Содержание

Реверсивный контактор: принцип работы, схемы подключения

Содержание:

  1. Устройство и принцип работы
  2. Типы и модификации пусковых устройств
  3. Отличия реверсивных и обычных контакторов-пускателей
  4. Обычная нереверсивная схема включения
  5. Особенности реверсивной схемы
  6. Видео

Реверсивный контактор, представляющий собой одну из разновидностей электромагнитных пускателей. Он обеспечивает вращение вала в обоих направлениях, поддерживает устойчивую работу двигателей, своевременно отключает питание, защищает оборудование в аварийных ситуациях.

С точки зрения устройства, такие контакторы являются улучшенным образцом электромагнитного пускового аппарата и предназначаются для прямой работы с двигателями. Некоторые модели оборудованы дополнительными устройствами, выполняющими аварийное отключение при обрывах фаз и коротких замыканиях.

Устройство и принцип работы

Магнитные контакторы или пускатели относятся к коммутационным устройствам, выполняющим дистанционный пуск электродвигателей и прочего оборудования.

Конструкция и схема этих приборов очень похожа на электромагнитное реле. Важной дополнительной функцией является возможность своевременно подключать и отключать трехфазную нагрузку. Основным конструктивным элементом служит магнитный сердечник, изготовленный в виде буквы Ш. В качестве материала использовалась электротехническая сталь в виде тонких листов.

Сам сердечник состоит из двух половинок, одна из которых является неподвижной и закрепляется на основании прибора. Другая часть – подвижная – при отсутствии тока удерживается на некотором расстоянии от неподвижной части при помощи пружины. Таким образом, между обеими частями возникает воздушный зазор.

Управление пускателем осуществляется через катушку, помещенную на центральный стержень сердечника, расположенный в неподвижной части. К подвижному магнитопроводу закрепляются контакты посредством мостового соединения. В момент срабатывания пускателя эти мостики перемещаются одновременно с магнитопроводом и совершают замыкание с неподвижной контактной группой.

Пусковое устройство срабатывает после того, как на катушку управления будет подано напряжение. Возникает электромагнитная сила, под действием которой происходит притягивание подвижной части сердечника к неподвижной детали. В результате, силовые контактные группы оказываются замкнутыми, и ток начинает поступать к выходным клеммам. После прекращения подачи напряжения катушка обесточивается, и подвижная часть возвращается на свое место. В этот момент в работу включается возвратная пружина, обеспечивающая размыкание контактов.

Во время выключения на каждом полюсе контактов образуется двойной разрыв, способствующий более эффективному гашению электрической дуги. Функцию дугогасительной камеры выполняет крышка устройства, под которой располагаются контакты.

В пускателе имеется не только основная контактная группа, но и дополнительная – в виде блок-контактов, используемая для вспомогательных целей. В основном, они используются в управлении, в сигнальных и блокирующих схемах.

Типы и модификации пусковых устройств

Основными параметрами, по которым выполняется классификация пускателей:

  • Величина рабочего тока, коммутируемого главными контактами.
  • Значение рабочего напряжения в подключенной нагрузке.
  • Параметры тока и напряжения в катушке управления.
  • Категория и область применения.

Значения номинальных токов коммутационной аппаратуры представлены стандартным рядом в границах 6,3-250 А. Подобная классификация использовалась для устаревших приборов, которые в настоящее время используются все реже. Номинальному току соответствовал определенный класс – от 0 до 7.

Подобная классификация утратила свое значение с появлением на отечественном рынке зарубежной продукции. При выборе того или иного устройства в первую очередь рассматривается величина номинального тока. Поскольку электромагнитные пускатели, в том числе и контакторы с функцией реверса, являются низковольтными устройствами, следовательно, они могут работать с напряжением, не превышающим 1000 В. Эти границы предполагают использование двух видов стандартных напряжений – 380 и 660 вольт. Конкретное значение для данной модели отображается на корпусе и в технической документации устройства.

Значительно большим разнообразием отличаются напряжения, с которыми могут работать катушки управления. Это связано с тем, что магнитные пускатели и контакторы используются в разных условиях, и подключаются к различным типам потребителей и автоматическим системам управления. Для подобных систем вовсе недостаточно обычных сетевых фаз. Питание осуществляется с помощью специальных цепей оперативного тока с собственными параметрами тока и напряжения. Обычно, катушки управления рассчитаны на переменное напряжение 12-660 вольт и постоянное – 12-440 В.

Кроме того, контакторы и магнитные пускатели различаются внешним видом и комплектацией. В большинстве случаев, это модели, помещаемые в пластиковый корпус с кнопками запуска и остановки, расположенными снаружи. Многие приборы изначально комплектуются тепловыми защитными реле.

Отличия реверсивных и обычных контакторов-пускателей

Прежде чем рассматривать отличия обоих устройств следует отметить, что магнитный пускатель является усовершенствованной версией контактора, предназначенной для работы с низковольтным оборудованием и установками.

По сравнению с обычными контакторами, магнитные пускатели отличаются более компактными размерами и меньшим весом. Они предназначены для узкоспециализированных действий по включению и отключению электродвигателей. Контакторы же выполняют более широкий круг задач в силовых электрических цепях.

Многие пускатели дополнительно оборудуются тепловыми реле, выполняющими аварийные отключения и защищающие при обрывах фазы. Управление пуском и отключением производится с помощью специальных кнопок или отдельной системой, состоящей из катушки и слаботочной контактной группы. В некоторых модификациях могут использоваться оба варианта.

Все магнитные пускатели разделяются на два вида. Они могут быть реверсивными и нереверсивными. Реверсивный контактор состоит из двух отдельных магнитных пускателей, объединенных в общем корпусе и соединенных друг с другом электрическим путем. Оба компонента устанавливаются на общее основание, но одновременно работать они не могут. По команде оператора включается лишь один из них – первый или второй.

Управление реверсивным магнитным пускателем осуществляется при помощи блокировочных контактов нормально-замкнутого типа. Их основная функция заключается в предотвращении одновременного включения обеих контактных групп – реверсивной и обычной. В противном случае может произойти межфазное замыкание. Для этой же цели некоторые модели выпускаются с механической блокировкой. Поочередный запуск контакторов обеспечивает такое же поочередное переключение фаз. В результате, прибор начинает выполнять свою основную задачу – изменять направление вращения вала электродвигателя.

Оба варианта включения необходимо рассмотреть более подробно. Чтобы лучше понять суть реверсного запуска, необходимо вначале остановиться на обычном способе включения.

Обычная нереверсивная схема включения

Простейшим вариантом включения считается нереверсивная схема, обеспечивающая вращение вала электродвигателя только в одну сторону. В качестве примера можно взять обычный пускатель с управляющей катушкой на 220 В.

Подключение схемы начинается в трехфазном автомате, подходит к силовым клеммам пускового устройства, и далее соединяется с тепловым реле. Управляющая катушка с одной из сторон соединяется с нулевым проводником, а с противоположной – с фазой путем использования в этой цепи функциональных кнопок.

В состав кнопочного поста входят две кнопки: ПУСК – с контактами нормально-разомкнутого типа и СТОП – с нормально-замкнутыми контактами. Одновременно с кнопкой запуска выполняется подключение нормально-замкнутого контакта управляющего катушечного элемента. За счет теплового реле, включенного в промежуток фазной линии, обеспечивается защита двигателя от чрезмерных перегрузок. Его нормально-замкнутый контакт оказывается соединенным с элементами управления.

Когда трехфазный автомат оказывается включенным, начинается течение тока в сторону силовых контактов пусковой аппаратуры и к управляющей цепи. После этого схема приходит в работоспособное состояние. С целью запуска электродвигателя вполне достаточно воздействия на пусковую кнопку. Далее, в управляющие компоненты подается питание. Цепь оказывается замкнутой, после чего якорь начинает втягиваться и в то же время замыкать контакт прибора управления. К силовой контактной группе двигателя подается ток, и вал начинает вращение. После возврата в исходное состояние пусковой кнопки, питание к обмотке контактора будет поступать, проходя по вспомогательному контакту, благодаря чему работа двигателя продолжится без перерыва.

Прекратить работу нереверсивного агрегата возможно имеющейся кнопкой СТОП. Это вызовет разрыв цепи, и питающее напряжение перестает подходить к блоку управления. Начинается размыкание шунтирующего контакта и возврат якоря в исходное состояние с одномоментным размыканием основных контактов. По окончании этого процесса, наступает остановка электродвигателя. Когда кнопка СТОП окажется отпущенной, контакт управляющего элемента будет пребывать в разомкнутом положении до следующего запуска схемы.

Чтобы защитить электродвигатель во время нереверсивного пуска, применяется тепловое реле на основе биметаллических контактных пластин. Под влиянием возрастающего тока они начинают выгибаться. Поскольку эпластины соединяются с расцепителем, контакт в управляющей обмотке прерывает поступление питающего напряжения. Контакты прибора разъединяются и переходят в первоначальное состояние.

Реверсивная схема

Для того чтобы создать реверсивную схему включения электродвигателя, потребуется использование двух магнитных контакторов и трех кнопок управления. Оба пускателя устанавливаются в непосредственной близости для удобства соединений и подключений в том числе и с механической блокировкой.

Клеммы для подключения питания соединяются между собой на обоих устройствах. Контакты, подключаемые к электродвигателю, соединяются перекрестным способом. Провод питания электродвигателя может соединяться с любыми питающими клеммами одного из пускателей.

Следует помнить, что перекрестная схема подключения, категорически запрещает одновременное включение двух пускателей, поскольку это обязательно вызовет короткое замыкание. В связи с этим, проводники блокирующих цепей в каждом из приборов вначале соединяются с замкнутым контактом управления другого устройства, а потом – с разомкнутым контактом собственного. При включении второго контактора первый будет отключаться и наоборот.

Вторая клемма кнопки СТОП, находящейся в замкнутом положении, соединяется не с двумя, как обычно, а с тремя проводами. Два из них являются блокирующими, а через третий – подается питание на пусковые кнопки, соединенные параллельно между собой. Подобная схема позволяет отключить кнопкой остановки любой включенный пускатель и остановить вращение электродвигателя.

отличия от обычного, схема устройства, принцип действия

Прибор реверсивный пускательЭлектромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

Как работает пускательВ реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей — или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых — устранить синхронное включение двух групп контактов — реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя — перемена направления вращения электродвигателя. Изменился порядок чередования фаз — поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор.

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

Как работает пускатель двигателяПосле того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том, что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами. Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

Как подключить пускательВ любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1, одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Реверсивный пускатель в корпусе Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как правильно подключить реверсивный пускательКак уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

подключение и запуск, настройка реверса

Для переключения вращения электропривода в прямом и обратном направлении применяется схема реверсивного пускателя. Ниже рассмотрены пусковые и рабочие режимы, защитные мероприятия. Дополнительные рекомендации предотвратят ошибки при монтаже и аварии в процессе эксплуатации.

С помощью этих устройств обеспечивается управление электродвигателем

С помощью этих устройств обеспечивается управление электродвигателем

Нереверсивное подключение электродвигателя

Сначала следует рассмотреть относительно простой вариант, когда электрический двигатель выполняет свои функции с вращением только в одном направлении. Такие решения вполне достаточны для насосных станций, компрессорных установок.

Типовая нереверсивная схема

Типовая нереверсивная схема

В этом варианте подключен трехфазный источник питания 220 V последовательно через автомат и магнитный пускатель «КМ». Реле «Р» в нулевой цепи обеспечивает защиту при чрезмерном нагреве силового агрегата. Второй контакт обмотки пускателя подсоединен к одной из фаз «С» через плавкий предохранитель «FU», ограничивающий силу тока. Двумя кнопками устанавливают соответствующие режимы: «Пуск» и «Стоп».

Нереверсивный запуск

Включение автомата – подготовительный этап. Электродвигатель начинает вращение после нажатия кнопки «Пуск». Это действие подключает питание обмоток. Силой магнитной индукции якорь перемещается в нужное положение. Комбинированный контактор пускателя подает напряжение на рабочие обмотки. В этом положении шунт замыкает вспомогательную цепь, что сохраняет питание силового агрегата в рабочем режиме при отжатой кнопке.

Остановка

Для остановки нажимают «Стоп». В этом положении отключается питание катушек пускателя. Пружина перемещает якорь в исходное положение с одновременным размыканием силовых контактов.

Защита двигателя при нереверсивном пуске

При попадании в механический привод посторонних предметов ток в обмотках двигателя увеличивается. Нагрев изгибает биметаллические элементы теплового реле. На определенном уровне повышения температуры цепь нулевого провода разрывается. Контактные группы «КМ» возвращаются в исходное положение. Плавкий предохранитель выполняет свои функции при коротком замыкании между витками катушки индукции магнитного пускателя.

Устройство магнитного пускателя для реверсного пуска

Стандартный пускатель состоит из следующих компонентов:

  • сердечник с закрепленной на нем катушкой индукции;
  • якорь с механизмом перемещения контактных групп;
  • корпус, обеспечивающий целостность конструкции вместе с защитой от внешних воздействий.

При подаче (отключении) тока питания движением якоря замыкаются (отсоединяются) соответствующие контакты силовых цепей. Реверсивные модификации создают из двух обычных пускателей, установленных на одной монтажной панели. Дополнительными проводниками обеспечивается блокировка, препятствующая одновременному включению двух изделий.

Реверсивный пускатель

Реверсивный пускатель

К сведению. В некоторых моделях блокировка организована с применением специальных механических приспособлений.

В этом варианте используют отдельные клавиши, которые инициируют вращение ротора в прямом и обратном направлении. Первый рабочий режим сопровождается шунтированием контактной группой «КМ1» соответствующей цепи. Если нажать после этого клавишу «Назад», ничего не произойдет.

Для активизации обратного вращения следует сначала остановить двигатель, чтобы исключить поломку. Нажатием «Стоп» (С – на рисунке ниже) отключают питающее напряжение 380 V. После можно подать ток в нужные обмотки через силовые контактные группы «КМ2».

 Схема подключения

Схема подключения

Как подключается реверсивный пускатель

Такие пускатели применяют в станках и других устройствах, где необходимо попеременное вращение двигателя в разных направлениях. Принцип подключения однофазной сети аналогичен рассматриваемому варианту. В обоих случаях устанавливают плавкие предохранители для предотвращения повреждения цепей сильными токами.

Как происходит включение

На первой стадии основной выключатель «QF» обеспечивает подачу трех фаз на все входные контакты двух пускателей. Разомкнутая цепь управления отключает питание обмоток двигателя.

Как происходит переключение

Нажатием второй клавиши «Пуск-2» подают ток в обмотки для вращения двигателя в обратном направлении. Как видно по схеме, одновременное включение двух устройств невозможно.

Реверсивное подключение трехфазного двигателя

В остановленном положении система управления готова к работе. Однократным нажатием «Пуск-1» подают питание на обмотки для вращения ротора в прямом направлении. Шунт поддерживает целостность электрической цепи после возврата кнопки пружиной в исходное положение.

Переключение системы при противоположном вращении

Первый пускатель отключается, так как электромагнитный привод второго разрывает цепь контактной группы «КМ2» (схема реверс).

Изменение поворотного движения

Изменение режимов через остановку предотвращает быструю подачу напряжения на другие обмотки электродвигателя. Действие с определенной временной задержкой предотвращает механические повреждения, исключает сильные броски напряжения при подключении к источнику нагрузки с индуктивными характеристиками.

Схема подключения

Далее подробно рассмотрена однолинейная схема подключения реверсивного магнитного пускателя.

Силовая часть и цепи управления

Силовая часть и цепи управления

После включения силового автомата QF питание поступает на верхнюю группу контактов пускателей. Цепь управления подключается к фазе «А» и нейтральному проводнику, но находится в разомкнутом состоянии, которое поддерживается соответствующим положением элементов: SB2 (3), КМ 1.1. (2.1.).

Токи в исходном состоянии

Токи в исходном состоянии

Работа цепей управления при вращении двигателя влево

Однократное нажатие кнопки «Влево» подает питание на катушку для перемещения якоря и замыкания контактов КМ2. Шунт КМ 1.1. поддерживает целостность электрической цепи в рабочем режиме.

Положение управляющих компонентов при вращении двигателя в прямом направлении

Положение управляющих компонентов при вращении двигателя в прямом направлении

Работа цепей управления при вращении двигателя вправо

Для активации противоположного вращения меняют местами две фазы на обмотках двигателя. Предварительно нажимают «Стоп» (SB1), так как без этой промежуточной операции включить второй реверсивный магнитный пускатель не получится.

Изменения при вращении электродвигателя в обратном направлении

Изменения при вращении электродвигателя в обратном направлении

Силовые цепи

На следующих рисунках показано, как именно переключаются обмотки в схеме реверсивного пуска для вращения ротора в одну и другую стороны. Фаза «А» остается на том же месте. Меняются местами «В» и «С».

Подключение двигателя в разных режимах

Подключение двигателя в разных режимах

Защита силовых цепей от короткого замыкания или «защита от дурака»

Если переключение пускателей выполнить без перерыва, две фазы будут одновременно поданы на силовые клеммы КМ1. Короткое замыкание повредит конструкцию. Для предотвращения подобных ситуаций применяют отдельные контактные группы (КМ 2.2. и КМ1.2.), которые устанавливают перед катушками КМ1 и КМ2. При подключении этих устройств, кроме соответствия по нагрузкам, отдельное внимание следует уделить корректному монтажу и защитным мероприятиям.

Следует учитывать особенности решения разных практических задач. Так, асинхронный двигатель подключают через пусковой конденсатор. Обеспечить функциональность пускателя от источника постоянного напряжения можно. Однако в этом случае понадобится ограничить силу тока специальным резистором, чтобы предотвратить повреждение катушки. Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря.

Видео

принципы работы и структурные особенности

Всем нам известна пара слов – «аверс и реверс». Эти лексемы — латинского происхождения. Имеют семантику, противоположную друг другу, означая: «прямой и обратный», «лицевая сторона и оборотная сторона» и так далее. Эти понятия часто используют в нумизматике, но физика и математика не являются в этом плане исключением. Например, существует реверсивный пускатель, который просто незаменим в электромеханике, ему и будет посвящена данная статья. Но прежде чем разбираться, как устроен реверсивный пускатель, стоит понять принципы его работы. Для этого рекомендуем обратить внимание на ключевые понятия, связанные с магнитным пускателем.

Что такое магнитный пускатель, и какое он имеет предназначение?

Стандартный магнитный пускатель – это типичное электромеханическое устройство, которое нацелено на работу с трехфазными электродвигателями. Его целевое назначение – обеспечение непрерывной и безопасной работы двигателя, включая контроль отключения питания агрегата, если будут возникать внештатные или аварийные ситуации.

магнитный пускатель

Используемая схема реверсивного пускателя позволяет успешно его применять для электрокотлов, тэнов, электродвигателей, то есть когда необходимо проявить функционал коммутационного аппарата или осуществить автоматическое подключение или отключение от электрического источника.

Определим основные задачи магнитного пускателя, а они следующие:

  • дистанционное управление агрегатами. Например, асинхронным двигателем. Созданная схема реверсивного пускателя с кнопками позволяет менять направление вращения вала.
  • контроль нагрузок агрегата. Применятся для разгрузки маломощных контактов. Даже есть возможность подключить магнитный пускатель к домашнему выключателю, подготавливая его к работе с большим количеством лампочек.

Как устроен магнитный пускатель: все его основные составляющие

Стандартный магнитный пускатель состоит из следующих основополагающих элементов:

  • внешнего защитного кожуха;
  • основного инструмента управления;
  • специального контактора;
  • тепловогореле.

Как устроен магнитный пускатель

Конструктивные особенности реверсивного магнитного пускателя простые, но достаточно эффективные и надежные. Все агрегаты усовершенствованы и модифицированы настолько, что их компактность и функциональность переоценить просто нельзя. Они легкие и удобные в применении, особенно те виды оборудования, которые оснащены специальными тепловыми реле, отвечающими за аварийное отключение. С такой защитой работа выполняется бесперебойно и без отклонения от норм, так как просто не может произойти обрыва фаз, и следовательно, аварийная ситуация и долгий простой оборудования практически исключаются.

Имеющаяся в устройстве катушка отвечает за необходимую коммутацию всех силовых контактов и провоцирует замыкание силовой цепи, а когда выполняется отключение питания, то происходит, соответственно, размыкание созданной цепи. Существующая схема подключения реверсивного пускателя включает и блокировочные контакты, которые служат для управления силовыми элементами цепи, не исключая контроль. Причем все имеющиеся в схеме контакты могут находиться в двух состояниях: нормально-разомкнутом и нормально-замкнутом.

Что такое реверсивный магнитный пускатель и в чем его преимущества?

Пришло время более детально обсудить технические особенностии узнать, что же это такое реверсивный пускатель трехфазный. Как уже становится ясно, существует два вида магнитных пускателей. Первый – прямой или нереверсивный. Второй – реверсивный, о котором дальше пойдет в речь в статье.

реверсивный магнитный пускатель

Обычно стандартные реверсивные пускатели оснащаются двумя магнитными пускателями, собранными в одном корпусе и соединенными между собой. Если присмотреться к схеме, то можно рассмотреть место крепления и соединения на общем основании двух этих магнитных элементов. Ну а теперь о главной особенности реверсивного пускателя – может работать только один из элементов, то если либо первый, либо второй. Такая переменность необходима, чтобы исключить межфазное замыкание.

По принятому режиму работы, да и по схеме реверсивного магнитного пускателя запуск происходит через замкнутые блокировочные контакты, которые обеспечивают попеременное, то есть неодновременное включение реверсивных и нереверсивных режимов. При этом реализуется главенствующая задача реверсивного пускателя – смена направлений вращения того или иного электрического двигателя, иными словами: все взаимосвязано, если изменился порядок чередования фаз, то, соответственно, выполняются преобразования имеющегося у оборудования ротора, меняется направление вращения.

Где и когда используются реверсивные магнитные пускатели?

Сфера применения реверсивных магнитных пускателей расширена. Например, при помощи бесконтактного реверсивного пускателя не обходится работа асинхронных двигателей, которые применяются в различных станках и мощных насосах.

Нередки случаи, что выполняется подключение реверсивного пускателя для расширенных систем вентиляции, для надежности запорной арматуры. Всегда ценится специалистами «беспроблемное оборудование», управлять которым несложно, а эксплуатация длительная и надежная. К современным бонусам относят дистанционное управление – это достаточно выгодная опция, которая может быть обеспечена применением магнитного пускателя. Многие виды надежных электрических замков используют специальные пускатели для управления, а также выполняется внедрение такого незаменимого электромеханического элемента в систему отопления, работу лифтов.

Чем отличается схема магнитного реверсивного пускателя: правила комплектации

Представим, что появилась необходимость разобраться в особенностях устройства, в котором электрический двигатель способен работать в двух направления – прямом и обратном, то есть реверсивном. И если такая особенность очевидна, значит, в схеме агрегата предусмотрено наличиемагнитного реверсивного пускателя. Его использование не такое и простое, необходимо продумать режим работы, чтобы не допустить опасное замыкание фаз.

В схеме обязательно можно найти обозначение дополнительной цепи управления и кнопки запуска реверса. В виду такой продуманности, созданная схема отличается надежностью, так как защищена от короткого замыкания.

А за счет чего проходит реверс? Это легко объяснимо. — За счет переворачивания местами двух имеющихся в системе фаз: когда одна прекращает работу, а другая, наоборот, запускается. Для более надежной защиты, обязательно в схеме продумана блокировка, отвечающая за точную и своевременную остановку одного из пускателей, первого или второго. Все зависит от поставленных задач. Напомним, что в случае срабатывания двух пускателей мгновенно произойдет короткое замыкание на силовых контактах агрегата.

схема магнитного реверсивного пускателя

Отметим, что реверсивное движение запускается не мгновенно, так как требуется срабатывание нескольких важных пунктов. Во-первых, обязательно рекомендуется остановить работу двигателя, нажать кнопку «Стоп». Во-вторых, надо обратить внимание на состояние катушки, снять с нее напряжение, иначе процесс реверсивного запуска даст сбой. Если все сделано правильно, то пускатель вернется в исходное положение под действием пружины. Все, агрегат готов к реверсу. Нажимаем кнопку «Пуск», соответственно, подается нужное напряжение на катушку, значит, процесс запущен. С панели управления устройства можно считать информацию замыкании электрической цепи. А это значит, что в систему поступил ток, и он постепенно подается в катушку. Одновременно выполняется блокирование всех не вступивших в работу контактов. Этого требует безопасность.

Отметим, что в случае срабатывания теплового реле, произойдет остановка агрегата во избежание аварийной ситуации.

Таким образом, магнитный пускатель играет важную роль в работе двигателей. Свое место назначения также достойно занимаем и реверсивный пускатель, обеспечивая бесперебойную работу станков, тэнов, лифтов и другого электрического оборудования. Пускатели относятся в надежным и безопасным образцам, особенно если они дополнительно оснащены блокировочными системными механизмами. Они находятся внутри кожуха и не допускают срабатывание одновременно двух катушек, не доводя до замыкания фаз.

Схема подключения реверсивного магнитного пускателя

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.

Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.

Схема подключения реверсивного пускателя

На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.

В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.

Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.

Контактная приставка для магнитного пускателя

Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.

1. Исходное состояние схемы.

При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.

Рабочее состояние схемы реверсивного магнитного пускателя

Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.

На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.

Монтажная схема цепей управления реверса эл. двигателя

2. Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Движение фазы при срабатывании магнитного пускателя КМ1

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

Пример схемы управления магнитным пускателем

3. Работа цепей управления при вращении двигателя вправо.

Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.

Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.

При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:

Рабочее состояние схемы реверсивного магнитного пускателя

Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.

Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.

Работа цепей управления при движения вправо

4. Силовые цепи.

А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.

Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.

Силовая часть магнитного пускателя КМ1

Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.

Обвязка силовых контактов магнитного пускателя КМ2

А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.

Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.

Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».

Обвязка силовых контактов пускателей на реальных элементах

Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.

5. Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

6. Заключение.

Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.

И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.

А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!

Реверсивная схема подключения магнитного пускателя

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны  подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД;

2) нормально-разомкнутой кнопки НАЗАД;

3) нормально-замкнутой кнопки СТОП.

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение, его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД.  Цепь питания обмотки магнитного пускателя  КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя. 

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД, она возвращается в исходное нормально-разомкнутое состояние. Теперь  питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП. Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП. Она возвращается в исходное, нормально-замкнутое положение. Но  поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД.

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД. Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД. Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП. Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП, схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В,  схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.


Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Не забудьте посмотреть новые статьи сайта.

Рекомендую также прочитать:

Нереверсивная схема подключения магнитного пускателя.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Менять ли автоматический выключатель, если его «выбивает»?

Почему в жару срабатывает автоматический выключатель?

принцип действия, применение в электродвигателях и техника безопасности

Применение реверсивного пускателя​В промышленности и в быту широко используются электродвигатели. При эксплуатации некоторых механизмов необходимо обеспечить вращение вала двигателя в разный направлениях, то есть нужно осуществлять реверс. Для этого используют определённую схему управления и применяют дополнительный магнитный пускатель (контактор) или реверсивный пускатель.

Теоретические основы

Вид схемы реверсивного пуска двигателя зависит от следующих факторов:

  • тип электродвигателя;
  • питающее напряжение;
  • назначение электрооборудования.

Поэтому схемы реверса могут сильно отличаться, но, поняв принципы их построения, вы сможете собрать или отремонтировать любую подобную схему.

Прежде чем разбирать схемы реверса двигателя, нужно определиться с понятиями, которые будут использоваться при описании работы:

  • Схема реверсивного пускателяНормально разомкнутый (открытый) контакт — это контакт, который без внешнего воздействия находится в разомкнутом состоянии. Под внешним воздействием, прежде всего, понимают подачу напряжения на катушку управления реле или магнитного пускателя. В случае с кнопками коммутация контактов производится механически.
  • Нормально замкнутый (закрытый) контакт — это контакт, который без воздействия внешних сил находится в замкнутом состоянии.
  • Магнитный пускатель — это электромагнитное устройство, имеющее три силовых нормально разомкнутых контакта и несколько вспомогательных контактов. При подаче питающего напряжения на катушку электромагнита, якорь притягивается и все контакты одновременно переключаются. Силовые контакты используются для подключения электродвигателя к сети, а вспомогательные нужны для построения схемы управления, поэтому они могут быть нормально открытыми или закрытыми. После снятия управляющего напряжения, под действием пружин устройство возвращается в исходное состояние.
  • Реверсивный пускатель — это два одинаковых магнитных пускателя, закреплённые на одном основании, с общим корпусом. Предназначен аппарат для реверсирования трёхфазных двигателей, поэтому силовые контакты соединены между собой определённым образом.
  • Тепловое реле — устройство для защиты двигателя от перегрева, вызванного повышенными токами в обмотках.
  • Контактор — коммутирующее устройство во многом аналогичное магнитному пускателю. Но в отличие от него может иметь от двух до четырёх нормально открытых силовых контактов с дугогасительными камерами и предназначен для переключения больших токов.
  • Автоматический выключатель — аппарат для защиты от токов короткого замыкания.

Для того чтобы электродвигатель поменял своё вращение нужно изменить его магнитное поле. Для этого необходимо произвести некоторые переключения, которые зависят от типа электрической машины.

Принцип работы асинхронного двигателя

Работа электродвигателя может осуществляться как в трехфазном, так и однофазном режиме. Принцип действия схем меняется незначительно, однако имеются некоторые дополнения в устройстве питания от однофазной сети.

Трехфазная сеть

Принцип работы

Электрическая принципиальная схемя реверсивного пуска трёхфазного электродвигателя с короткозамкнутым ротором выглядит следующим образом (схема представлена на Рис.1)Питание всей схемы осуществляется от трёхфазной сети переменного тока с напряжением 380 В через автомат АВ.

Для того чтобы сделать реверс такой электрической машины (М), нужно изменить чередование двух любых фаз, подключённых к статору. На схеме магнитный пускатель Мп1 отвечает за прямое вращение, а Мп2 — за обратное. На рисунке видно, что при включении Мп1 происходит чередование фаз на статоре А, В, С, а при включении Мп2 — С, В, А, то есть фазы А и С меняются местами, что нам и нужно.

При подаче на схему напряжения, катушки Мп1 и Мп2 обесточены. Их силовые контакты Мп1.3 и Мп2.3 разомкнуты. Электродвигатель не вращается.

При нажатии на кнопку Пуск1, подаётся питание на катушку Мп1, пускатель срабатывает и происходит следующее:

  1. Замыкаются силовые контакты Мп1.3, питающее напряжение подаётся на обмотки статора, двигатель начинает вращаться.
  2. Замыкается нормально разомкнутый вспомогательный контакт Мп1.1. Этот контакт обеспечивает самоблокировку пускателя Мп1. То есть, когда кнопка Пуск1 будет отпущена, катушка Мп1 останется под напряжением благодаря контакту Мп1.1 и пускатель не отключится.
  3. Размыкается нормально закрытый вспомогательный контакт Мп1.2. Этот контакт разрывает цепь управления катушкой Мп2, таким образом, обеспечивается защита от одновременного включения обоих контакторов.

Если возникла необходимость остановить двигатель или произвести реверс, нужно нажать

Принципиальная схема кправления

кнопку Стоп. При этом размыкается цепь питания Мп1, контактор отключается, его контакты возвращаются в первоначальное состояние, показанное на рисунке, электродвигатель останавливается.

Для того чтобы двигатель начал вращаться в обратную сторону, нужно нажать кнопку Пуск2. По аналогии с Мп1, сработают контакты Мп2.3, Мп2.1, Мп2.2, произойдёт переключение фаз на обмотке статора и двигатель начнёт вращаться в противоположном направлении.

Питание схемы управления осуществляется от двух фазовых проводов. При таком включении должны быть использованы контакторы с катушками на 380 В. Предохранители Пр1 и Пр2 обеспечивают защиту от токов короткого замыкания. Кроме того, извлечение этих предохранителей позволяет полностью обесточить все элементы управления и избежать риска получения электротравм при обслуживании и ремонте.

Защиту электрической машины от перегрузок обеспечивает тепловое реле РТ. При протекании повышенного тока в любой из трёх обмоток статора происходит нагрев биметаллической пластины РТ, в результате чего она изгибается. При определённом токе пластина нагревается настолько, что её изгиб вызывает срабатывание теплового реле, из-за чего оно размыкает свой нормально закрытый контакт РТ в схеме управления катушками Мп1 и Мп2 и двигатель отключается от сети.

Время срабатывания зависит от величины тока: чем выше ток, тем меньше время срабатывания. Благодаря тому, что РТ действует с некоторой задержкой, пусковые токи, которые могут в 7-10 раз превышать номинальные, не успевают спровоцировать срабатывание защиты.

В зависимости от типа устройства и настроек после срабатывания теплового реле возможны два варианта возвращения схемы в рабочее состояние:

  • Автоматический — после остывания чувствительного элемента реле возвращается в нормальное состояние и двигатель можно запустить кнопкой Пуск.
  • Ручной — нужно нажать специальный флажок на корпусе РТ, после этого контакт замкнётся и схема будет готова к запуску.

Рассмотренная схема реверса трехфазного двигателя может видоизменяться в зависимости от условий и потребностей. Например, питание схемы управления можно осуществлять от сети 12 В, в этом случае все элементы управления будут находиться под безопасным напряжением и такую установку можно без риска использовать при высокой влажности.

Реверс двигателя можно осуществлять только в том случае, когда двигатель полностью неподвижен, иначе пусковые токи возрастут в несколько раз, что приведёт к срабатыванию защиты. Для того чтобы контролировать выполнение этого условия, в схему управления могут быть добавлены реле времени, контакты которых подключаются последовательно к МП2.2 и Мп1.2. Благодаря этому, после нажатия кнопки Стоп двигатель можно будет запустить в противоположном направлении только по истечении несколько секунд, которые необходимы для полной остановки механизма.

Однофазный режим

Реверсивная схемаДля того чтобы трёхфазный асинхронный двигатель с короткозамкнутым ротором работал от однофазной сети 220 В, используется схема подключения с пусковым и рабочим конденсаторами.

От обмотки статора электродвигателя отходит три провода. Два провода подключаются напрямую к фазному и нулевому проводам, а третий соединяется с одной из питающих жил через конденсатор. В этом случае направление вращения зависит от того, к какому из питающих проводников подключён конденсатор.

Если требуется превратить такую схему подключения в реверсивную, её нужно дополнить тумблером, который будет переключать ёмкость с одного провода питания на другой.

Машины постоянного тока

Реверсивный пуск двигателя постоянного тока можно осуществить изменением полярности подключения обмотки якоря или обмотки возбуждения. В зависимости от того, как эти две обмотки соединены между собой, двигатели постоянного тока имеют следующие типы возбуждения:

  • независимое — обмотки возбуждения и якоря запитывают от различных источников;
  • последовательное;
  • параллельное;
  • смешанное.

Типовые схемы управленияДвигатели постоянного тока могут уйти вразнос — режим работы машины, при котором обороты увеличиваются настолько, что это приводит к механическому повреждению.

В случае применения коллекторного двигателя с параллельным или независимым возбуждением такой режим может возникнуть при обрыве обмотки возбуждения. Поэтому схема подключения реверсивного двигателя в этом случае строится таким образом, чтобы осуществлялось переключение обмотки якоря, а обмотка возбуждения должна быть напрямую подключена к источнику питания. То есть недопустимо цепь возбуждения подключать через какие-либо контакты или предохранители.

В остальном схема управления отличается от реверсивного подключения трехфазного двигателя только тем, что происходит переключение двух питающих проводов постоянного тока, вместо трёх фаз переменного.

Плюсы использования магнитных пускателей

Основным элементом в реверсивных схемах подключения электродвигателя является магнитный пускатель. Применение этих аппаратов позволяет решить ряд задач:

  • Принципиальная схема кправленияОдновременное подключение трёх фаз.
  • Осуществление коммутации больших токов малыми сигналами. Некоторые аппараты могут коммутировать токи порядка сотен ампер, а ток необходимый для питания катушки редко превышает один ампер.
  • Дистанционный запуск. Благодаря конструкции пускателя и малым токам срабатывания, кнопки управления могут находиться на расстоянии нескольких сотен метров от электродвигателя, что, в свою очередь, обеспечивает не только удобство эксплуатации, но и безопасность оператора.
  • Нулевая защита. Если в процессе работы отключится напряжение, например, из-за срабатывания токовой защиты, то после возобновления электроснабжения, механизм начнёт работать самопроизвольно, что может привести не только к порче оборудования, но и к человеческим жертвам. Применение контактора исключает такую вероятность, так как после обесточивания он отключится и будет сохранять своё состояние до тех пор, пока оператор не нажмёт кнопку запуска.
  • Универсальность. Катушки для определённого типа пускателей имеют одинаковые характеристики и конструкцию, но напряжение срабатывания может быть разным. Благодаря этому, установив соответствующую катушку, контактор можно использовать в различных сетях. Об этой особенности следует помнить при замене одного пускателя на другой, так как внешне совершенно одинаковые устройства, могут иметь разное рабочее напряжение.

Техника безопасности

При монтаже, наладке и ремонте необходимо строго соблюдать правила техники безопасности.

В случае работы со схемой управления электродвигателями для полного отключения нужно обесточить силовую часть и цепи управления. Некоторые электродвигатели могут получать питание от двух независимых источников питания, поэтому необходимо обязательно изучить схему подключения. Произведите необходимые отключения и проверьте индикатором отсутствие напряжения не только на силовых, но и на вспомогательных контактах.

Если в схеме установлены конденсаторы, после отключения питания следует дать им время для разрядки, прежде чем касаться токопроводящих частей.