Технические характеристики плит ПЕНОПЛЭКС
Главная \ Экструдированный пенополистирол \ Пеноплэкс. \ Технические характеристики плит ПЕНОПЛЭКС
ПЕНОПЛЭКС
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Свойства пеноплэкса Основные свойства плит утеплителя пеноплэкс (экструзионный,экструдированный пенополистирол): Теплопроводность плит утеплителя пеноплэкс Экструзионный (экструдированный) пенополистирол — это эффективный теплоизолятор с коэффициентом теплопроводности 0,025-0,03 вт/мК. Благодаря ничтожному влагопоглощению и высокой стойкостью к воздействию циклов замораживания-оттаивания, экструзионный(экструдированный) пенополистирол сохраняют свои свойства в течение длительного времени. Водопоглощение плит и низкая паропроницаемость утеплителя пеноплэкс Экструзионный (экструдированный) пенополистирол -это водонепроницаемый материал. Благодаря закрытой ячеистой структуре, экструзионный (эктсрудированный) пенополистирол не содержит пустот, способных поглощать воду. Перепады температуры для плит утеплителя пеноплэкс Экструзионный пенополистирол сохраняет свои свойства после длительного воздействия циклов замораживания-оттаивания. После 1000 циклов воздействия изменение термического сопротивления экструзионного (экструдированного) пенополистирола не превышает 5%. Механическая прочность плит утеплителя пеноплэкс Экструзионный (экструдированный) пенополистирол характеризуется высокой прочностью на сжатие, значение которой зависит от плотности плит утеплителя пеноплэкс. Химическая стойкость плит утеплителя пеноплэкс Экструзионный (экструдированный) пенополистирол обладает достаточно высокой химической стойкостью по отношению к большинству используемых в строительстве материалов и веществ. Некоторые органические вещества могут привести к размягчению, усадке и даже растворению плит. Низкая химическая стойкость плит утеплителя пеноплэкс к следующим веществам:
Высокая химическая стойкость плит утеплителя пеноплэкс к следующим веществам:
Экологичность плит утеплителя пеноплэкс Экструзионный (экструдированный) пенополистирол не подвержен биоразложению в условиях окружающей среды и не представляет никакой опасности экологии и здоровью человека. Долговечность плит утеплителя пеноплэкс в ограждающих конструкциях зданий при температурно-влажностных воздействиях с учетом коэффициента запаса составляет не менее 50 лет. Эксплуатировать плиты утеплителя пеноплэкс рекомендуется в диапазоне температур от -50 до +75 °С. В этом температурном режиме все физические и теплотехнические характеристики материала остаются неизменными. Плиты утеплителя пеноплэкс можно хранить на открытом воздухе в оригинальной упаковке, но при этом их необходимо предохранять от длительного воздействия солнечного света для предотвращения разрушения верхнего слоя плит. |
от чего зависит, сравнение с минватой и Пеноплексом, цены
Одна из самых важных характеристик при выборе любого утеплителя – теплопроводность. Ее коэффициент показывает, сколько тепла проходит через материал (пенопласт, Penoplex, кирпич, минвату) за определенное время. Чем дольше длится процесс такого теплообмена, тем ниже будет его значение и, соответственно, тем больше тепла останется внутри помещения.
Оглавление:
- От чего зависит теплопроводность?
- Сравнение с Пеноплексом и минватой
- Цена пенополистирола
Что влияет на теплопередачу?
Существует несколько факторов, которые значительно влияют на ее величину:
- наличие пор и их структура;
- плотность, толщина;
- влагопоглощаемость.
Благодаря наличию пор в материале, как, например, в пенопласте и Пеноплексе, они имеют низкую теплопередачу. Внутри гранул нет ничего, кроме воздуха, а он имеет самую малую величину коэффициента – 0,022 Вт/м·К. Закрытые и маленького размера поры также затрудняют передачу тепловой энергии, а если они открытые и соединены между собой, то появляется конвекция, из-за которой повышается теплопроводность.
Чем плотнее материал, тем быстрее он пропускает тепло, как, например, металл или графит. Для сравнения, плотность пенопласта составляет 18 кг/м3, а у сплошного силикатного кирпича – около 1800 кг/м3, следовательно, у первого теплопередача будет очень низкая, а у второго – весьма высокая. Ко всему этому немаловажное значение имеет способность утеплителя поглощать воду, так как при попадании влаги внутрь она вытесняет сухой воздух, тем самым повышая передачу тепловой энергии.
Таблица с величинами коэффициентов теплопроводности:
Наименование теплоизоляции | Плотность, кг/м3 | Теплопроводность, Вт/м·К | |
Минвата | 200 | 0,08 | |
125 | 0,07 | ||
Пенополистирол | ПСБ-С 15 | до 15 | 0,043 |
ПСБ-С 25 | 15,1-25 | 0,041 | |
ПСБ-С 35 | 15,1-35 | 0,038 | |
ПСБ-С 50 | 15,1-50 | 0,041 | |
Пеноплекс | 33-45 | 0,03-0,032 | |
Пустотелый керамический кирпич | 1200 | 0,52 | |
Сплошной силикатный кирпич | 1800 | 0,47 | |
Стекловата | 75-175 | 0,032-0,041 |
Значение величины теплопроводности гранул пенопласта в зависимости от толщины:
Толщина, мм | Коэффициент теплопередачи, Вт/м·К |
30 | 0,04 |
50 | 0,03-0,037 |
100 | 0,03-0,046 |
150 | 0,02 |
Сравнение с другими утеплителями
Пенопласт получается в результате вспенивания полистирола, благодаря чему появляются наполненные газом поры, а Пеноплекс – экструдированный пенополистирол, произведенный методом экструзии, поэтому его гранулы имеют меньший размер. К тому же из-за равномерного и упорядоченного расположения ячеек в экструзионном, он является более прочным утеплителем, что позволяет ему сильнее изгибаться и меньше продавливаться под нагрузкой. Оба материала имеют наивысшие степени пожароопасности, поэтому обязательно следует учитывать это во время монтажа.
Сравнительная таблица Пеноплекса и пенополистирола:
Пенопласт | Пеноплекс | |
Плотность, кг/м3 | 18 | 25-32 |
Влагопоглощаемость, % | 0,8-1,2 | 0,4 |
Паропроницаемость, мг/(м·ч·Па) | 0,05 | 0,02 |
Теплопроводность, Вт/м·К | 0,031-0,041 | 0,03 |
По величине теплопроводности пенопласт проигрывает Пеноплексу, и по другим показателям также. Но даже если утеплять дом обычным вспененным полистиролом, то теплопотери могут сократиться практически на 40%. Главное – провести все работы по монтажу согласно всем требования производителя, в том числе не допустить попадания влаги между стеной и теплоизоляцией и ограничить доступ для грызунов.
По всем свойствам пенопласт и в сравнении с минватой весьма различается:
Минвата | |
Плотность, кг/м3 | 10-300 |
Влагопоглощаемость, % | более 1% |
Паропроницаемость, мг/(м·ч·Па) | 0,4-0,5 |
Теплопередача, Вт/м·К | 0,045 (при 35 кг/м3) -0,7 |
По коэффициенту теплопередачи пенопласт имеет наилучшее значение, но по паропроницаемости показатель у минваты намного лучше, в итоге ее свободно можно использовать внутри жилых помещений, к тому же она огнеустойчива, в отличие от вспененного полистирола. Также благодаря производству из минерального сырья она не выделяет во время горения опасных веществ, и, разлагаясь, не загрязняет окружающую среду. Но минвата по сравнению со вспененным полистиролом имеет намного больший вес, поэтому для ее монтажа, особенно на стены, требуется крепкая конструкция.
youtube.com/embed/iTAN9cIP7Ns» frameborder=»0″ allowfullscreen=»allowfullscreen»>Стоимость
Таблица цен, по которым можно купить пенопласт:
Наименование марки пенополистирола | Размеры, мм (длина/ширина/толщина) | Плотность, кг/м3 | Стоимость за м2, рубли | |
Knauf | Therm Compack | 1000x600x50 | 10-15 | 150 |
Therm Wall Light | 1000x1200x100 | 10-12 | 190 | |
1000х1200х50 | 10-12 | 100 | ||
1000х1200х20 | 10-12 | 40 | ||
Therm Facade | 1000x1200x100 | 15,1-17,2 | 390 | |
Therm Wall | 2000х1200х50 | 10-12 | 150 | |
ПСБ-С 15 | 1000х1000х20 | 15 | 50 | |
1000х1000х30 | 60 | |||
1000х1000х40 | 80 | |||
1000х1000х50 | 90 | |||
1000х1000х100 | 170 | |||
ПСБ-С 25 | 1000х1000х20 | 20 | 80 | |
1000х1000х30 | 120 | |||
1000х1000х40 | 140 | |||
1000х1000х50 | 150 | |||
1000х1000х100 | 300 | |||
ПСБ-С 35 | 1000х1000х20 | 35 | 100 | |
1000х1000х30 | 140 | |||
1000х1000х40 | 180 | |||
1000х1000х50 | 200 | |||
1000х1000х100 | 400 |
Выбирая утеплитель, следует помнить, что чем выше коэффициент теплопередачи, тем большее количество слоев придется монтировать. Так, например, базальтовая минвата толщиной в 100 мм имеет практически такую же проводимость тепла – 0,042 Вт/м·К, как у пенополистирола размером 50 мм – 0,046 Вт/м·К, а теплопроводность Пеноплекса с 50 мм и 100 мм – 0,03 Вт/м·К. Каждый из них имеет свои плюсы и минусы, так минеральную вату рекомендуется использовать там, где требуется повышенная паропроницаемость и устойчивость к большим температурам, стекловату следует применять для гаражей или любых других мест, где высока вероятность возгорания.
Пенопласт и экструдированный пенополистирол все же лучше располагать снаружи здания, а не внутри, так меньше шансов для образования конденсата между стеной и утеплителем.
Дата: 5 июля 2016
Теплопроводность пенополиуретана
Теплопроводность определяется как количество тепла (в ваттах), передаваемое через квадратный участок материала заданной толщины (в метрах) из-за разницы температур. Чем ниже теплопроводность материала, тем больше способность материала сопротивляться теплопередаче и, следовательно, выше эффективность изоляции. Типичные значения теплопроводности для пенополиуретанов находятся между 0,022 и 0,035 Вт/м∙K .
Теплоизоляция в основном основана на очень низкой теплопроводности газов. Газы обладают плохими свойствами теплопроводности по сравнению с жидкостями и твердыми телами и, таким образом, являются хорошим изоляционным материалом, если их можно уловить (например, в пенообразной структуре). Воздух и другие газы обычно являются хорошими изоляторами. Но главная польза в отсутствии конвекции. Таким образом, многие изоляционные материалы (например, пенополиуретан ) функционируют просто благодаря большому количеству газонаполненные карманы , которые предотвращают крупномасштабную конвекцию .
Чередование газового кармана и твердого материала приводит к тому, что тепло должно передаваться через множество поверхностей, что приводит к быстрому снижению коэффициента теплопередачи.
Ссылки:
Теплопередача:
- Основы тепломассообмена, 7-е издание.
Теодор Л. Бергман, Эдриенн С. Лавин, Фрэнк П. Инкропера. John Wiley & Sons, Incorporated, 2011. ISBN: 9781118137253.
- Тепломассообмен. Юнус А. Ценгель. McGraw-Hill Education, 2011. ISBN: 9780071077866.
- Министерство энергетики США, термодинамики, теплопередачи и потока жидкости. Справочник по основам Министерства энергетики США, том 2 из 3, май 2016 г.
Ядерная и реакторная физика:
- Дж. Р. Ламарш, Введение в теорию ядерных реакторов, 2-е изд., Аддисон-Уэсли, Рединг, Массачусетс (1983).
- Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
- WM Stacey, Физика ядерных реакторов, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
- Гласстоун, Сезонске. Разработка ядерных реакторов: разработка реакторных систем, Springer; 4-е издание, 1994 г., ISBN: 978-0412985317
- WSC. Уильямс. Ядерная физика и физика элементарных частиц. Кларендон Пресс; 1 издание, 1991 г.
, ISBN: 978-0198520467
- Г. Р. Кипин. Физика ядерной кинетики. Паб Эддисон-Уэсли. Ко; 1-е издание, 1965 г.
- Роберт Рид Берн, Введение в работу ядерного реактора, 1988.
- Министерство энергетики, ядерной физики и теории реакторов США. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
- Пол Ройсс, Нейтронная физика. EDP Sciences, 2008. ISBN: 978-2759800414.
Advanced Reactor Physics:
- К. О. Отт, В. А. Безелла, Введение в статистику ядерных реакторов, Американское ядерное общество, исправленное издание (1989 г.), 1989 г., ISBN: 0-894-48033-2.
- К. О. Отт, Р. Дж. Нойхольд, Введение в динамику ядерных реакторов, Американское ядерное общество, 1985, ISBN: 0-894-48029-4.
- Д. Л. Хетрик, Динамика ядерных реакторов, Американское ядерное общество, 1993, ISBN: 0-894-48453-2.
- Э. Э. Льюис, В. Ф. Миллер, Вычислительные методы переноса нейтронов, Американское ядерное общество, 1993, ISBN: 0-894-48452-4.
Изоляционные материалы
Какова теплопроводность полиуретана?
Теплопроводность — это физическое свойство, проявляющееся в любом материале, включая полиуретан, и оно измеряет теплопроводность через него, или, другими словами, перенос тепловой энергии через тело. Это движение энергии производится за счет разности температур , поскольку согласно второму закону термодинамики тепло всегда течет в направлении самой низкой температуры.
При изоляции здания важно знать теплопроводность используемых материалов, поскольку энергоэффективность и тепловой комфорт будет зависеть от этого. Например, металлы имеют более высокую теплопроводность, чем древесина, но изоляционные материалы, такие как стекловолокно или полиуретан, имеют более низкую теплопроводность.
Поведение теплоизоляции является ключом к достижению целей Европейского Союза по энергосбережению на 2020 год . Как в одноэтажных, так и в многоэтажных зданиях материалы, используемые в ограждении, определяют потребление энергии. Следовательно, если мы хотим для повышения энергоэффективности зданий , одним из физических свойств, которые будут определять, является ли материал хорошей теплоизоляцией или нет, является теплопроводность.
Если сравнить теплопроводность основных материалов , используемых в строительстве , то можно проверить, как, в зависимости от выбора материалов, уровень теплопроводности напрямую повлияет на теплоизоляцию дома . Например, традиционные материалы, такие как кирпич, древесная щепа или бетон, имеют более высокий уровень теплопроводности, чем изоляционные материалы, такие как полиуретан или полистирол.
Материал | Теплопроводность |
Кирпич | 0,49-0,87 Вт/мК |
Бетонный блок | 0-35-0,79 Вт/мК |
Пенополистирол | 0,031–0,050 Вт/мК |
Экструдированный полистирол | 0,029-0,033 Вт/мК |
Полиуретановые системы | 0,022-0,028 Вт/мК |
Минеральная вата | 0,031-0,045 Вт/мК |
Вспученный перлит | 0,040-0,060 Вт/мК |
Древесная щепа | 0,038-0,107 Вт/мК |
Теплопроводность полиуретана
Полиуретановые системы являются одним из материалов на рынке, обеспечивающим наилучшую теплоизоляцию при минимальной толщине .