Реверсивная схема подключения электродвигателя

Содержание

  1. Переменная сеть: мотор 380 к сети 380
  2. Переменная сеть: электродвигатель 220 к сети 220
  3. Переменная сеть: 380В к 220В
  4. Постоянный электроток: особенности

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного  конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

  • Автомат;
  • Кнопочный пост;
  • Контакторы.

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Ещё по теме:
— Схемы подключения асинхронного и синхронного однофазных двигателей
— Схемы подключения электродвигателя через конденсаторы
— Реверсивная схема подключения электродвигателя
— Плавный пуск электродвигателя своими руками
—В чем разница асинхронного и синхронного двигателей
— Реверсивное подключение однофазного асинхронного двигателя своими руками
— Как проверить электродвигатель
— Ремонт электродвигателей

Реверсивный пускатель: схема правильного подключения

Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад. По сути, реверс обеспечивается наличием еще одной контактной группы на пускателе. Но ее нужно правильно подключить. Например, имеются три фазы А, В и С, которые подключены к контактной колодке электромотора. При этом вал вращается по часовой стрелке. Чтобы заставить вращаться его в обратную сторону, достаточно поменять любые две фазы местами. Например, подключить в таком порядке – В, А, С.

Особенности реверсивных пускателей

Используются такие схемы подключения в конструкциях лифтов, подъемных кранов, сверлильных станков. Если сильно не вдаваться в детали, то может показаться, что схема включения мотора с использованием реверса сложнее. Но на деле оказывается, что сложного нет ничего – в конструкцию добавилась еще одна силовая часть и управление.

Стоимость таких устройств немного выше за счет использования большего количества элементов. По сути, это два электромагнитных пускателя, объединенных в один корпус. Принцип работы у схемы специфический, потребуется внимательно рассмотреть все нюансы.

Исходное положение элементов

Схема реверсивного магнитного пускателя в изначальном состоянии разомкнута — напряжение поступает только на верхние контакты и «дежурит» до того момента, пока не начнет работать система управления. Фазы располагаются в таком виде:

  1. От фазы «А» производится питание цепи управления.
  2. Провод от фазы «А» поступает на кнопку остановки.
  3. Фаза также поступает на контакты кнопок SB2 и SB3.
  4. Обязательно осуществляется защита цепей – силовых и управления.

В таком виде схема готова к началу работы, остается только нажать на кнопку «Влево» или «Вправо», чтобы запустить электродвигатель. И нужно изучить более подробно процессы, протекающие в схеме реверсивного пускателя с кнопками управления при вращении ротора двигателя.

Ротор вращается против часовой стрелки

Как только происходит нажатие на кнопку SB2, через нормально-замкнутую группу контактов КМ2.2 проходит фаза «А» на катушку пускателя. При этом происходит срабатывание обмотки, контакты, которые были разомкнутые, замыкаются. А замкнутые размыкаются.

Как только произойдет замыкание контактов КМ1.1, магнитный пускатель переводится в режим самоподхвата.

Следовательно, как только происходит замыкание группы силовых контактов, все три фазы подаются на обмотки электрического двигателя. И ротор начинает разгоняться, двигаясь в направлении против часовой стрелки. Нормально-замкнутая группа контактов КМ1.2, которая находится в цепи, питающей катушку пускателя КМ2, размыкается и противодействует подаче напряжения на катушку КМ2 (КМ1 при этом работает). В народе такую схему называют «защитой от дурака».

Двигатель вращается по часовой стрелке

Как было сказано ранее, для вращения мотора в противоположную сторону, достаточно просто поменять местами две фазы. Именно это и делает в схеме реверсивного пускателя двигателя элемент, обозначенный КМ2. Но, прежде чем изменить направление движения, необходимо остановить мотор. Для этого используется кнопка «Стоп». Обычно она имеет красный цвет. Как только оператор нажмет на кнопку, произойдет разрыв цепи питания катушки магнитного пускателя КМ1.

При этом пружина воздействует на контакты и возвращает их в исходное состояние. Электрический двигатель обесточивается, на обмотках пропадает напряжение и ротор останавливается. При нажатии на кнопку SB3 происходит передача фазы «А» по нормально-замкнутому контакту КМ1.2 на катушку электромагнита КМ2. Пускатель выходит в режим самоподхвата при помощи силового контакта КМ2.1.

В них переброшены две фазы – например, «А» и «В». Группа контактов КМ2.2, которая находится в цепи питания магнитного пускателя КМ1, размыкается и не позволяет включиться в работу КМ1. Магнитный пускатель КМ2 в это время работает.

Схема силовой цепи

В общем, схема подключения реверсивного пускателя в трехфазной сети может быть реализована несколькими способами. Самое главное – можно использовать два пускателя, если нет возможности поставить один.

Важно правильно произвести переброс фаз, чтобы осуществить реверс. Распределяются фазы в магнитном пускателе КМ1 таким образом:

  1. «А» подается к обмотке «1».
  2. «В» поступает на обмотку мотора «2»
  3. «С» подается на обмотку «3».

При этом вращение ротора происходит против часовой стрелки. На пускателе КМ2 фазы распределены таким образом:

  1. «А» на обмотку «1».
  2. «С» поступает к обмотке «2».
  3. «В» подается на обмотку мотора «3».

Следовательно, отличие только в том, что поменялись местами две фазы – «В» и «С». Фаза под литерой «А» остается все также на первом контакте. Но ротор будет вращаться в противоположную сторону – в обмотках происходит сдвиг фаз.

Практическая схема реверсивного пускателя

Схема подключения реверсивного пускателя трехфазного типа производится таким образом:

  1. Первой подсоединяется к контактам фаза «А». Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2.
  2. Выходы обоих пускателей соединяются параллельно при помощи перемычки.
  3. Фаза с обозначением «В» соединяется со средним контактом КМ1, а также при помощи перемычки с крайним правым КМ2.
  4. Фаза «С» соединяется с крайним правым контактом на КМ1 и средним на КМ2.

Именно таким образом происходит смена направления движения ротора.

Схема подключения реверсивного пускателя реализуется только лишь при помощи соединения силовых контактов и смены их порядка. Но обязательно в конструкции привода должна иметься защита от случайного включения двух магнитных пускателей одновременно.

Как осуществляется защита

Обязательно перед тем как произвести смену направления движения ротора, необходимо полностью застраховаться от различных ошибок. Допустим, конструкция не содержит в себе элементов, которые позволяют защитить схему. Тогда при вращении мотора против часовой стрелки магнитный пускатель КМ1 находится в рабочем состоянии. Все фазы поступают к соответствующим обмоткам мотора.

Если сразу же произвести включение магнитного пускателя КМ2, то фазы «В» и «С» окажутся замкнутыми. Следовательно, произойдет обычное межфазное замыкание, которое может привести к пожару или выходу из строя различных компонентов. Для предотвращения такого явления используются контакты нормально-замкнутого типа.

Они монтируются непосредственно в цепи питания катушек пускателей. Именно с их помощью появляется возможность включения только одного магнитного пускателя и полностью исключается вероятность включения в цепь питания одного пускателя до полного отключения второго. В противном случае постоянно будут выбивать автоматы защиты, оператору придется их включать.

Заключение

«Защита от дурака» имеется в любой электрической схеме. Если в схеме реверсивного пускателя не использовать такого типа защиту, то при эксплуатации возникнет множество проблем. Операторы, которые включают электропривод, обычно не имеют познаний в схемотехнике. Поэтому, чтобы исключить возможность ошибки, используется схема, которая не позволяет ввести в работу одновременно два магнитных пускателя.

Желательно применять в схемах лампы, которые будут показывать направление вращения двигателя. Чтобы произвести их подключение, нужно правильно соединить группы вспомогательных контактов. Можно использовать лампы на 220 Вольт или, если имеется отдельный источник питания, на 12 Вольт. Целесообразность использования таких типов конструкций сомнительна, так как намного проще применить в качестве источника напряжения одну из рабочих фаз. Обычно так и поступают, в редких случаях применяются дополнительные источники питания.

Желательно цепи управления питать от низковольтной цепи, но при этом возникает необходимость в источнике постоянного напряжения – придется применять специальные устройства. Для этого достаточно установить трансформатор и простейший выпрямитель, либо же использовать готовый блок питания. Обязательно нужно применить схему защиты цепи питания низковольтной части.

Реверсивные двигатели переменного тока

и двигатели переменного тока с электромагнитным тормозом

Двигатели переменного тока имеют одинаковую теорию работы, но, немного изменив его конструкцию, вы можете изменить его характеристики, чтобы они лучше подходили для определенных приложений. В предыдущем посте я сосредоточился на асинхронных двигателях переменного тока для однонаправленных приложений. В этом посте я объясню, что делает реверсивные двигатели переменного тока и двигатели переменного тока с электромагнитным тормозом идеальными для пуска/останова, реверса или вертикального применения, и покажу, как ими управлять.

Реверсивные двигатели

Во-первых, давайте разберемся, почему реверсивные двигатели называются реверсивными, чтобы не было путаницы. Все двигатели переменного тока с постоянными конденсаторами с разделенным конденсатором являются реверсивными. Однако асинхронные двигатели не могут мгновенно изменить направление вращения, поскольку сначала они должны полностью остановиться. Реверсивные двигатели могут изменять направление вращения намного быстрее. Например, асинхронные двигатели можно реверсировать, переключая их подводящие провода, но, поскольку он имеет перебег примерно на 30 оборотов по сравнению с

Перебег на 5 оборотов предлагаемый реверсивными двигателями, это не самый идеальный тип двигателя для использования, если необходимо мгновенное реверсирование.

Выбег рассчитывается путем измерения количества оборотов вала двигателя, необходимых для остановки двигателя после отключения питания. Первый закон движения Ньютона гласит, что объект в состоянии покоя остается в покое, а объект в движении остается в движении; если не применяется какая-либо внешняя сила, например трение. По сравнению с реверсивным двигателем с тормозным трением, единственными компонентами, создающими трение внутри асинхронного двигателя, являются шарикоподшипники, поэтому выбег асинхронных двигателей намного больше.

Реверсивные двигатели идеально подходят для пуска/останова или реверсивных приложений, которые требуют более короткого выбега, чем асинхронные двигатели, такие как реверсивные конвейеры. Они выделяют больше тепла, поэтому рекомендуется рабочий цикл 50% (максимум 30 минут непрерывной работы).

Сравнение конструкции с асинхронными двигателями

Структура асинхронных двигателей Структура реверсивных двигателей

То же, что и асинхронные двигатели, за исключением дополнительных компонентов фрикционного тормоза, перечисленных ниже:

Основное конструктивное различие между асинхронным двигателем и реверсивным двигателем заключается в добавлении фрикционного тормоза (изображен выше), который позволяет реверсивным двигателям значительно уменьшить перебег и выполнять операции пуска/останова и реверсирования. Пружина постоянно прижимает фрикционный тормоз к якорю и уменьшает выбег двигателя по команде на остановку. Удерживающий момент, создаваемый фрикционным тормозом, составляет всего около 10% выходного крутящего момента двигателя. Этот крутящий момент можно увеличить за счет передаточного числа, но он предназначен для уменьшения перебега; не держать груз вертикально.

Другим отличием конструкции является использование уравновешенной обмотки . Это означает, что первичная и вторичная обмотки имеют одинаковое сопротивление и индуктивность. Это обеспечивает одинаковый крутящий момент независимо от того, какая фаза находится под напряжением или в каком направлении вращается двигатель. В сочетании с фрикционным тормозом эти две функции позволяют менять направление на лету.

Поскольку фрикционный тормоз постоянно трется о якорь, мы используем конденсатор , номинал которого выше, чем у тех, что используются в асинхронных двигателях для увеличения пускового момента при запуске и реверсе. Из-за повышенной рабочей температуры мы также снижаем рабочий цикл до 50 % (50 % включено, 50 % выключено). Однако до тех пор, пока вы можете поддерживать температуру корпуса двигателя ниже 100°C, двигатель прослужит долго.

Принцип работы

При подаче питания на медные обмотки статора вокруг ротора создается вращающееся магнитное поле со скоростью колебаний переменного тока. По правилу левой руки Флеминга движущееся магнитное поле индуцирует ток на алюминиевых стержнях (проводниках) стального ротора, который генерирует собственные противоположные магнитные поля (закон Ленца). Затем магнитные поля от ротора взаимодействуют с вращающимся магнитным полем от статора, и ротор начинает вращаться.

Хотите узнать больше о теории работы двигателей переменного тока?

Электропроводка

Вот схема подключения однофазных реверсивных двигателей (аналогичных однофазным асинхронным двигателям). Поскольку трехфазные двигатели часто используются с инверторами или частотно-регулируемыми приводами для управления скоростью в непрерывном режиме, трехфазные реверсивные двигатели встречаются редко.

FYI направление вращения двигателя указано, если смотреть со стороны выходного вала двигателя.

Хотя принцип работы должен быть одинаковым для всех имеющихся на рынке однофазных двигателей переменного тока с постоянными конденсаторами и разделенными конденсаторами, цвета проводов могут отличаться.

Для стандартного 3-проводного двигателя провода белого, красного и черного цветов. Черный всегда подключен к нейтральному (N). И белый, и черный подключаются к 2 клеммам специального конденсатора. Когда фаза (L) подключена к черному или красному через клемму конденсатора, двигатель начнет вращаться в заданном направлении. Принцип работы двигателей с клеммной коробкой одинаков. Однако клеммы обозначены Z2, U2 и U1.

Конденсатор

Для однофазных двигателей конденсатор имеет решающее значение для его запуска.

Без пускового момента, обеспечиваемого конденсатором, вам придется помогать запускать двигатель, вращая вал вручную. Это вроде как старые пропеллеры на старинном самолете. Убедитесь, что вы не забыли правильно подключить конденсатор. Это был очень распространенный случай устранения неполадок, когда я работал инженером технической поддержки.

Вот пример подключения конденсатора с 4 клеммами и однофазного двигателя.

Пусть вас не смущает количество клемм на конденсаторе. На приведенной ниже схеме внутренней проводки показано, что две ближайшие клеммы имеют внутреннее соединение. Электрически это то же самое, что и традиционные конденсаторы с двумя выводами, которые имеют только один вывод с каждой стороны.
Как и в случае со всеми двигателями, не забудьте электрически заземлить двигатели с помощью специальной клеммы защитного заземления (PE), чтобы избежать поражения электрическим током или травмирования персонала.

Вот демонстрационное видео, показывающее, как выглядит стандартная проводка.

Двигатели с электромагнитным тормозом

Подобно реверсивному двигателю, двигатель с электромагнитным тормозом представляет собой реверсивный двигатель с присоединенным электромагнитным тормозом, активируемым при отключении питания. Так как базовый двигатель является реверсивным, рабочий цикл такой же при 50% (максимум 30 минут непрерывной работы). Разница в том, что двигатели с электромагнитным тормозом обеспечивают более короткий выбег и больший удерживающий момент.

Двигатели с электромагнитным тормозом предназначены для вертикальных применений , таких как грузовые лифты. Электромагнитный тормоз, активируемый при отключении питания, создает крутящий момент, близкий к номинальному крутящему моменту двигателя, и помогает обеспечить безопасность нагрузки (и любого персонала) в случае сбоя питания во время работы.

Электромагнитный тормоз предназначен для блокировки вала двигателя, чтобы удерживать груз на месте. Также уменьшает перебег с 30 оборотов до примерно 2 оборотов . Максимальный рабочий цикл электромагнитного тормоза для пуска/останова составляет 50 циклов в минуту или менее. Для более высоких рабочих циклов рекомендуется либо двигатель с тормозным пакетом, муфтой и тормозом, либо высокоэффективный шаговый двигатель.

Электромагнитный тормоз использует то же напряжение, что и двигатель, и предназначен для включения/блокировки нагрузки на месте. Когда магнитная катушка находится под напряжением, она становится электромагнитом и притягивает якорь против силы пружины, тем самым освобождая тормоз и позволяя валу двигателя свободно вращаться. Когда магнитная катушка не находится под напряжением, пружина прижимает якорь к тормозной ступице и удерживает вал двигателя на месте.

По сравнению с асинхронными и реверсивными двигателями метод подключения двигателей с электромагнитным тормозом немного сложнее, так как задействовано больше компонентов. Конденсатор также требуется для однофазных двигателей с электромагнитным тормозом. Трехфазный двигатель с электромагнитным тормозом предлагается для приложений с регулируемой скоростью; из-за того, что базовый двигатель является асинхронным двигателем с номинальным режимом работы, а не реверсивным двигателем с ограниченным режимом работы.

Если вы будете следовать приведенной выше схеме подключения и использовать указанные переключатели, электромагнитный тормоз будет автоматически включаться при остановке двигателя и отключаться, когда двигатель работает. Переключатель SW1 управляет как мощностью двигателя, так и мощностью торможения, а переключатель SW2 управляет направлением вращения двигателя.

В этом демонстрационном видео показано, как выглядит правильная проводка, включая автоматические выключатели, переключатели и модули цепи CR (для подавления перенапряжений).

Перебег, сравнение рабочих циклов

Ниже приводится сводка основных различий между асинхронными двигателями, реверсивными двигателями и двигателями с электромагнитным тормозом.

Тип двигателя Переполнение Рабочий цикл
Асинхронный двигатель 30~40 оборотов Непрерывный
Реверсивные двигатели 5~6 оборотов 50%
Двигатели с электромагнитным тормозом 2~3 оборота 50%

Значение выбега относится к валу двигателя. Добавление редуктора с высоким передаточным числом, увеличение трения или снижение инерции нагрузки — все это методы, помогающие уменьшить перебег.

Приведенные выше рабочие циклы являются рекомендуемыми значениями. Как правило, пока вы поддерживаете температуру корпуса двигателя ниже 100 ° C, двигатель будет в порядке.

Это все для реверсивных двигателей переменного тока и двигателей переменного тока с электромагнитным тормозом. Следите за публикациями о характеристиках крутящего момента двигателей переменного тока и не забудьте подписаться!

Узнать больше о сериях KII и KIIS 

В этом видео кратко рассказывается об асинхронных двигателях переменного тока серий KII и KIIS, реверсивных двигателях переменного тока и двигателях переменного тока с электромагнитным тормозом, а также об их предполагаемом применении.

 

Схемы подключения двигателя

Маркировка и соединения проводов электродвигателя

Для получения информации о конкретных соединениях двигателей Leeson перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные о соединениях, размеры, данные на заводской табличке и т. д.  www.leeson.com

Однофазные соединения: (Три фаза-см. Ниже)
Одно напряжение:

Вращение L1 L2
против часовой стрелки 1,8 4,5
CW 1,5 4,8

                        Двойное напряжение: (только основная обмотка)

Напряжение Вращение L1 L2   Присоединиться
Высокий против часовой стрелки  1 4,5 2&3&8
  CW  1 4,8 2&3&5
Низкий против часовой стрелки 1,3,8 2,4,5   ——-
  CW 1,3,5 2,4,8   ——-

                   Двойное напряжение: (основная и вспомогательная обмотки)

Напряжение Вращение      L1     L2      Присоединиться
Высокий против часовой стрелки 1,8 4,5 2&3,6&7
  CW 1,5 4,8 2&3,6&7
Низкий против часовой стрелки 1,3,6,8 2,4,5,7   ———
  CW 1,3,5,7 2,4,6,8   ———

Однофазные терминальные маркировки, идентифицированные по цвету: (Стандарты NEMA)
1-nlue 5-черный цвет P1-NO Цвет назначен
2-белый цвет 6-ни-цвета назначен P2-коричневый
3-оранжевый 7-нет Цвет назначен 9 9-й.