков. Они производятся с использованием керамзитового заполнителя.

Блоки из керамзитового наполнителя

впервые производятся в Индии. Они также известны во всем мире как блоки Leca или блоки из легкого керамзита.Эти блоки Leca или твердые строительные блоки из керамзитового керамзита используют особый тип керамзитового заполнителя, который получают путем обжига природной горной глины при 1200 ° C во вращающейся печи. В результате получается жесткая сотовая структура из соединяющихся пустот. Эти бетонные строительные блоки, изготовленные из керамзитового заполнителя, улучшают внутреннее отверждение и повышают прочность на сжатие, возникающую со временем. Блоки ECA ® или блоки Leca, производимые в Индии, являются лучшим выбором для строительства, которое предлагает гибкость конструкции в сочетании с превосходными тепловыми и акустическими свойствами.Их легко забивать гвоздями, сверлить, формировать и скалывать, и, в отличие от других обычных строительных блоков, на них не образуются трещины штукатурки из-за сильного сцепления с обычным цементным раствором.

СПЕЦИФИКАЦИЯ
Плотность в сухом состоянии 600-750 кг / м3 (среднее значение = 700 кг / м3)
Усадка при высыхании 0.005%
Прочность на сжатие от 3,5 до 5,0 Н / мм2 (МПа)
Прочность на изгиб 1,05 Н / мм2
Теплопроводность 0,14-0,18 Вт / мк
Индекс звукоизоляции До 46 дБ для стены толщиной 100 мм и до 52 дБ для стены толщиной 230 мм

продуктов | Clinka | Экологичные материалы для умных зданий

Продукция Clinka основана на небольших «клинкерных» шариках из легкого керамзита (прибл.2 мм — диаметр 20 мм). Эти шары либо приклеиваются к различным легким бетонным и каменным элементам, либо используются в качестве изоляционного наполнителя под плиту или материала для зеленой кровли. Они являются отличным выбором с точки зрения защиты окружающей среды как с точки зрения температуры, так и с точки зрения выбросов углерода в течение жизненного цикла.

ClinkaBLOK

ClinkaBLOK — это простая и экономичная альтернатива кладки или полное системное решение . Испытанный европейский строительный материал — блоки из керамзитового керамзита уже более 50 лет используются во многих европейских странах и являются эталоном для экологически чистых и здоровых зданий в Скандинавии.

В этом элегантном и энергоэффективном здании в Нериме, штат Виктория, для многих внешних стен использовался материал ClinkaBLOK.

ClinkaBLOK — это натуральный продукт с нейтральным pH, состоящий из керамзитовой глины, цемента и воды. Намного менее хрупкий, чем другие легкие блоки, глиняная кладка или бетонные блоки; их легко разрезать и обрабатывать на месте, они укладываются в стандартную кирпичную кладку с использованием изоляционного раствора, поставляемого Clinka, или, в качестве альтернативы, с обычным раствором, смешанным в соотношении 1: 4 (цемент: песок).

ClinkaFILL

Загрузите руководство по продукту ClinkaFILL [pdf] .

ClinkaFILL — это сыпучий и гранулированный легкий керамзит, который находит множество применений в:

  • Энергоэффективное и экологичное строительство
  • Изоляция под перекрытием
  • Легкий бетонный заполнитель
  • Строительство зеленой крыши
Область применения заполнителя ClinkaFILL развернуты в гражданском строительстве. Фото: bitjungle

В геотехнических приложениях легкий керамзит может быть решением для стабилизации мягких грунтов, а также вокруг каналов, туннелей, вокзалов, парковок и т. Д.Помимо легкости, он также обеспечивает стабильность и идеальные условия дренажа для проекта.

ClinkaPANEL

Загрузите руководство по продукту ClinkaPANEL [pdf] .

ClinkaPANELS — это железобетонные панели перекрытия с использованием легкого керамзитового заполнителя «клинка». ClinkaPANEL имеет те же свойства материала, что и продукция ClinkaBLOK.

ClinkaPANEL сочетает в себе превосходные свойства в отношении долговечности, тепло- и звукоизоляции и огнестойкости (REI 90 для всех толщин) с хорошей несущей способностью и простой и быстрой установкой.ClinkaPANEL поставляется в виде элементов шириной 600 мм и длиной до 8,08 м. Варианты толщины 150 мм, 200 мм и 250 мм.

Ядро ClinkaPANEL — это литой пористый бетон из легкого заполнителя Clinka с градуированными размерами диаметра 4-10 мм — с интегрированным слоем более мелкой массы 2-4 мм бетона Clinka под ним. ClinkaPANEL 250 также имеет этот плотный материал на верхней части панели.

Применения включают:

  • Этажей
  • Крыши
  • Террасы и балконы
  • Контекст больших зданий

Для получения дополнительной информации загрузите The Clinka Book [pdf] или свяжитесь с нами.

Строительные блоки лучшая цена, купить изготовление размеров изготовление деталей своими руками

Строительные блоки экологически чистые.

Экологически чистые строительные блоки — это легкие заполнители и пикколомини (отсева). Комбинация керамзитобетонных блоков и толкателя позволяет существенно (в 2 раза) сэкономить на материалах (растворе), отделке внутри и снаружи и работе, оставив качество кладки на должном уровне.Для возведения конструкций из строительных блоков требуется в 2 раза меньше вяжущего раствора.

Описание

Органические строительные блоки обладают преимуществами

Сравнительные характеристики с другими материалами

Описание керамзитобетонных блоков

Преимущества керамзитобетонных блоков

Преимущества глины по сравнению с альтернативными материалами

Технические характеристики блоков из легкого заполнителя

Описание пасколаро (из недоучков)

Преимущества peccable

Преимущества пеккабла по сравнению с альтернативными материалами

Технические характеристики Pascolaro

Описание:

Строительные блоки экологичные:

— блоки из легкого заполнителя,

песколовки (недоучки).

Органические строительные блоки имеют следующие преимущества:

— экологически чистый (песок, гравий, глина, цемент),

— марка прочности от М50, М75, М100 и др.

— технология производства — вибропрессовое, автоматическая линия,

идеально острая геометрия блоков,

— при добавлении краски внешняя стена имеет благородный вид,

— полное отсутствие пластификаторов, химических добавок, химических реагентов.

Сравнительные характеристики с другими материалами:

Бетон Нажимной блок Газосиликат Шлакоблок Пена Опилкобетон
Прочность, кг / см2 5-500 25–150 5-20 25–150 10-50 20-50
Объемная масса (средняя плотность), кг / м3 350-1800 500–1000 200-600 500–1000 450-900 500-900
Теплопроводность, Вт / м * К 0,14-0,66 0,3-0,5 0,15-0,3 0,3-0,5 0,2-0,4 0,2-0,3
Морозостойкость, циклы зима-лето 50 15-25 10 35–50 25 25
Усадка, мм / м 0,3-0,5 0,3-0,5 1,5 0,3-0,5 0,6–1,2 0,5-1
Водопоглощение,% 5-10 25 100 25 95 80
Максимальное количество этажей (несущие стены) 3 3 1 1 1 1
Экологичность безвредный безвредный вредно вредно вредно вредно

Описание керамзитобетонных блоков:

Стандартный размер — 390 * 190 * 188 мм.Марка марки — М50, М75, М100 (по согласованию с заказчиком). Количество в 1 кубометре — 72 шт. Количество в 1 кубометре кладки стен — 64 шт. Количество на поддоне — 60-90шт (по требованию заказчика). Масса 1 поддона — 730 — 1100 кг (тара).

Преимущества керамзитобетонных блоков:

— строительные блоки керамзитобетонные, адаптированные к сложным климатическим условиям и успешно применяемые как в теплом, так и в холодном климате,

полые легкие строительные блоки из заполнителя имеют низкие значения теплопроводности, что делает их использование предпочтительным в холодных климатических условиях.Пустоты уменьшают вес агрегата, обеспечивают хорошую звукоизоляцию.

— разнообразие и сочетание форм и фактур блоков дает Строителю неограниченный простор для творчества. Фасады построек из этого материала не требуют дополнительной внешней отделки,

— стены в блоке 1 имеют такую ​​же проводимость, что и кладочный кирпич в 2,5, а объем блока равен объему 3,5 штук кирпича

Стены из керамзитобетонных блоков хорошо сочетаются со всеми видами облицовочных материалов: плиткой, декоративной штукатуркой.За счет гладкой поверхности сокращается расход отделочной штукатурки

.

Основное применение пустотелых блоков — возведение наружных стен и внутренних перегородок, а также заполнение каркаса,

— комбинация керамзитобетонных блоков и толкателя позволяет существенно (в 2 раза) сэкономить на материалах (растворе) отделки внутри и снаружи и в работе, оставив качество кладки на должном уровне. Для возведения конструкций из строительных блоков требуется в 2 раза меньше вяжущего раствора,

время строительства сокращено в 6 раз, а затраты на строительство уменьшены до 40%,

— можно использовать при устройстве фундаментов этажностью не более 3.

Преимущества глины по сравнению с альтернативными материалами:

e n безопасность . Бетон изготавливается из натуральных материалов (цемент, песок, глина), что обеспечивает его высокое воздействие на окружающую среду. Материалу присвоен первый класс радиационной безопасности. Полностью соответствует современным санитарно-гигиеническим требованиям по теплоизоляции и паропроницаемости,

Низкая теплопроводность бетона и использование в строительстве пустотелых блоков, делающих дома из этого материала теплыми,

— низкий удельный вес глины позволяет сэкономить на фундаменте и носить с собой,

размер и вес агрегатов снижает затраты на рабочую силу и цемент при возведении стен, ускоряет строительство

— низкое водопоглощение и, как следствие, высокая морозостойкость, увеличивают срок службы конструкций из глины, позволяют сэкономить на защите стен,

использование блоков с непрерывными пустотами позволяет встраивать внутри стен первичного сооружения (несущие конструкции), увеличивающие несущую способность конструкций,

— удобство использования.Вы можете обойтись без профессионального каменотеса

низкие значения усадки позволяют сэкономить на косметическом ремонте.

Технические характеристики блоков из легкого заполнителя из бетона:

Прочность, кг / см2 5-500 Минимальные значения прочности у легких теплоизоляционных блоков, максимальные — у самого жесткого конструктива.
Объемная масса (средняя плотность), кг / м3 350-1800 При увеличении% содержания цемента в легком заполнителе бетонная смесь будет увеличиваться объемной массой и прочностью.
Теплопроводность, Вт / м * К 0,14-0,66 Результат был лучше, чем у кирпича и бетона; ухудшается с увеличением% содержания цемента.
Морозостойкость, циклы зима-лето 50 Минимальная стоимость у легких изоляционных блоков, максимальная — у самого жесткого конструктива.
Усадка, мм / м 0,3-0,5 Хороший показатель уровня тяжелого бетона.
Водопоглощение,% 5-10 Хороший показатель, который можно улучшить, применяя комплексные добавки и пластификаторы.
Паропроницаемость, мг / (м * ч * Па) 0,3-0,9 Высокая стоимость по сравнению с другими строительными материалами; увеличивается с увеличением пористости и степени пустотности блоков.
Огнестойкость, мин. при температуре 1050 С 180 Значение выше, чем у других легких бетонов.
Максимальная этажность 3 Максимальная этажность зданий: 3 этажа (несущая стена).
Стоимость, руб / м3 2500-3900 Зависит от содержания цемента в смеси и степени пустотности.

Описание пасколаро (выбывших):

Стандартный размер — 390 * 190 * 188 мм. Марка марки — М50, М75, М100 (по согласованию с заказчиком).Количество в 1 кубометре — 72 шт.

Кол-во в 1 кубометре кладки стен — 64 шт. Кол-во на поддоне — 60-90шт (по требованию заказчика). Масса 1 поддона — 730 — 1100 кг (тара).

Преимущества peccable:

часть песка состоит из песка, гравия и цемента,

объем пескаля равный объем 3,5 штук кирпича

— время строительства сокращено в 6 раз, а затраты на строительство уменьшены до 70%

Комбинация керамзитобетонных блоков и толкателя позволяет значительно (в 2 раза) сэкономить на материалах (растворе), отделке внутри и снаружи и работе, оставив качество кладки на должном уровне.Для возведения конструкций из строительных блоков требуется в 2 раза меньше вяжущего раствора;

— обладают всеми характеристиками, предъявляемыми к строительному материалу: влаго- и морозостойкостью, низкой теплопроводностью и хорошей теплоизоляцией, прочностью и прочностью,

обладают всеми другими преимуществами, чем легкие строительные блоки.

Преимущества пекабля по сравнению с альтернативными материалами:

— экологическая безопасность .Блокиратор изготовлен из натуральных материалов (цемент, песок, гравий), что обеспечивает его высокое воздействие на окружающую среду. Материалу присвоен первый класс радиационной безопасности. Полностью соответствует современным санитарно-гигиеническим требованиям по показателям теплоизоляции и паропроницаемости,

.

простота использования. Вы можете обойтись без профессионального каменотеса

— низкая стоимость из peccable за счет невысокой стоимости комплектующих и невысокой стоимости кладки, что позволяет существенно (в 2 раза) сэкономить на материалах (решении) отделки внутри и снаружи и работе, оставив качество кладки на соответствующем уровне,

высокая прочность и долговечность материала, позволяющая возводить внутри стен первичную конструкцию (несущие конструкции),

— морозостойкость и огнестойкость .

Технические характеристики Pascolaro:

С
Прочность, кг / см2 25–150 Соответствует сплавам M25, M50, M75, M100, M125, M150 и. Толкатель считается достаточно прочным для возведения небольших домов и промышленных построек.
Объемная масса (средняя плотность), кг / м3 500–1000 С увеличением% содержания цемента в пескобетонной смеси будет увеличиваться объемный вес и прочность.
Теплопроводность, Вт / м * К 0,3-0,5 Соответствует среднему значению.
Циклы заморозков, зима-лето 15-25 Соответствует маркам F15, F20, F25. Определяет срок службы материала. Указывает количество последовательных циклов замораживания и оттаивания. Pushblock считается достаточно устойчивым к низким температурам. Идеально подходит для использования в умеренном климатическом поясе.
Усадка, мм / м 0,3-0,5 Хороший показатель уровня тяжелого бетона.
Водопоглощение,% 25 Количество влаги, впитываемой материалом во время работы. Песколовки обладают средним уровнем абсорбции.
Огнестойкость, градусы С по 800 Выдерживает температуру до 800 градусов Цельсия. Блокиратор — негорючий огнеупорный материал.
Максимальная этажность 3 Максимальная этажность зданий: 3 этажа (несущая стена).
Стоимость, руб / м3 2200-2800 Зависит от содержания цемента в смеси и степени пустотности

Строительство дома из керамзитобетонных блоков. Стр. 1

Бетон — относительно новый материал, используемый для строительства домов. Состоит из керамзита и цементно-песчаного раствора. Основные преимущества — экологическая безопасность, легкость, доступность. Сегодня, построив дом или любое другое здание из бетона, можно самостоятельно понять, как построить из него, просто по хорошему размеру блоков.К недостаткам можно отнести хрупкость, неприглядный внешний вид, подверженность перепадам температур.


Для расчета необходимого количества блоков необходимо определиться с общими размерами дома. Далее рассчитываем длину всех стен. Сумма прибавляется к длине несущих стен. Итак, общая длина дома, которая умножается на высоту потолков. Дальнейший расчет зависит от размеров блоков и выбора толщины стен в один ряд, два и более.Сумма, полученная в результате умножения длины на высоту, умноженного на ожидаемую толщину, и мы получаем общий объем стен. Блоки надо покупать больше в расчете на повреждение элементов.

Благодаря эффективности и простоте проекты частных домов из легкого заполнителя бетонные блоки пользуются большой популярностью. Специалисты советуют покупать дом, который был без экстерьера не более 2 лет. Тогда влияние атмосферных осадков и низких температур проявляется в виде сколов и трещин.Особенности строительства соответствуют требованиям к кладке — в кладке должна быть арматура, а полы — из железобетона, применяемого при устройстве массивных блоков, если они пустотелые, то требуются полы из твердых пород дерева. Поэтому, чтобы построить добротный дом из блоков, нужно читать: каждый последующий ряд боковых граней должен быть перпендикулярен предыдущему.

Технологии Фундамент

Материал выдерживает высокие нагрузки, если из бетона, ввиду неустойчивого грунта, сделать прочный фундамент, установить монолитную бетонную площадку, для бетона в этом не будет необходимости.Однако нельзя пренебрегать фундаментом. Ленточный фундамент, под который рытье траншеи, впоследствии забетонированной, прост и долговечен. Для ленточных фундаментов можно установить цокольный этаж из бетонных плит. Для защиты подвала от влаги необходимо обеспечить гидроизоляцию. Стены подвала должны быть на высоте 500 мм над уровнем земли.


Монолитные монолитные строительные блоки из бетона включают фундамент и плиту из связанных с ним залитых железобетонным каркасом и стенами.Для устройства заглушки лучше всего подойдет блок размером 590х290х200, снабженный желобами для укладки арматуры. В сочетании с отличной теплоизоляцией и гидрофобными характеристиками блоки получают сухой и теплый подвал, что немаловажно для комфортного климата в помещениях.

Кладочные блоки

Кладка как кирпич, так и по ГОСТу размеры блоков могут использоваться во многих строительных материалах: металлоконструкциях, деревянных балках, бетоне. Пустота заполняется металлической арматурой, благодаря чему увеличивается прочность несущих стен.

Кладку начинают с углов здания, далее по периметру. Кладка ведется на цементно-песчаный раствор толщиной 30 мм. Можно попробовать выложить в три слоя, однако о целесообразности такой кладки ведутся споры. Дело в том, что срок эксплуатации утеплителя между внутренней и внешней стеной не более 10 лет. Можно использовать такой материал, как пеноизол, он устойчив к влаге.

Внешняя и чистовая отделка Варианты утеплителя

Перед облицовкой нужно определиться с утеплителем.Утепление минеральной ватой, керамзитом в домашних условиях — лучший способ. Минеральная вата хорошо сохраняет тепло, а если добавить слой алюминиевой фольги, то дому не страшна даже сибирская зима.

Можно остановиться на стекловолокне, которое кладется под гипсокартон изнутри, с внешней стороны слоя пенопласта. Полистирол не такой дорогой, как минеральная вата, а по свойствам практически не отличается.

Внутренний слой

Размер несущей стенки (мм)

Изоляционный слой

1.штукатурка на внутренней поверхности (без армирования) 450х190х240 пенополистирол или минеральная вата (100 мм, теплопроводность 0,035 Вт / м ° C) 2. штукатурка на внутренней поверхности (без армирования) 450х190х240 (укладка в перевязку) пенополистирол или минеральная вата (50 мм, теплопроводность 0,05 Вт / м ° С) 3. штукатурка на внутренней поверхности (без армирования) 450х300х240 (толщина 610 мм) любая (полистирольная крошка)

Фасадные материалы

Облицовка дома из нее непривлекательных блоков из пенопласта. глина несет не только эстетическую, но и практическую функцию.Несмотря на то, что материал отлично выдерживает воздействие влаги, резкие перепады температур могут вызвать повреждение конструкции. Бетонный блок выдерживает большие нагрузки, но необходим перед облицовкой для усиления стеновой арматуры. Возводя фундамент, оставьте для будущего фасада расстояние около кирпича.

Песочно-цементная штукатурка, кирпич, натуральный камень, сайдинг, термопанели, мрамор — это лишь небольшой перечень того, чем можно облицевать дом.


Самый распространенный способ облицовки кирпичом, керамикой или клинкером.Самый дешевый способ цементно-песчаной штукатурки. Цементно-песчаные и декоративные штукатурки, фасадные краски позволяют создать фактурную поверхность и привлекательный внешний вид. Штукатурка подходит для бетона, так как наносится на поверхности, подверженные повреждениям от перепадов температур.

  • Натуральный камень в фасадах смотрится эстетично и благородно. Выбирая натуральный камень, стоит обратить внимание на его морозостойкость. Искусственный камень (кирпич) не уступает натуральному по своим функциональным и эстетическим свойствам и стоит намного дешевле.
  • Отделка фасадных термопанелей из пенополиуретана и керамической плитки относится к экономичным способам облицовки. Термопанели легкие, успешно применяются в ленточном фундаменте дома. Они прочные, экологически чистые, благодаря полистиролу выдерживают тепло в холодную погоду, обеспечивают тень в жаркую погоду. С установкой термопанелей даже под непрофессиональную плитку.
  • Вентилируемые фасады удачно скрывают все недостатки стены.За счет воздушного пространства между внутренней стеной и вагонкой впитывают влагу, предотвращая ее разрушение. Наконец, сайдинг — один из самых дешевых способов отделки. Панели сайдинга хрупкие и повреждения в процессе эксплуатации отрицательно сказываются на керамзитобетонной стене. Опубликовано

Источник: hardstones.ru/stroitelstvo-doma-iz-keramzitobetonnyx-blokov.html

Блоки стеновые керамзитобетонные / керамзитобетонные с пазом-гребнем «БИТЭК» купить в Global Rus Trade

Блок «БИТЭК» — изобретение 21 века, запатентовано в 2012 году и полностью соответствует духу времена.Он экономичен, экологичен и долговечен. ЗНАЧИТЕЛЬНОЕ СНИЖЕНИЕ РАСХОДОВ Стена из блоков в несколько раз легче и тоньше кирпичной. * Экономия на фундаменте около 50%; * В 3-4 раза меньше затрат на отопление по сравнению с домами из кирпича; * Снижение стоимости перевозки стройматериалов в 2 раза за счет уменьшения объема транспорта. МИНИМАЛЬНАЯ ОБРАБОТКА * Высокая скорость возведения стен. * Наличие паза-гребня, четких геометрических размеров и продуманной номенклатуры блоков позволяет использовать персонал более низкой квалификации.* Нет необходимости во внешней обработке стен. ПОВЫШЕНИЕ АРХИТЕКТУРНОГО ВЫРАЖЕНИЯ ОБЪЕКТА ДА ЗДАНИЯ * Разнообразные декоративные текстуры лицевой поверхности блоков. * Минимальные затраты на ремонт фасада в эксплуатационный период. Максимальные тепловые потери здания (30-40%) приходятся на его стены. Наиболее распространенное решение этой проблемы — их утолщение, и как следствие утяжеление. Кроме того, способность стен оставаться сухими и сохранять тепло на протяжении всего срока службы здания является одним из ключевых факторов, влияющих на энергопотребление и, следовательно, на экономическую эффективность здания.По мнению ведущих специалистов отрасли, мы нашли оптимальное решение — простое и эффективное. Стеновые блоки с пазом-пазом «БИТЭК» — принципиально новый вид стеновых изделий промышленного назначения. Блоки изготовлены методом вибролитья из сверхлегкого инкапсулированного керамзита. СТРУКТУРА АППАРАТА * Внутренняя часть агрегата имеет гладкую текстуру, готовую к отделке. Этот тонкий слой керамзитобетона (толщиной 5-8 мм) намного плотнее основного слоя (800 кг / м³). * Далее идет основной слой инкапсулированного керамзита плотностью 350-450 кг / м³.Это двухкомпонентная система на основе легкого заполнителя (керамзита) и цемента. Материал отличается низким расходом цемента, имеет ячеистую структуру, прочность которой обеспечивается контактами оболочек высокопрочного вяжущего состава. * Наружный слой представляет собой готовое фасадное покрытие с фактурной декоративной поверхностью толщиной 60-70 мм и плотностью 700 кг / м³. Наружная внешняя поверхность блока имеет фактурную поверхность, имитирующую кирпичную кладку, различные виды природного камня, искусственные рельефные украшения и т. Д., более 12 вариантов. По запросу может быть оформлен блок с необходимой накладной. Возможна окраска на производстве или после завершения кладки и заделки швов. Кроме того, лицевую поверхность можно окрасить в массе. * По объему один блок равен 16 стандартным кирпичам. Он весит 15,5 кг. Это в 4 раза легче, чем вес кирпичей того же объема. * Блоки уложены в одноцепочечную цепочку. Блоки, уложенные на пенопласт, обеспечивают максимальную прочность стены на несколько часов.Это дает возможность не ограничивать продуктивность бригады каменщиков при кладке стены с технологическими перебоями. * После завершения кладки не требуется дополнительной обработки наружных стен. Наружная поверхность стены окрашивается краскопультом или другим традиционным методом. Внутренняя часть стены не требует оштукатуривания — наносится только шпатлевка с последующей покраской или оклейкой обоями. Выпускается 18 видов продукции, что исключает массовую модификацию блоков на стройплощадке.Стыковка стеновых блоков пенопластом — современный, признанный, чистый, быстрый, удобный, практически всесезонный (выше -5 градусов), экономичный способ укладки. Основными разрушающими факторами для пенополиуретана являются ультрафиолетовое излучение и высокая температура (выше 90 градусов). Использование пенополиуретана для соединения блоков Bitec с последующим выравниванием внешних швов и заполнением внутренней поверхности стены позволяет полностью исключить проникновение даже минимальных доз ультрафиолетового излучения, а также нормативную эксплуатацию зданий. не допускает повышения температуры внутри стеновой конструкции выше 90 ° С.В этом идеальном режиме срок службы клея для пенополиуретана внутри нашей стеновой конструкции практически неограничен. Во время огневых испытаний нашей стеновой конструкции под нагрузкой в ​​течение 4 часов и температурой в камере 1200 градусов температура внешней поверхности стены составила 40 градусов. При этом повреждений с последующим увеличением нагрузки не произошло, за исключением отслоения нескольких лицевых частей. После вскрытия конструкции выяснилось, что пострадала только одна из двух полос полиуретанового клея, которая находится ближе к внутренней поверхности и источнику нагрева — она ​​распалась примерно наполовину.Ведущий мировой производитель Macroflex выпустил специальный клей для пенополиуретана для соединения кладочных материалов: блоков, кирпича и т. Д. Например, в Германии пористые блоки «Porotherm» (производитель «Vineberger») также наносятся на пенополиуретан.

(PDF) Конструкционный бетон с использованием керамзитового заполнителя: обзор

Конструкционный бетон с использованием керамзитового заполнителя: обзор

Индийский журнал науки и технологий

Том 11 (16) | Апрель 2018 | www.indjst.org

10

8. Ссылки

1. Паям С., Ли Дж. К., Махмудк Х. М., Мохаммад А. Н..

Сравнение свойств свежего и затвердевшего бетона

нормального веса и легкого заполнителя. Журнал

Строительная техника. 2018; 15: 252–60.

2. Коринальдези В., Морикони Г. Использование синтетических волокон в самоуплотняющемся легком заполнителе Бетоны. Журнал

Строительная техника. 2015; 4: 247–54.

3. Стандартные технические условия ASTM C330-05 для легких заполнителей

для конструкционного бетона. ASTM International,

West Conshohocken, PA. 2005.

4. Маркус Б., Харальд Дж., Хильде Т.К. Влияние добавок на свойства

легких заполнителей, изготовленных из глины.

Цементно-бетонные композиты. 2014. 53. С. 233–238.

Crossref.

5. ASTM C330 / 330M, Стандартные технические условия для легких заполнителей

для конструкционного бетона, ASTM International,

West Conshohocken, PA, US.2014.

6. Бонаби С.Б., Джалал Кахани Хабушан Дж.К., Кахани Р., Аббас Х.Р.

Изготовление металлической композитной пены с использованием керамических пористых сфер.

. Легкий керамзитовый заполнитель методом литья

. Материалы и дизайн. 2014; 64: 310–15. Crossref.

7. Суранени П., Фу Т., Азад В.Дж., Изгор О. Б., Вайс Дж. Пуццоланистость

однократно измельченных легких заполнителей. Цемент и

Бетонные композиты. 2018; 1 (5): 214–8. Crossref.

8.Сергей AM, Анна Ю. Z, Галина СС. Технология производства

водостойких пористых заполнителей на основе силиката щелочного металла и не вздувающейся глины

для бетона общего назначения. Цемент

и бетонные композиты. 2015; 111: 540–4.

9. Пиоро Л.С., Пиоро Иллинойс. Производство керамзитового агре-

ворота для легкого бетона из несамовозбухающих глин.

Цементно-бетонные композиты. 2004; 26: 6392–43.

Crossref.

10.Гита С., Рамамурти К. Свойства спеченного низкокалорийного зольного заполнителя с глинистыми связующими. Строительство

и Строительные материалы. 2011; 25: 2002–13. Crossref.

11. Керамзит. 2018 12 января. Доступно по ссылке:

https://en.wikipedia.org/wiki/Expanded_clay_aggre-

gate.

12. Тот MN, Csaky IB. Роль группы стеатита в процессе вздутия живота. Ziegel Industries. 1989; 5: 246–50.

13.Мигель С.С., Педро Д.С. Экспериментальная оценка цементных растворов

с материалом с фазовым переходом, введенным через легкий керамзитовый заполнитель

. Строительство и

Строительство. Материалы. 2014; 63: 89–96. Crossref.

14. Александра Б., Геогрей П., Ле А.Д., Дузан О., Амар Б.,

Фредерик Р., Жерри Л. Гигротермические свойства блоков

на основе экоагрегатов: экспериментальное и численное исследование

. Строительство и строительство.Материалы. 2016;

125: 279–89. Crossref.

15. Александр М.Г., Миндесс С. Заполнители в бетоне.

Тейлор и Фрэнсис, 270 Мэдисон авеню, Нью-Йорк. 2005.

с.1–448.

16. Cui HZ, Lo TY, Memon SA, Xu W. Влияние легких заполнителей

на механические свойства и хрупкость бетона на легких заполнителях

. Констр. Строить. Матер. 2012;

35: 149–58. Crossref.

17. Чжан М.Х., Гьорв Э., Микроструктура межфазной зоны

между легким заполнителем и цементным тестом.Цемент

и исследование бетона. 1990; 20 (4): 610–8. Crossref.

18. Arizon O, Kilinc K, Karasu B, Kaya G, Arslan G, Tuncan A,

Tuncan M, Kivrak S, Korkut M, Kivrak S. A Предварительные

исследования свойств легкого керамзита

агрегат. Журнал Австралийского керамического общества. 2008;

44 (1): 23–30.

19. Real S, Gomes MG, Rodrigues AM, Bogas JA. Вклад

конструкционного легкого заполнителя в снижение

эффекта тепловых мостов в зданиях.Строительство

и Строительные материалы. 2016; 121: 460–70. Crossref.

20. Губертова Б., Хела Р. Прочность легкого вспененного бетона на глиняном заполнителе

. Разработка процедур. 2013;

65: 2–6. Crossref.

21. Chiou K, Wang CC, Lin Y. Легкий агрегат

получен из осадка сточных вод и сожженной золы. Управление отходами.

2006; 26 (12): 1453–61. Crossref. PMid: 16431096.

22. Легкий заполнитель для бетона, раствора и раствора

— Часть 1: Легкие заполнители для бетона, раствора.

Май 2002 г. Доступно по адресу: https://shop.bsigroup.com/Prod

uctDetail /? Pid = 0000000000301187942002.

23. Свами Р.Н., Ламберт Г.Х. Микроструктура агрегатов Lytag TM

. Международный журнал цементных композитов

и легкого бетона. 1981; 3 (4): 273–85. Crossref.

24. Уильям Д.А., Грегор Дж.Г., Клаус П. Термомеханические испытания на месте

Испытания геополимерных бетонов из жидкой золы, изготовленных из кварца

и керамзитовых заполнителей.Цемент и бетон

исследования. 2016; 80: 33–43. Crossref.

25. Богас Дж. А., Брито Дж. Д., Кабасо Дж. Долгосрочное поведение кон-

крит, изготовленный из переработанного легкого керамзита.

заполнитель бетона. Строительные и строительные материалы.

2014; 65: 470–9. Crossref.

26. Аслама М., Шааг П., Ализаде Н.М., Джумаата М.З.

Производство высокопрочного легкого заполнителя кон-

крит с использованием смешанных крупнозернистых легких заполнителей.Журнал

строительной техники. 2017; 13: 53–62.

27. Сергей А.М., Александр ГЦ, Галина С.С., Роман В.Д. Некоторые аспекты разработки и применения силикатных заполнителей

в легких бетонных конструкциях.

Разработка процедур. 2016; 153: 599–603. Crossref.

Размерный эффект при испытаниях на сжатие образцов с заполнителем из легкого заполнителя

Материалы (Базель). 2020 Март; 13 (5): 1187.

Строительный факультет, Краковский технологический университет, 31-155 Краков, Польша; lp.ude.kp@alagamodl

Поступила в редакцию 15.01.2020; Принято 3 марта 2020 г.

Лицензиат MDPI, Базель, Швейцария. Эта статья представляет собой статью в открытом доступе, распространяемую в соответствии с условиями лицензии Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). Эта статья цитировалась другими статьями в PMC. .

Abstract

Целью данной статьи является обсуждение нераспознанной проблемы масштабного эффекта при испытаниях прочности на сжатие, определенных для образцов из легкого заполнителя (LWAC) с сердечником, на фоне имеющихся данных о влиянии на нормальный бетон (NWAC). ).Эффект масштаба анализировался с учетом влияния гибкости ( λ = 1,0, 1,5, 2,0) и диаметра (d = 80, 100, 125 и 150 мм) образцов с сердечником, а также типа легкого заполнителя. (керамзит и спеченная зола) и тип цементной матрицы (w / c = 0,55 и 0,37). Анализ результатов для четырех легких бетонов из заполнителя не выявил эффекта масштаба при испытаниях прочности на сжатие, определенных на образцах с сердечником. Ни стройность, ни диаметр сердечника, похоже, не повлияли на результаты прочности.Этот факт следует объяснить значительно лучшей структурной однородностью исследуемых легких бетонов по сравнению с нормальными. Тем не менее, наблюдались явные различия между результатами, полученными на формованных образцах и образцах с сердцевиной одинаковой формы и размера.

Ключевые слова: эффект масштаба , размер образца, легкий бетон, легкий заполнитель, керамзит, спеченная зольная пыль, прочность на сжатие

1. Введение

Бетон из легкого заполнителя (LWAC) был одним из самых популярных и универсальных зданий материалы в мире на протяжении десятилетий.Наиболее важными преимуществами его применения по сравнению с нормальным бетоном (NWAC) того же класса прочности являются следующие:

  • Более высокая теплоизоляция и лучшее звукопоглощение [1,2,3];

  • Возможность строительства конструкций с более длинными пролетами и / или большей высотой и / или меньшим поперечным сечением элементов конструкции [4,5,6];

  • Возможность устранения автогенной усадки [7,8,9];

  • Лучшая долговечность: более высокая огнестойкость, возможно более высокая устойчивость к замораживанию-оттаиванию, возможно более низкая карбонизация и, возможно, более низкая водопроницаемость [10,11,12,13,14,15,16];

  • Меньшая вероятность растрескивания в результате усадки, ползучести, термической деформации или нагрузок [17,18,19,20].

Лучшая долговечность и меньшая вероятность растрескивания LWAC являются результатом большей однородности структуры LWAC.

Тем не менее, бетон на легком заполнителе редко используется в качестве конструкционного материала по сравнению с наиболее популярным вариантом — бетоном с нормальным весом. Наиболее важными причинами такой ситуации являются некоторые технологические проблемы с исполнением конструкции LWAC, то есть более высокий риск потери технологичности и расслоения бетона, а также обычно более высокая цена за единицу объема и, главным образом, отсутствие универсальных процедур для проектирования, исполнения, тестирование и оценка.Между тем, использование конструкционного легкого бетона, изготовленного из готовых или переработанных заполнителей, в ближайшем будущем должно получить широкое распространение из-за истощения запасов природных заполнителей и упора на устойчивые, менее энергоемкие конструкции.

Влияние размера и формы испытуемых образцов на оценку свойств LWAC является одной из менее признанных качественно и количественно проблем. Как правило, согласно теории Гриффита и Вейбулла [3,21], разрушение начинается с любого критического дефекта («самой слабой цепи»), содержащегося в материале.Следовательно, образцы большего объема выявляют большую вероятность наличия такого дефекта и, как следствие, характеризуются меньшей прочностью. Более того, хорошо известно, что эффект накипи более выражен, если материал менее однороден [3,21,22]. Однородность бетона в основном зависит от распределения включений (заполнителя) в цементной матрице, размера и формы заполнителя, разницы прочности и модуля упругости заполнителя и цементной матрицы, а также связи между этими двумя компонентами.Масштабный эффект определяется также геометрическими характеристиками самих образцов. Из-за значительных различий в жесткости бетонного образца и плит машины для испытания на сжатие в зоне их контакта одноосное напряженное состояние нарушается трением и давлением. В результате образцы с большей площадью поперечного сечения демонстрируют меньшую прочность. При этом форма поперечного сечения образца и его гибкость ( λ = высота ( h ) / размер поперечного сечения ( d )) не являются незначительными.Круглое поперечное сечение обеспечивает более равномерное распределение напряжений по сравнению с квадратным, поскольку на его разрушение меньше влияет торцевое ограничение образца. Кроме того, на прочность цилиндров в меньшей степени влияют свойства крупного заполнителя из-за более однородного состава бетона по круговой кромке по сравнению с образцами квадратного поперечного сечения, обнаруживающими более высокое содержание цементного теста в углах. Следовательно, цилиндрические образцы при одинаковой гибкости и площади поперечного сечения могут иметь более высокую прочность, чем кубы [3].Снижение гибкости образца также способствует увеличению прочности. Для обычного бетона типичное соотношение прочности, определенное для формованных цилиндров с λ = 2,0 и 1,0, составляет около. 0,85–0,95 и ниже для бетона меньшей прочности. Эффект масштаба в случае нормального бетона разных типов — простого, обычного, самоуплотняющегося, высокопрочного и сверхвысокого (реактивный порошковый бетон), армированного фиброй — был доказан в многочисленных исследованиях, например, [23, 24,25,26,27,28,29,30,31,32,33,34].Из этого исследования можно сделать два общих вывода, касающихся бетона с нормальным весом: (1) чем выше прочность бетона, тем меньше эффект масштаба; (2) тонкость образца является решающим параметром, определяющим масштабный эффект.

В целом следует ожидать, что эффект масштаба от LWAC будет менее выраженным по сравнению с NWAC, поскольку структура легкого бетона на заполнителях обычно более однородна по сравнению с бетоном с нормальным весом. Основными причинами большей однородности LWAC являются следующие:

  • Более правильная форма и размер производимых агрегатов;

  • Меньшая разница между значениями прочности и модуля упругости пористого заполнителя и цементной матрицы;

  • Лучшая связь между пористым заполнителем и цементным тестом в результате лучшей адгезии, поглощения воды при замесе пористым заполнителем и, в некоторых случаях, пуццолановой реакции.

Подтверждение менее выраженного масштабного эффекта LWAC было обнаружено в некоторых исследованиях [3,13,35,36,37]. Более низкая значимость эффекта масштаба при испытаниях легкого заполнителя бетона на сжатие отражается также в классификации прочности согласно европейскому стандарту EN 206 [38]. Отношение характеристической прочности LWAC, определенной на стандартных образцах цилиндра и куба ( f ck , cyl / f ck , cube ), полученное в результате классов прочности, указанных в EN 206 [38], колеблется от 0.От 89 до 0,92 и не зависит от класса прочности бетона. Кроме того, в стандарте указано, что для LWAC могут использоваться другие значения, если взаимосвязь между кубом и эталонной силой цилиндра установлена ​​и задокументирована. Между тем, для NWAC f ck , cyl / f ck , cube колеблется от 0,78 до 0,87 и выше для более высоких классов прочности. Тем не менее, есть сообщения, указывающие на противоположные тенденции.В [39,40] было показано, что размерный эффект был сильнее в LWAC, чем в NWAC, и эта тенденция была более выражена при гибкости образца 2,0, чем при гибкости 1,0. Поперечный размер образцов также сильно повлиял на результаты испытаний на прочность как NWAC, так и LWAC. С другой стороны, было доказано, что на размерный эффект минимально влияет форма сечения образца при том же λ . Кроме того, в случае LWAC размер агрегата не имел значения для эффекта масштаба.Вероятной причиной такого расхождения в качественной оценке масштабного эффекта LWAC, представленной в [39,40] и [3,16,35,36,37], является тип агрегата. Авторы [39,40] заявили, что использованный для исследования керамзит характеризовался замкнутой поверхностью с гладкой текстурой. Такой тип легкого заполнителя может вызвать слабое сцепление с цементным тестом, особенно по сравнению с гранитным щебнем, используемым для NWAC. Более того, если пористый заполнитель изначально насыщен, адгезия цементного теста может быть чрезвычайно ограничена, и легкий бетон, приготовленный с таким заполнителем, больше не следует рассматривать как материал с хорошей однородностью.

Основное различие в масштабном эффекте, определяемом для формованных образцов и образцов с сердечником, состоит в отсутствии «эффекта стенки» в последнем случае. Кроме того, образцы, взятые из конструкции, обычно имеют другие, менее благоприятные условия уплотнения и отверждения по сравнению с формованными образцами. Более того, процесс сверления образцов сам по себе может вызвать появление микротрещин в образцах с сердечником. В результате в стандарте EN 13791 [41] предполагается, что для всех типов конструкционных бетонов образцы с заполнителем показывают ок.Прочность на 15% ниже, чем у формованных. Между тем, из-за лучшей структурной однородности по сравнению с бетоном с нормальным весом, LWAC в конструкции, даже если она массивная, может быть менее восприимчивой к растрескиванию в результате как процесса бурения, так и повышения температуры во время гидратации цемента. Как было показано в [17,18], LWAC, из-за лучшей структурной однородности, показал более низкую концентрацию напряжений под нагрузкой и был менее подвержен растрескиванию по сравнению с бетоном с нормальным весом.В работе [19], посвященной изучению соотношения начальных и стабилизированных секущих модулей упругости, используемых в качестве индикатора восприимчивости бетона к микротрещинам, доказана более высокая стойкость конструкционного легкого бетона к микротрещинам или микротрещинам, вызванным напряжением. растрескивание, вызванное сверлением, по сравнению со структурным бетоном с нормальным весом. С другой стороны, есть многочисленные отчеты об испытаниях, показывающие, что при высоких температурах LWAC работает лучше, чем NWAC. Например, результаты исследований, представленные в [15,16], показали, что LWAC при температурах до 200 ° C или даже 300 ° C, соответственно, не показал развития микротрещин и снижения прочности.Следовательно, более высокая температура (до 90 ° C), возникающая во время гидратации цемента в конструкции из LWAC, обычно не может вызвать микротрещины. Более того, из-за внутреннего отверждения водой, содержащейся в пористом заполнителе, LWAC в конструкции обычно проявляет меньшую чувствительность к внешним условиям отверждения по сравнению с бетоном с нормальным весом. Таким образом, структура легкого заполнителя бетона в формованных образцах, отвержденных в лабораторных условиях, и в конструкции может быть менее разнообразной, чем в случае бетона с нормальной массой.Таким образом, можно ожидать, что разница между прочностями, определенными на образцах LWAC с формованными и заполненными сердцевинами, будет меньше, чем предполагается в EN 13791 [41] для всех типов бетона.

Хотя европейский стандарт EN 13791 [41] содержит принципы и руководство по оценке прочности бетона на сжатие на месте в конструкциях и сборных железобетонных элементах, он скорее сосредоточен на бетоне с нормальным весом и некоторых конкретных данных, полученных из масштабный эффект дан только для NWAC.Обычно предполагается, что диаметр сердечника от 75 до 150 мм не влияет на результат испытания на прочность. Однако стройность ядра сказывается на достигнутом значении. В случае нормального и тяжелого бетона соотношение прочности, определенное для цилиндров с сердечником λ = 2,0 и 1,0, можно принять равным 0,82, в то время как для легкого бетона нет соответствующей информации. В отношении LWAC EN 13791 [41] рекомендует применять положения, действующие в месте использования, или подтверждать некоторые взаимосвязи путем испытаний.Такая ситуация вызвана отсутствием достаточных надежных данных о масштабном эффекте образцов с сердцевиной LWAC, что подтверждается отсутствием литературных сообщений по этому поводу. Между тем, есть некоторые предпосылки, указывающие на то, что, как и в случае формованных образцов, эффект масштаба при испытаниях на прочность образцов с сердечником из LWAC менее значителен, чем в случае NWAC.

Поскольку не существует конкретных руководств по испытаниям и оценке прочности легкого бетона в конструкции или сборных элементах, основная цель исследования заключалась в оценке нераспознанного эффекта масштаба в испытаниях прочности на сжатие, проводимых на образцах LWAC с сердечником.Дополнительная цель исследования состояла в том, чтобы проверить, действительно ли предполагаемое снижение прочности на 15% для образцов с сердечником по сравнению с формованными также и для LWAC. Для этих целей были подготовлены четыре серии легкого заполнителя бетона с замкнутой структурой разного состава, и для каждой серии бетона были испытаны как стандартные формованные образцы, так и 12 типов цилиндров с сердечником для определения прочности на сжатие. Проведенная программа исследований позволила количественно и качественно оценить масштабный эффект порошковых образцов LWAC на фоне имеющихся данных о влиянии на бетон нормального веса.Он также дал некоторую информацию о выборе типов образцов с сердечником для достижения надежных результатов прочности на сжатие легкого бетона, встроенного в конструкцию или сборный элемент. Такая информация может иметь практическое значение в случае оценки прочности на сжатие для структурной оценки существующей конструкции или оценки класса прочности на сжатие LWAC в случае сомнения.

2. Материалы и методы.

Составы приготовленных LWAC различались типом легкого заполнителя (LWA) и прочностью цементной матрицы, а также их объемной долей.Были выбраны два типа крупного легкого заполнителя: керамзит (КЭ) и спеченная зола-унос (SFA) (). Эти типы являются наиболее популярными пористыми заполнителями, используемыми для конструкционного легкого бетона в мире. Однако керамзит, использованный в этом исследовании, характеризовался гораздо меньшей плотностью частиц и более пористой внешней оболочкой по сравнению с спеченной летучей золой. Поэтому на практике такой агрегат больше используется для изготовления сборных элементов из изоляционно-конструкционного бетона, чем для типовых конструктивных целей.В этом исследовании применение слабого керамзитового заполнителя было в основном направлено на то, чтобы показать эффект масштаба также в случае LWAC с меньшей прочностью и меньшей однородностью по сравнению с бетоном из спеченного заполнителя из золы-уноса. Основные свойства применяемых легких заполнителей представлены в. Заполнители перед нанесением на бетон сначала увлажняли до уровня, соответствующего их абсорбции после погружения в воду на 1 час. Такое содержание влаги — 34,4% и 17,0% соответственно для керамзита и агломерированной золы-уноса — с одной стороны защищало свежий бетон от потери удобоукладываемости, а с другой стороны, обеспечивало хорошую адгезию цементного теста.

Легкие заполнители, используемые для испытания бетона: ( a ) спеченная зола-унос и ( b ) керамзит.

Таблица 1

Свойства крупных легких заполнителей.

56 4/8 900 550
Тип заполнителя Фракция, мм Плотность частиц, кг / м 3 Водопоглощение,% Сопротивление раздавливанию, МПа
Керамзит 41.2 1,4
Спеченная зола-унос 4/8 1350 24,3 8,0

Остальные материалы для бетонных смесей были следующими: портландцемент CEM I 42,5 R, природный песок 0/2 мм в качестве мелкого заполнителя, водопроводная вода и суперпластификатор. Цементные растворы, являющиеся цементной матрицей для приготовленных легких бетонов, характеризовались существенно различным водоцементным соотношением (в / ц), равным 0.55 и 0,37. Доля крупного легкого заполнителя в готовых бетонах составляла от 52 до 55% соответственно для w / c = 0,37 и 0,55. Бетонные составы представлены в.

Таблица 2

Составы растворов и легких бетонов. LWA, легкий заполнитель; ЭК, керамзит; ОТВС, спеченная зола-унос.

Серия LWA Тип Номинал с / с Цемент, кг / м 3 Вода, кг / м 3 Superplast., кг / м 3 LWA 1 , кг / м 3 Песок, кг / м 3
I раствор 0,55 754 4 0,0 906
II Раствор 0,37 912 335 18,4 937
I EC Exp. глина 0.55 338 186 0,0 308 406
II EC Exp. глина 0,37 446 164 9,0 287 458
I SFA Sint. зола уноса 0,55 338 186 0,0 749 406
II SFA Синт. зола уноса 0,37 446 164 9.0 699 458

Из каждой бетонной серии в качестве контрольных образцов были отформованы 6 стандартных кубов (d = 150 мм) и 6 цилиндров (d = 150 мм и h = 300 мм). Кроме того, для сравнительных целей были отлиты стандартные кубики с растворами состава, соответствующего тем, которые использовались в бетонах. Кроме того, было отлито 4 больших бетонных блока размерами 400 × 600 × 1000 мм для сверления порошковых образцов (). Образцы после извлечения из формы хранились до дня испытания в условиях T = 20 ± 2 ° C, RH = 100 ± 5%, соответствующих требованиям EN 12390-2 [42].В то же время большие блоки были опрысканы водой, чтобы обеспечить аналогичные условия отверждения. Тем не менее в первые дни отверждения температура блоков была намного выше температуры стандартных формованных образцов. На верхней поверхности блоков она достигала 50 ° C и 70 ° C соответственно для бетона серий I и II из-за больших размеров элементов. Температура внутри была, конечно, еще выше.

Подготовка бетонных блоков к сверлению кернов.

После 28 дней отверждения из блоков высверливали стержни и разрезали на образцы в соответствии с EN 12504-1 [43].Применялись четыре буровые установки диаметром d = 80, 100, 125 и 150 мм (). Этот диапазон диаметров чаще всего используется для оценки прочности конструкций на сжатие на месте. Керны были разрезаны на образцы с гибкостью 1,0 и 2,0, которые обычно используются для оценки прочности на сжатие на месте, и, кроме того, 1,5. Типы и количество образцов, подготовленных для испытаний, представлены в и. Из каждой серии бетона было вырезано семь образцов с сердцевиной определенного типа (диаметр и гибкость): 6 в качестве основного набора для испытаний на эффект масштаба в условиях естественной влажности (в исходном состоянии) и 1 для контрольных испытаний в сухих условиях.Образцы в высушенном в печи состоянии в основном использовались для испытания плотности после высушивания (основного для легкого бетона), а затем они были дополнительно использованы для дополнительной оценки эффекта масштаба. На практике образцы с сердечником, высверленные из конструкции, испытывались в условиях влажности при поступлении или, если это требовалось, в состоянии насыщения. В случае этого исследования состояние образцов было таким, как было получено, но оно было очень близко к состоянию насыщения из-за отверждения.Температура сушки образцов составляла всего 50 ° C, чтобы избежать риска микротрещин в бетоне.

Типы применяемых буровых установок (d = 80, 100, 125, 150 мм) и вырезания стержней из бетонного блока.

12 типов порошковых образцов различного диаметра d и гибкости λ для испытаний на прочность на сжатие.

Таблица 3

Типы и количество образцов, подготовленных для испытаний каждой конкретной серии.

Образцы Тип Диаметр / Сторона d , мм Высота h , мм Гибкость λ = h / d Количество образцов
Литой
куб 150 150 1.0 6
цилиндр 150 300 2,0 6
полый
цилиндр 150 150 1.0 7
цилиндр 150 225 1,5 7
цилиндр 150 300 2.0 7
цилиндр 125 125 1.0 7
цилиндр 125 187,5 1,5 7
цилиндр 12511 2,0 7
цилиндр 100 100 1.0 7
цилиндр 100 150 1.5 7
цилиндр 100 200 2.0 7
цилиндр 80 80 1.0 7
цилиндр 80 1,5 7
цилиндр 80 160 2,0 7

Общее количество образцов с сердечником, подлежащих испытанию, составило 336.Плотность и прочность на сжатие отформованных во влажном состоянии образцов и образцов с сердечником были испытаны в возрасте 28 дней в соответствии с EN 12390-7 [44] и EN 12390-3 [45], соответственно. Высушенные образцы были испытаны в соответствии с теми же процедурами, но в возрасте 35 дней, когда они достигли состояния сушки в печи.

3. Результаты

Результаты испытаний формованных образцов представлены в. Результаты определения плотности во влажных и сухих условиях, а также испытаний на влагосодержание, проведенные на образцах с сердечником, представлены в.Значения, приведенные в таблице, представляют собой средние значения, определенные для данного бетона для всего набора из 72 и 12 образцов с сердечником, соответственно, во влажных и высушенных в печи условиях.

Таблица 4

Средние значения прочности на сжатие и плотности, определенные на формованных образцах.

Серия LWA Тип Номинальная w / c Плотность 1 D м , w , кг / м Прочность 3 Прочность на сжатие см , куб , МПа Прочность на сжатие, f см , цилиндр , МПа
I ступка 0 .55 2080 45,0
II Раствор 0,37 2200 65,2
I EC Exp. глина 0,55 1290 14,5 13,8
II EC Exp. глина 0,37 1410 18,1 16,9
I SFA Синт. зола уноса 0.55 1800 37,5 37,1
II SFA зола уноса 0,37 1890 49,5 47,6

Таблица 5

Определены средние значения плотности и влажности бетона на порошковых образцах.

Серия LWA Тип Номинальная w / c Плотность 1 D м , w , кг / м 3 9126 Плотность

7 910 D м , d , кг / м 3

Влагосодержание, м3 м ,%
I EC Exp.глина 0,55 1300 1140 14,0
II EC Exp. глина 0,37 1410 1250 12,8
I SFA Синт. зола уноса 0,55 1790 1570 14,0
II SFA Синт. зола уноса 0,37 1880 1680 11,9

Результаты испытаний на прочность при сжатии, определенные для образцов с сердечником, представлены во влажном и сухом состоянии соответственно.Следует отметить, что средние значения прочности ( f см ), рассчитанные как средние значения шести сердечников одного типа, представлены в. Глобальное среднее значение прочности ( f CM ) было рассчитано как среднее из средних значений всех типов стержней. Между тем, результаты прочности, представленные в, были определены на отдельных высушенных в печи образцах. Следовательно, эти результаты могут рассматриваться только как дополнительные, и они не могут быть основой количественного анализа эффекта масштаба.

Средние значения прочности на сжатие, определенные для образцов с влажным сердечником различного диаметра d и гибкости λ .

Отдельные результаты испытаний прочности на сжатие, определенной для образцов с сухим порошком различного диаметра d и гибкости λ .

4. Обсуждение

Анализ результатов показал, как и предполагалось, существенно разные уровни прочности на сжатие и плотности четырех бетонных серий.Прочность бетона составляла от 14,5 до 49,5 МПа при определении для формованных кубических образцов и от 13,8 до 47,6 МПа для формованных цилиндров. Плотность бетона после высушивания в печи составляла от 1140 до 1680 кг / м 3 , а во влажном состоянии соответствующий диапазон составлял 1290–1880 кг / м 3 . «Эффект стены», казалось, имел незначительное влияние на плотность бетона; поэтому практически не было различий между результатами, полученными для формованных образцов и образцов с сердечником. Более того, аналогичные результаты испытаний плотности, проведенных на формованных образцах, отвержденных в воде, и образцах с сердцевиной, показали, что состояние стержней было аналогично состоянию насыщения из-за внешнего отверждения, но в основном из-за внутреннего отверждения с водой, размещенной в пористом заполнителе.Особый интерес вызвали значения влажности бетонов. Несмотря на то, что керамзит характеризовался водопоглощением почти в два раза выше, чем у спеченной золы-уноса, содержание влаги в испытанных легких бетонах, по-видимому, зависело в основном от плотности цементных матриц. Если бы заполнители использовались изначально насыщенными, их водопоглощение определенно повлияло бы на водопоглощение / влагосодержание композитов. В случае испытанных бетонов заполнители были только сначала увлажнены до содержания влаги, что обеспечило хорошее сцепление и герметизацию структуры заполнителя цементным тестом.Такой эффект был доказан в [46].

Как правило, бетон, сделанный из более прочного спеченного заполнителя золы-уноса (I ОТВС и II ОТВС), достигает более высокой плотности и прочности на сжатие (почти в три раза), чем бетон из керамзита (I EC и II EC). Повышение прочности за счет применения более прочного раствора (II w / c = 0,37) в качестве цементной матрицы также было намного более эффективным в случае бетонов SFA, чем для бетонов EC (). В случае последних бетонов применение столь слабого заполнителя ограничивало возможность повышения прочности бетона за счет значительного увеличения прочности цементной матрицы.Следует отметить, что прочность всех легких бетонов была ниже прочности цементных растворов, используемых в качестве их матриц, что характерно для LWAC с закрытой структурой.

Влияние применения различных цементных растворов в качестве матриц для легких бетонов с агломерированной золой-уносом (SFA) и керамзитом (EC) на их плотность и прочность (во влажном состоянии).

Соотношение прочности, определенное для стандартных кубов и цилиндров ( f см , цилиндров / f см , куб ), зависело от однородности бетона: чем меньше разница в прочность заполнителя и цементной матрицы, тем выше соотношение.Средние значения отношения составляли 0,95, 0,93, 0,99 и 0,96 соответственно для бетонов I EC, II EC, I SFA и II SFA. Таким образом, эти значения были явно выше, чем значения, полученные в соответствии с EN 206 [38], и подтвердили гораздо менее выраженный эффект масштаба и формы испытанных легких бетонов по сравнению с бетонами с нормальной массой. Особо следует отметить, что бетон II ЕС с наименьшим значением отношения вообще не должен использоваться на практике по материальным и экономическим причинам. Для целей данного исследования он был приготовлен из высокопрочной цементной матрицы и очень слабого легкого заполнителя для получения легкого композитного материала с плохой однородностью.Из полученных значений отношения f см , цилиндр / f см , куб можно сделать еще один вывод: оценка прочности легкого заполнителя бетона, определенная для стандартных цилиндров, может приводят к более высокому классу, чем в случае, когда он определен для стандартных кубиков.

В случае порошковых образцов размерный эффект оказался практически незаметным (). Эта тенденция может наблюдаться даже в случае результатов одиночных образцов с сухой сердцевиной ().Тем не менее, по очевидным причинам, результаты, полученные на единичных образцах в сухих условиях, не должны использоваться в дальнейшем количественном анализе эффекта масштаба. При анализе средних значений прочности, представленных в, казалось, что тип образцов с сердечником не влияет на результат прочности независимо от типа бетона. Как предполагалось в EN 13791 [41], диаметр сердечника в испытанном диапазоне, 80–150 мм, при заданной гибкости не оказывал заметного влияния на результаты прочности. Более того, в отличие от NWAC, стройность тестируемого LWAC, похоже, также не оказала заметного влияния на результаты.Однако в случае менее однородных и более слабых бетонов, изготовленных из керамзита, разброс значений средней прочности ( f см ) был немного больше по сравнению с бетоном с агломерированной золой-уносом. Для подтверждения этих наблюдений был проведен более детальный анализ. Анализ охватывал разброс результатов для конкретного типа образца с сердечником, а также соотношение средних значений прочности, определенных для эталонного цилиндра с сердечником (d = 150 мм, h = 300 мм) и конкретного типа образца с сердечником.

Исследование разброса результатов прочности показало, что для всех испытанных бетонов значения стандартного отклонения ( σ f ) и коэффициента вариации (v f = σ f / f c ) были довольно независимы от объема и тонкости образцов с сердцевиной. Правило большего разброса результатов испытаний на прочность образцов меньшего объема здесь не подтвердилось. Коэффициенты вариации для конкретного типа порошкового образца представлены в.Значения v f варьировались от 0,01 до 0,15, а их средние значения составляли 0,07, 0,08, 0,05 и 0,03 соответственно для бетонов I EC, II EC, I SFA и II SFA. Значения σ f для конкретного типа порошкового образца составляли от 0,3 до 2,2 МПа, а их средние значения составляли 1,1 МПа, 0,9 МПа, 1,5 МПа и 1,2 МПа соответственно для бетонов I EC, II EC. , I ОТВС и II ОТВС. Эти значения были практически такими же, как стандартные отклонения значений средней силы ( f см ) по отношению к среднемировой ( f CM ), представленные в.Такая сходимость дисперсии предполагает, что различия в результатах, представленных в, были вызваны скорее разбросом результатов, чем эффектом масштаба. Очень низкие значения v f доказали превосходную структурную однородность испытанных легких бетонов, особенно композитов с агломерированным заполнителем золы-уноса. Результаты также указали на возможность использования даже самых маленьких образцов керна (в пределах рассматриваемого диапазона) для оценки прочности в легкой бетонной конструкции без увеличения количества образцов.

Взаимосвязь между объемом образца с сердечником ( V ) и коэффициентом вариации прочности, определенным для конкретных типов образцов ( V f ) (влажное состояние).

Результаты анализа соотношений средних значений прочности, определенных на эталонном порошковом цилиндре (d = 150 мм и h = 300 мм) и на порошковых образцах определенного типа (R = f см, сердцевина 300: 150 / f см, в: г сердечник ) представлены в формате. Они подтвердили гораздо лучшую структурную однородность испытанных легких бетонов, особенно из спеченного заполнителя золы-уноса, по сравнению с обычными или тяжелыми бетонами.Для всех LWAC стандартный коэффициент длины жилы ( f см 300: 150 жил / f см 150: 150 жил ) был значительно выше (в среднем 0,98), чем 0,82, принятый EN 13791 [41] для нормального -тяжелые и тяжеловесные бетоны. Для обеих серий спеченных бетонов из золы-уноса (I FSA и II FSA) среднее значение коэффициента прочности R равнялось точно 1,00, и никакого влияния гибкости или диаметра сердцевины не наблюдалось. Это означает, что в случае таких бетонов тип образцов с сердечником может считаться не имеющим отношения к результатам прочности на месте.Однако в случае керамзитобетонов интерпретация результатов по соотношению прочности была не столь однозначной. Среднее значение отношения составляло 1,06 и 0,94 для бетона I EC и II EC, соответственно, и в целом разброс значений отношения был намного больше по сравнению с бетоном с ОТВС. Чтобы определить достоверное значение коэффициента прочности для таких слабых бетонов, необходимо провести дополнительные проверочные испытания.

Соотношение R = f см, 300: 150 сердцевина / f см, сердцевина h: d (влажное состояние).

Следует отметить, что состояние образца с сердечником, которое не указано в EN 12504-1 [43] и не принимается во внимание в EN 13791 [41], может в определенной мере повлиять на оцененный класс прочности бетона. Между тем, исследование также показало, что высушенные в печи образцы с сердечником показали более высокую прочность на 5% и прибл. Для бетонов SFA и EC, соответственно, на 8%, чем для бетонов, испытанных во влажном состоянии. Снижение прочности влажных образцов, вероятно, было вызвано в большей степени значительным содержанием влаги, чем более ранним возрастом испытаний (сухим образцам для высыхания требовалось еще семь дней помимо стандартного возраста 28 дней).

Несмотря на продемонстрированное отсутствие эффекта размера и формы при испытаниях легких бетонов на сжатие, наблюдались явные различия между результатами, полученными для формованных образцов и образцов с сердечником. Соотношение значений прочности, определенное для цилиндров с сердечником и формованных f см , сердечника / f см , цилиндров , для бетонов составило 0,91, 0,75, 0,88 и 0,91 соответственно. I EC, II EC, I ОТВС и II ОТВС.Наименьшее значение коэффициента в случае бетона II EC может быть результатом его наименьшей однородности по сравнению с другими бетонами. Как уже упоминалось ранее, такой бетон, сделанный из очень слабого заполнителя и прочной цементной матрицы, использовался в этом исследовании только для сравнительных целей и не должен применяться на практике. Другие бетоны (I EC, I SFA и II SFA), которые были примерами типичных LWAC, используемых для изготовления или строительства сборных элементов, показали более высокое соотношение f см , сердечник / f см , цилиндр (в среднем 0.90), чем предполагается в стандарте (0.85). Как правило, из-за различных технологий производства LWAC и различных типов конструкции из легкого заполнителя, применяемых в мире, значение коэффициента 0,85 может быть сохранено в общих рекомендациях по оценке прочности бетона в конструкции или сборном элементе. Тем не менее, в случае легковесного бетона с более однородной структурой следует учитывать завышение класса прочности LWAC, встроенного в конструкцию или сборные элементы.Таким образом, стандартная рекомендация о формировании положений, действующих в месте использования LWAC, была полностью оправдана. Для испытанных LWAC, за исключением бетона II EC, «эффект стены» и разная температура отверждения, по-видимому, были доминирующими факторами, определяющими разницу между прочностью, указанной для образцов с сердечником и формованных образцов. Состояние влажности бетона (из-за внутреннего отверждения) и склонность к микротрещинам в результате процесса сверления или высокой температуры, вероятно, имели здесь меньшее значение, чем в случае NWAC.

5. Выводы

Проведенная программа исследований и анализ полученных результатов не выявили эффекта масштаба в испытаниях прочности на сжатие, определенных на порошковых образцах четырех типов легких заполнителей с закрытой структурой. Ни стройность, ни диаметр сердечника, похоже, не повлияли на результаты прочности. Этот факт следует объяснить несравненно лучшей структурной однородностью исследуемых легких бетонов по сравнению с нормальными.Более того, здесь не подтвердилось правило большего разброса результатов испытаний на прочность образцов меньшего объема. Это означает, что, в отличие от NWAC, можно было надежно оценить прочность на сжатие таких типов LWAC, встроенных в конструкцию или сборные элементы, используя даже самые маленькие сердечники (в пределах рассматриваемого диапазона) без увеличения количества образцов. Кроме того, в случае таких бетонов казалось достаточным использовать стержни с гибкостью 1,0 вместо требуемых 2.0, если результаты испытаний на прочность должны относиться к формованным цилиндрам 2: 1. Тем не менее, следует предположить, что в случае легкого бетона, приготовленного с изначально насыщенным заполнителем или с частицами заполнителя из более плотного и / или более гладкого внешнего сланца, размерный эффект может быть более выраженным. Следовательно, количественные результаты этого исследования не могут быть обобщены для всех типов LWAC.

Несмотря на продемонстрированное отсутствие эффекта масштаба при испытаниях легких бетонов на сжатие, наблюдались явные различия между результатами, полученными на формованных образцах и образцах с сердечником.Однако для испытанного LWAC, за исключением бетона II EC, соотношение f см , core / f cm , cyl было немного выше (в среднем 0,90), чем 0,85 предполагается в стандартах. В результате применение стандартного соотношения для оценки прочности на сжатие существующей конструкции из таких типов LWAC может привести к завышению оценки. Таким образом, стандартная рекомендация о формировании положений, действующих в месте использования LWAC, была полностью оправдана.

Анализ зависимости между прочностью, указанной на стандартных формованных образцах, показал, что из-за гораздо менее выраженного масштабного эффекта LWAC по отношению к NWAC оценка прочности легкого заполнителя, определенная на стандартных цилиндрах, может привести к более высокому классу прочности, чем в том случае, когда он определяется на стандартных кубиках.

Благодарности

Автор благодарит англ. Ян Шпак и англ. Maciej Rajtar за техническую поддержку в проведенных исследованиях.

Финансирование

Исследование не получало внешнего финансирования.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

Список литературы

1. Валор Р. Расчет значений коэффициента теплопередачи для пустотелой бетонной кладки. Concr. Int. 1980; 2: 40–63. [Google Scholar] 2. ACI 213 R-03. Руководство для конструкционного легкого заполнителя. ACI; Фармингтон-Хиллз, Мичиган, США: 2003. [Google Scholar] 3. Невилл А. Свойства бетона. 5-е изд. Pearson Education Limited; Лондон, Великобритания: 2011.[Google Scholar] 4. Шпицнер Дж. Обзор развития легких агрегатов — история и реальный обзор; Материалы Конгресса по конструкционным легким заполнителям; Сандефьорд, Норвегия. 20-24 июня 1995 г .; С. 13–21. [Google Scholar] 5. Чандра С., Бернтссон Л. Легкий заполненный бетон. Публикации Нойеса; Нью-Йорк, Нью-Йорк, США: 2003. [Google Scholar] 6. Кларк Дж. Конструкционный легкий бетон. Чепмен и Холл; Глазго, Великобритания: 1993. [Google Scholar] 7. Бентур А., Игараси С., Ковлер К. Предотвращение автогенной усадки высокопрочного бетона за счет внутреннего твердения с использованием влажных легких заполнителей. Джем. Concr. Res. 2001; 31: 1587–1591. DOI: 10.1016 / S0008-8846 (01) 00608-1. [CrossRef] [Google Scholar] 8. Куссон Д., Хоогевен Т. Внутреннее отверждение высокопрочного бетона с предварительно пропитанным мелким легким заполнителем для предотвращения автогенного растрескивания при усадке. Джем. Конц. Res. 2008. 38: 757–765. DOI: 10.1016 / j.cemconres.2008.02.001. [CrossRef] [Google Scholar] 9. Жутовский С., Ковлер К., Бентур А. Эффективность легких заполнителей для внутреннего твердения высокопрочного бетона с целью устранения автогенной усадки. Матер. Struct. 2002; 35: 97–101. DOI: 10.1007 / BF02482108. [CrossRef] [Google Scholar] 10. Чиа К., Чжан М. Водопроницаемость и проницаемость высокопрочного легкого заполнителя для хлоридов. Джем. Concr. Res. 2002. 32: 639–645. DOI: 10.1016 / S0008-8846 (01) 00738-4. [CrossRef] [Google Scholar] 11. Богас Дж., Реал С. Обзор сопротивления карбонизации и проникновению хлоридов в конструкционный легкий заполненный бетон.Материалы. 2019; 12: 3456. DOI: 10.3390 / ma12203456. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 12. Лю X., Чиа К., Чжан М. Водопоглощение, проницаемость и сопротивление проникновению хлорид-ионов в легкий бетон из заполнителя. Констр. Строить. Матер. 2011; 25: 335–343. DOI: 10.1016 / j.conbuildmat.2010.06.020. [CrossRef] [Google Scholar] 13. Ло Т., Танг В., Надим А. Сравнение карбонизации легкого бетона с бетоном нормального веса при аналогичных уровнях прочности. Констр. Строить.Матер. 2008; 22: 1648–1655. DOI: 10.1016 / j.conbuildmat.2007.06.006. [CrossRef] [Google Scholar] 15. Домагала Л., Хагер И. Влияние высокой температуры на прочность на сжатие конструкционного легкого бетона. Джем. Lime Concr. 2012; 3: 138–143. [Google Scholar] 16. Курсио Ф., Галеота Д., Галло А. Высокоэффективный легкий бетон для производства сборного железобетона. Спец. Publ. 1998. 179: 389–406. [Google Scholar] 17. Невилл А. Агрегатная связь и модуль упругости бетона. ACI Mater.J. 1997; 94: 71–74. [Google Scholar] 18. Чжан М., Гьёрв О. Механические свойства высокопрочного легкого бетона. ACI Mater. J. 1991; 88: 240–247. [Google Scholar] 19. Домагала Л. Исследование влияния типа и прочности бетона на взаимосвязь между начальным и стабилизированным секущими модулями упругости. Твердотельный Феном. 2016; 258: 566–569. DOI: 10.4028 / www.scientific.net / SSP.258.566. [CrossRef] [Google Scholar] 20. Домагала Л. Модификация свойств конструкционного легкого бетона стальной фиброй.J. Civ. Англ. Manag. 2011; 17: 36–44. DOI: 10.3846 / 13923730.2011.553923. [CrossRef] [Google Scholar] 21. Базант З., Планас Дж. Разрушение и размерный эффект в бетоне и других квазихрупких материалах. CRC Press; Бока-Ратон, Флорида, США: 1997. [Google Scholar] 22. Базант З.П., Панг С.Д., Вореховски М., Новак Д., Пукл Р. Статистический размерный эффект в квазихрупких материалах: вычисление и теория экстремальных значений; Материалы 5-й Международной конференции по механике разрушения бетонных конструкций; Вейл, Колорадо, США.12–16 апреля 2014 г .; С. 189–196. [Google Scholar] 23. Токай М., Оздемир М. Форма и размер образца влияют на прочность на сжатие более прочного бетона. Джем. Concr. Res. 1997. 27: 1281–1289. DOI: 10.1016 / S0008-8846 (97) 00104-X. [CrossRef] [Google Scholar] 24. Ли М., Хао Х., Ши Ю., Хао Ю. Форма и размер образца влияют на прочность бетона на сжатие при статических и динамических испытаниях. Констр. Строить. Матер. 2018; 161: 84–93. DOI: 10.1016 / j.conbuildmat.2017.11.069. [CrossRef] [Google Scholar] 25.Мучачча Г., Розати Г., Ди Луцио Г. Разрушение при сжатии и размерный эффект в цилиндрических образцах из простого бетона. Констр. Строить. Матер. 2017; 137: 185–194. DOI: 10.1016 / j.conbuildmat.2017.01.057. [CrossRef] [Google Scholar] 26. Нгуен Д., Тай Д., Нго Т., Тран Т., Нгуен Т. Модуль Вейбулла от размерного эффекта высокоэффективного фибробетона при сжатии и изгибе. Констр. Строить. Матер. 2019; 226: 743–758. DOI: 10.1016 / j.conbuildmat.2019.07.234. [CrossRef] [Google Scholar] 27. Ань М., Чжан Л., Yi Q. Влияние размера на прочность реактивного порошкового бетона на сжатие. J. China Univ. Мин. Technol. 2008. 18: 279–282. DOI: 10.1016 / S1006-1266 (08) 60059-0. [CrossRef] [Google Scholar] 28. Чжоу Дж., Би Ф., Ван З., Чжан Дж. Экспериментальное исследование влияния размера на механические свойства армированных углеродным волокном полимера (углепластика) в замкнутых бетонных круглых образцах. Констр. Строить. Матер. 2016; 127: 643–652. DOI: 10.1016 / j.conbuildmat.2016.10.039. [CrossRef] [Google Scholar] 29. Ву К., Вайс Дж., Пле О., Амитрано Д., Вандембрук Д. Пересмотр статистических размерных эффектов на разрушение разнородных материалов при сжатии с особым вниманием к бетону. JMFS. 2018; 121: 47–70. DOI: 10.1016 / j.jmps.2018.07.022. [CrossRef] [Google Scholar] 30. Краутхаммер Т., Эльфахал М., Лим Дж., Оно Т., Беппу М., Марксет Г. Размерный эффект для высокопрочных бетонных цилиндров, подвергающихся осевому удару. Int. J. Impact Eng. 2003. 28: 1001–1016. DOI: 10.1016 / S0734-743X (02) 00166-5. [CrossRef] [Google Scholar] 31. Дехестани М., Никбин И., Асадоллахи С. Влияние формы и размера образца на прочность на сжатие самоуплотняющегося бетона (SCC) Constr. Строить. Матер. 2014; 66: 685–691. DOI: 10.1016 / j.conbuildmat.2014.06.008. [CrossRef] [Google Scholar] 32. Никбин И., Дехестани М., Бейги М., Резвани М. Влияние размера куба и направления размещения на прочность на сжатие самоуплотняющегося бетона. Констр. Строить. Матер. 2014; 59: 144–150. DOI: 10.1016 / j.conbuildmat.2014.02.008. [CrossRef] [Google Scholar] 33. Манич Н., Тарич М., Шерифи В., Ристовски А. Анализ существования размерного эффекта на различных типах бетона. Процедуры Technol. 2015; 19: 379–386. DOI: 10.1016 / j.protcy.2015.02.054. [CrossRef] [Google Scholar] 34. дель Визо Дж., Кармона Дж., Руис Г. Влияние формы и размера на прочность на сжатие высокопрочного бетона. Джем. Concr. Res. 2008. 38: 386–395. DOI: 10.1016 / j.cemconres.2007.09.020. [CrossRef] [Google Scholar] 35. Торенфедт Э. Критерии проектирования легкого заполнителя бетона; Материалы Конгресса по конструкционным легким заполнителям; Сандефьорд, Норвегия.20-24 июня 1995 г .; С. 720–732. [Google Scholar] 36. Домагала Л. Размерный эффект при испытании легкого заполнителя бетона на прочность на сжатие. Tech. J. 2004; 14-B: 27–38. (На польском языке) [Google Scholar] 37. Вахшоури Б., Неджади С. Размерный эффект и фактор возраста в механических свойствах легкого бетона BST. Констр. Строить. Матер. 2018; 177: 63–71. DOI: 10.1016 / j.conbuildmat.2018.05.115. [CrossRef] [Google Scholar] 38. EN 206: 2013. Конкретный. Спецификация, характеристики, производство и соответствие. Европейский комитет по стандартизации; Брюссель, Бельгия: 2013.[Google Scholar] 39. Сим Дж., Ян К., Ким Х., Чой Б. Влияние размера и формы на прочность на сжатие легкого бетона. Констр. Строить. Матер. 2013; 38: 854–864. DOI: 10.1016 / j.conbuildmat.2012.09.073. [CrossRef] [Google Scholar] 40. Сим Дж., Ян К., Чон Дж. Влияние размера заполнителя на размерный эффект при сжатии в зависимости от типа бетона. Констр. Строить. Матер. 2013; 44: 716–725. DOI: 10.1016 / j.conbuildmat.2013.03.066. [CrossRef] [Google Scholar] 41. EN 13791: 2019. Оценка прочности на сжатие конструкций и элементов сборного железобетона на месте.Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 42. EN 12390-2: 2019. Испытание затвердевшего бетона. Часть 2: Изготовление и отверждение образцов для испытаний на прочность. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 43. EN 12504-1: 2019. Испытание бетона в конструкциях. Порошковые образцы. Взятие, осмотр и тестирование на сжатие. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019 г. [Google Scholar] 44. EN 12390-7: 2019. Испытания затвердевшего бетона.Часть 7: Плотность затвердевшего бетона. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019. [Google Scholar] 45. EN 12390-3: 2019. Испытания затвердевшего бетона. Часть 3: Прочность образцов для испытаний на сжатие. Европейский комитет по стандартизации; Брюссель, Бельгия: 2019. [Google Scholar] 46.