Сравнительная таблица теплопроводности современных строительных материалов
Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров.
Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.
Назначение теплопроводности
Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой.
Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения.
Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.
Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.Что оказывает влияние на показатель теплопроводности?Теплопроводность определяется такими факторами:Пористость определяет неоднородность структуры.
При пропуске тепла через такие материалы процесс охлаждения незначительный;Повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;Повышенная влажность увеличивает данный показатель.Использование значений коэффициента теплопроводности на практике.
Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.Показатели теплопроводности для готовых построек. Виды утеплений.При создании проекта нужно учитывать все способы утечки тепла.Оно может выходить через стены и крышу, а также через полы и двери.
Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.Дополнительная теплоизоляция проводится в каркасных зданиях.
В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:Показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;Влагопоглощение имеет большое значение при утеплении наружных элементов;Толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;Важна горючесть.
Качественное сырье имеет способность к самозатуханию;Термоустойчивость отображает способность выдерживать температурные перепады;Экологичность и безопасность;Звукоизоляция защищает от шума.В качестве утеплителей применяются следующие виды:Минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;Пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью.
Рекомендуется для применения в нежилых строениях;Базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;Пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;Пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;Экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;Пенофол представляет из себя многослойный утепляющий пласт.
В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит.Они имеют стойкость к влаге и к огню.
А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.ОБРАТИТЕ ВНИМАНИЕ! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.Таблица теплопроводности строительных материалов: особенности показателей.Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве.
Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.Как использовать таблицу теплопроводности материалов и утеплителей?В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана.Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций.
При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.Значения коэффициентов теплопередачи материалов в таблице.При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.
Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности.Данное значение часто указывается на упаковке, если это изоляция.
Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.
опубликовано econet.ruP.S. И помните, всего лишь изменяя свое потребление – мы вместе изменяем мир! © econetВ продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.
Основные характеристики утеплителей
Соотношение качества утеплителя, в зависимости от его толщины
При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:
Теплопроводность.
От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага.
К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения.
Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.Экологичность.
Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.
Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).
Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.
Сравнение популярных утеплителей
СРЕДНЯЯ ТОЛЩИНА ТЕПЛОИЗОЛЯЦИИ ДЛЯ РАЗЛИЧНЫХ СТЕНОВЫХ КОНСТРУКЦИЙТеплоизоляционный материалКирпичная кладка (полтора кирпича)Газобетон 30 смДеревянный брус 30 смКаркас из OSBЭкотермикс7 смЗ см5 см10 смМинеральная вата13 см8 см10 см15 смПенополистирол12 см7 см8 см13 смПеностекло11 см6,5 см7 см13 см
Давайте рассмотрим несколько материалов, применяемых для повышения энергоэффективности сооружений:
Минеральная вата. Производится из естественных материалов. Устойчива к огню и отличается экологичностью, а также низкой теплопроводностью.
Но невозможность противостоять воздействию воды сокращает возможности использования.Пенопласт. Легкий материал с отличными утеплительными свойствами. Доступный, легко устанавливается и влагоустойчив.
Недостатки: хорошая воспламеняемость и выделение вредных веществ при горении. Рекомендуется его использовать в нежилых помещениях.Бальзовая вата. Материал практически идентичный минвате, только отличается улучшенными показателями устойчивости к влаге.
При изготовлении его не уплотняют, что значительно продлевает срок службы.Пеноплэкс. Утеплитель хорошо противостоит влаге, высоким температурам, огню, гниению, разложению. Отличается отличными показателями теплопроводности, прост в монтаже и долговечен.
Можно использовать в местах с максимальными требованиями способности материала противостоять различным воздействиям.Пенофол. Многослойный утеплитель естественного происхождения. Состоит из полиэтилена, предварительно вспененного перед производством.
Может иметь различные показатели пористости и ширины. Часто поверхность покрыта фольгой, благодаря чему достигается отражающие эффект. Отличается легкостью, простотой монтажа, высокой энергоэффективностью, влагостойкостью, небольшим весом.
Коэффициент теплопроводности размерность
Выбирая материал для использования в непосредственной близости с человеком, необходимо особое внимание уделять его характеристикам экологичности и пожаробезопасности. Также в некоторых ситуациях рационально покупать более дорой утеплитель, который будет обладать дополнительными свойствами влагозащиты или звукоизоляции, что в окончательном счете позволяет сэкономить.
Сравнение с помощью таблицы
NНаименованиеПлотностьТеппопроводностьЦена , евро за куб.
м.Затраты энергии накг/куб. мминмаксЕвросоюзРоссияквт*ч/куб. м.1целлюлозная вата30-700,0380,04548-9615-3062древесноволокнистая плита150-2300,0390,052150800-14003древесное волокно30-500,0370,05200-25013-504киты из льняного волокна300,0370,04150-200210305пеностекло100-1500. 050,07135-16816006перлит100-1500,050.062200-40025-302307пробка100-2500,0390,05300808конопля, пенька35-400,040.041150559хлопковая вата25-300,040,0412005010овечья шерсть15-350,0350,0451505511утиный пух25-350,0350,045150-20012солома300-4000,080,1216513минеральная (каменная) вата20-800.0380,04750-10030-50150-18014стекповопокнистая вата15-650,0350,0550-10028-45180-25015пенополистирол (безпрессовый)15-300.0350.0475028-7545016пенополистирол экструзионный25-400,0350,04218875-9085017пенополиуретан27-350,030,035250220-3501100
Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.
Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.
(1оценок, среднее: 5,00из 5)Загрузка…Читайте по теме
- Дата: 11-04-2015Просмотров: 263Комментариев: Рейтинг: 64
Строительство любого дома, будь то коттедж или скромный дачный домик, должно начинаться с разработки проекта. На этом этапе закладывается не только архитектурный облик будущего строения, но и его конструктивные и теплотехнические характеристики.
Схема теплопроводности и толщины материалов.
Основной задачей на этапе проекта будет не только разработка прочных и долговечных конструктивных решений, способных поддерживать наиболее комфортный микроклимат с минимальными затратами. Помочь определиться с выбором может сравнительная таблица теплопроводности материалов.
Понятие теплопроводности
В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.
Коэффициент теплопроводности кирпичей.
Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.
Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.
Численно процесс переноса тепла характеризуется коэффициентом теплопроводности. Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.
Соответственно, на этапе проектных работ необходимо спроектировать конструкции, теплопроводность которых должна иметь по возможности наименьшее значение.
Вернуться к оглавлению
Теплопроводность материалов, используемых в строительстве, зависит от их параметров:
Зависимость теплопроводности газобетона от плотности.
Пористость — наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом.
Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.Структура пор — малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.Плотность — при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии.
В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.Влажность — значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.Влияние температуры на теплопроводность материала отражается через формулу:
λ=λо*(1+b*t), (1)
где, λо — коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;
b — справочная величина температурного коэффициента;
t — температура.
Вернуться к оглавлению
Из понятия теплопроводности напрямую вытекает понятие толщины слоя материала для получения необходимого значения сопротивления теплового потока. Тепловое сопротивление — нормируемая величина.
Упрощенная формула, определяющая толщину слоя, будет иметь вид:
Таблица теплопроводности утеплителей.
H=R/λ, (2)
где, H — толщина слоя, м;
R — сопротивление теплопередаче, (м2*°С)/Вт;
λ — коэффициент теплопроводности, Вт/(м*°С).
Данная формула применительно к стене или перекрытию имеет следующие допущения:
- ограждающая конструкция имеет однородное монолитное строение;используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:
- СНиП23-01-99 — Строительная климатология;СНиП 23-02-2003 — Тепловая защита зданий;СП 23-101-2004 — Проектирование тепловой защиты зданий.
Вернуться к оглавлению
Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.
Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.
Значения коэффициентов теплопроводности сведены в таблицу 1:
Таблица 1
МатериалКоэффициент теплопроводности, Вт/(м*°С).Пенобетон(0,08 — 0,29) — в зависимости от плотностиДревесина ели и сосны(0,1 — 0,15) — поперек волокон0,18 — вдоль волоконКерамзитобетон(0,14-0,66) — в зависимости от плотностиКирпич керамический пустотелый0,35 — 0,41Кирпич красный глиняный0,56Кирпич силикатный0,7Железобетон1,29
Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.
При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.
Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.
Теплоизоляционные материалы имеют достаточно малые величины значения коэффициента теплопроводности.
Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы — это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.
Вернуться к оглавлению
Схема сравнения теплопроводности стен из газобетона и кирпича.
При проектировании и производстве строительных работ необходимо учитывать возможные пути теплопотерь:
- 30-40% потерь тепла приходится на поверхность стен;20-30% — через межэтажные перекрытия и крышу;около 20% потерь приходится на поверхность, занимаемую оконными и дверными проемами;приблизительно 10% тепла уходит из помещения через плохо утепленные полы.
Важным фактором при учете теплопроводности в строительстве является обеспечение надлежащей ветро- и пароизоляции.
В наибольшей степени это справедливо для пористых утеплителей. Т.е. при ограничении доступа влаги внутрь конструкций (как извне, так и снаружи) сопротивление теплопередачи будет выше. Утеплитель будет более эффективно работать, соответственно, потребуется меньшая толщина конструкций.
В идеале стены и перекрытия должны выполняться из теплоизоляционных материалов.
Однако они обладают низкой конструкционной прочностью, что ограничивает широту их применения. Возникает необходимость выполнять основные несущие конструкции из кирпича, дерева, пенобетонных блоков и т. п.
Наиболее распространенным вариантом конструкций домов, встречающимся на практике, является комбинация несущей конструкции и теплоизоляции.
Здесь можно различить:
Сравнение теплопроводности соломобетонных блоков с другими материалами.
Каркасный вариант строительства — основной каркас, обеспечивающий пространственную жесткость, выполняется из деревянных досок или брусьев. Утеплитель укладывается в межстоечное пространство.
В некоторых случаях для достижения требуемых показателей по энергоэффективности осуществляется дополнительное утепление снаружи каркаса.Возведение стен дома из кирпича, пористых бетонных блоков, дерева — утепление осуществляется по наружной поверхности. Слой утеплителя компенсирует избыточную теплопроводность основного стенового материала. С другой стороны материал основной стены несет на себе нагрузки, компенсируя малую механическую прочность утеплителя.
Аналогичные закономерности будут справедливы при возведении межэтажных перекрытий и кровельных конструкций.
Таким образом, используя комбинацию материалов с требуемыми значениями коэффициентов теплопроводности, можно получить оптимальные по свойствам и толщине ограждающие конструкции здания.
Источники:
- econet.ru
- jsnip.ru
- ostroymaterialah.ru
Таблица теплопроводности строительных материалов и утеплителей
Автор aquatic На чтение 6 мин. Просмотров 10k. Обновлено
Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.
Теплопроводность материалов влияет на толщину стен
Назначение теплопроводностиТеплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.
На схеме представлены показатели различных вариантов
Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.
Сравнение характеристик разных типов сырья
Что оказывает влияние на показатель теплопроводности?Теплопроводность определяется такими факторами:
- пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
- повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
- повышенная влажность увеличивает данный показатель.
Характеристики различных материалов
Использование значений коэффициента теплопроводности на практикеМатериалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.
При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.
При выборе утеплителя нужно изучить характеристики каждого варианта
Показатели теплопроводности для готовых построек. Виды утепленийПри создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.
Монтаж минеральной ваты
Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.
Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:
- показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
- влагопоглощение имеет большое значение при утеплении наружных элементов;
- толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
- важна горючесть. Качественное сырье имеет способность к самозатуханию;
- термоустойчивость отображает способность выдерживать температурные перепады;
- экологичность и безопасность;
- звукоизоляция защищает от шума.
Характеристики разных видов утеплителей
В качестве утеплителей применяются следующие виды:
- минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;
Данный материал относится к самым доступным и простым вариантам
- пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
- базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
- пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;
Для пеноплекса характерна пористая структура
- пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
- экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;
Данный вариант бывает разной толщины
- пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.
Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.
Таблица теплопроводности строительных материалов: особенности показателейОбратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.
Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.
Утепление производится в определенных местах
Как использовать таблицу теплопроводности материалов и утеплителей?В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.
Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить , что пена не образует стыков.
Коэффициент разнообразных типов сырья
Значения коэффициентов теплопередачи материалов в таблицеПри произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.
Значения плотности и теплопроводности
Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.
Теплопроводность некоторых конструкций
Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.
При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.
Теплопроводность строительных материалов (видео)Таблица теплопроводности строительных материалов: коэффициенты
ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.
Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов
Что такое теплопроводность?
Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.
Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения
Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.
Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков
Что влияет на величину теплопроводности?
Тепловая проводимость любого материала зависит от множества параметров:
- Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
- Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
- Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
Теплопроводность, плотность и водопоглощение некоторых строительных материалов
Применение показателя теплопроводности на практике
В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.
Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым
Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.
Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.
Теплопроводность готового здания. Варианты утепления конструкций
При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:
- стены – 30%;
- крышу – 30%;
- двери и окна – 20%;
- полы – 10%.
Теплопотери неутепленного частного дома
При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.
Нужно знать! При обустройстве правильной гидроизоляции любого утеплителя высокая влажность не повлияет на качество теплоизоляции и сопротивление постройки теплообмену будет значительно выше.
Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей
Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:
- Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
- Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме
Таблица теплопроводности строительных материалов: коэффициенты
В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.
Таблица коэффициента теплопроводности строительных материалов:
Таблица теплопроводности строительных материалов: коэффициенты
Теплопроводность строительных материалов (видео)
ОЦЕНИТЕМАТЕРИАЛ Загрузка… ПОДЕЛИТЕСЬ
В СОЦСЕТЯХ
СМОТРИТЕ ТАКЖЕ
REMOO В ВАШЕЙ ПОЧТЕТаблица теплопроводности строительных материалов, рекомендации
Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.
Чем ниже теплопроводность строительных материалов, тем теплее в домеСодержание статьи
Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности
Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.
Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.
ИСТ-1 – прибор для определения теплопроводностиВнимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.
Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.
Основные параметры, от которых зависит величина теплопроводности
Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:
- Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.
Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
- Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.
Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
- Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.
Коэффициент теплопроводности строительных материалов – таблицы
Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.
Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных половНо эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.
Таблица теплопроводности кирпича
Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.
Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.
Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.
Теплопроводность разных видов кирпичейТаблица теплопроводности металлов
Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.
Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3Таблица теплопроводности дерева
Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.
Проводимость тепла дереваПрочность разных пород древесиныТаблица проводимости тепла бетонов
Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.
Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материаловНаиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.
Какой коэффициент теплопроводности у воздушной прослойки
В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.
Таблица проводимости тепла воздушных прослоекКалькулятор расчёта толщины стены по теплопроводности
На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.
Окно расчёта калькулятораВ нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.
Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном раствореСуществуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.
Расчёт проводимости тепла всех прослоек стенКонечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.
Предыдущая
Строительные материалыИз чего делают цемент: от теории к практике
СледующаяСтроительные материалыКрепкий пол в каждый дом: ламинат или линолеум — что лучше
Понравилась статья? Сохраните, чтобы не потерять!
ТОЖЕ ИНТЕРЕСНО:
ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:
Сравнительная таблица утеплителей по теплопроводности, толщине и плотности
Автор Марсель Сагитов На чтение 6 мин. Просмотров 283
В привычной для населения страны холодной зиме, востребованность теплоизоляционных материалов всегда на высоком уровне. Необходимо учитывать все особенности каждого из утеплителей, чтобы сделать выбор в пользу качественного и целесообразного материала.
Зачем нужна теплоизоляция?
Актуальность теплоизоляции заключается в следующем:
- Сохранение тепла в зимний период и прохлады в летний период.
Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.
- Увеличение долговечности конструкций здания.
В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.
- Шумоизоляция.
Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).
- Увеличение полезной площади зданий.
Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.
Как правильно выбрать утеплитель?
При выборе утеплителя нужно обращать внимание на: ценовую доступность, сферу применения, мнение экспертов и технические характеристики, являющиеся самым важным критерием.
Основные требования, предъявляемые к теплоизоляционным материалам:
- Теплопроводность.
Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.
Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.
Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.
Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и подходят для утепления вертикальных конструкций внутри помещений.
А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.
А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.
Толщину утеплителя необходимо определять на основании теплотехнического расчета с учетом климатических особенностей территории, материала стены и её минимально допустимого значения сопротивления теплопередачи.
В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!
Таблица теплопроводности материалов
Материал | Теплопроводность материалов, Вт/м*⸰С | Плотность, кг/м³ |
Пенополиуретан | 0,020 | 30 |
0,029 | 40 | |
0,035 | 60 | |
0,041 | 80 | |
Пенополистирол | 0,037 | 10-11 |
0,035 | 15-16 | |
0,037 | 16-17 | |
0,033 | 25-27 | |
0,041 | 35-37 | |
Пенополистирол (экструдированный) | 0,028-0,034 | 28-45 |
Базальтовая вата | 0,039 | 30-35 |
0,036 | 34-38 | |
0,035 | 38-45 | |
0,035 | 40-50 | |
0,036 | 80-90 | |
0,038 | 145 | |
0,038 | 120-190 | |
Эковата | 0,032 | 35 |
0,038 | 50 | |
0,04 | 65 | |
0,041 | 70 | |
Изолон | 0,031 | 33 |
0,033 | 50 | |
0,036 | 66 | |
0,039 | 100 | |
Пенофол | 0,037-0,051 | 45 |
0,038-0,052 | 54 | |
0,038-0,052 | 74 |
- Экологичность.
Этот фактор является значимым, особенно в случае утепления жилого дома, так как многие материалы выделяют формальдегид, что влияет на рост раковых опухолей. Поэтому необходимо делать выбор в сторону нетоксичных и биологически нейтральных материалов. С точки зрения экологичности лучшим теплоизоляционным материалом считается каменная вата.
- Пожарная безопасность.
Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.
- Паро- и водонепроницаемость.
Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.
- Долговечность.
В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату в первые годы службы значительно снижают свою эффективность. Зато пенополиуретан обладает сроком службы свыше 50 лет.
Достоинства и недостатки утеплителей
- Пенополиуретан – на сегодняшний день самый эффективный утеплитель.
Виды ППУ
Достоинства: бесшовный монтаж пеной, долговечность, лучшая тепло- и гидроизоляция.
Недостатки: дороговизна материала, неустойчивость к УФ-излучению.
- Пенополистирол (пенопласт) – востребован для использования в качестве утеплителя для помещений разных типов.
Достоинства: низкая теплопроводность, невысокая стоимость, удобство монтажа, водонепроницаемость.
Недостатки: хрупкость, легкая воспламеняемость, образование конденсата.
- Экструдированный пенополистирол – прочный и удобный материал, при необходимости элементов нужного размера легко разрезается ножом.
Достоинства: очень низкая теплопроводность, водонепроницаемость, прочность на сжатие, удобство монтажа, отсутствие плесени и гниения, возможность эксплуатации от -50⸰С до +75⸰С.
Недостатки: намного дороже пенопласта, восприимчивость к органическим растворителям, образование конденсата.
- Базальтовая (каменная) вата – минеральная вата, изготавливающаяся на базальтовой основе.
Достоинства: противостояние образованию грибков, звукоизоляция, прочность к механическим воздействиям, огнеупорность, негорючесть.
Недостатки: более высокая стоимость, по сравнению с аналогами.
- Эковата – утеплитель, выполненный на основе естественных материалов (волокна дерева и минералы). На сегодняшний день применяется довольно часто.
Достоинства: звукоизоляция, экологичность, влагостойкость, доступная стоимость.
Недостатки: во время эксплуатации повышается теплопроводность, необходимость специального оборудования для монтажа, возможность усадки.
- Изолон – современный утеплитель, изготавливаемый путем вспенивания полиэтилена. Является одним из самых востребованных.
Достоинства: низкая теплопроводность, низкая паропроницаемость, высокая шумоизоляция, удобство резки и монтажа, экологичность, гибкость, небольшой вес.
Недостатки: низкая прочность, необходимость устройства вентиляционного зазора.
- Пенофол – утеплитель, который отвечает многим требованиям, предъявляемым к качеству утеплителя и утепления различных помещений, а также конструкций и т.д.
Достоинства: экологичность, высокая способность к отражению тепла, высокая шумоизоляция, влагонепроницаемость, негорючесть, удобство перевозки и монтажа, отражение воздействия радиации.
Недостатки: малая жесткость, затрудненность крепления материала, в качестве теплоизоляции одного пенофола недостаточно.
Заключение
Рассмотренные достоинства и недостатки утеплителей позволят выбрать самый подходящий вариант уже на стадии проектирования. При этом учитывать все требования, предъявляемые к теплоизоляционному материалу, в первую очередь теплопроводность.
Полезно1БесполезноТеплопроводность строительных материалов, что это, таблица
Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность. Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.
Содержание статьи
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материаловМатериалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времениЕсть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкцийПри выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | 0 | ||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.
Таблица теплопроводности строительных материалов
Стены, перекрытия, пол, делать можно из разных материалов, но так повелось, что теплопроводность строительных материалов обычно сравнивают с кирпичной кладкой. Этот материал знаю все, с ним проще проводить ассоциации. Наиболее популярны диаграммы, на которых наглядно продемонстрирована разница между различными материалами. Одна такая картинка есть в предыдущем пункте, вторая — сравнение кирпичной стены и стены из бревен — приведена ниже. Именно потому для стен из кирпича и другого материала с высокой теплопроводностью выбирают теплоизоляционные материалы. Чтобы было проще подбирать, теплопроводность основных строительных материалов сведена в таблицу.
Сравнивают самые разные материалыНазвание материала, плотность | Коэффициент теплопроводности | ||
---|---|---|---|
в сухом состоянии | при нормальной влажности | при повышенной влажности | |
ЦПР (цементно-песчаный раствор) | 0,58 | 0,76 | 0,93 |
Известково-песчаный раствор | 0,47 | 0,7 | 0,81 |
Гипсовая штукатурка | 0,25 | ||
Пенобетон, газобетон на цементе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементе, 800 кг/м3 | 0,21 | 0,33 | 0,37 |
Пенобетон, газобетон на цементе, 1000 кг/м3 | 0,29 | 0,38 | 0,43 |
Пенобетон, газобетон на извести, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на извести, 800 кг/м3 | 0,23 | 0,39 | 0,45 |
Пенобетон, газобетон на извести, 1000 кг/м3 | 0,31 | 0,48 | 0,55 |
Оконное стекло | 0,76 | ||
Арболит | 0,07-0,17 | ||
Бетон с природным щебнем, 2400 кг/м3 | 1,51 | ||
Легкий бетон с природной пемзой, 500-1200 кг/м3 | 0,15-0,44 | ||
Бетон на гранулированных шлаках, 1200-1800 кг/м3 | 0,35-0,58 | ||
Бетон на котельном шлаке, 1400 кг/м3 | 0,56 | ||
Бетон на каменном щебне, 2200-2500 кг/м3 | 0,9-1,5 | ||
Бетон на топливном шлаке, 1000-1800 кг/м3 | 0,3-0,7 | ||
Керамическийй блок поризованный | 0,2 | ||
Вермикулитобетон, 300-800 кг/м3 | 0,08-0,21 | ||
Керамзитобетон, 500 кг/м3 | 0,14 | ||
Керамзитобетон, 600 кг/м3 | 0,16 | ||
Керамзитобетон, 800 кг/м3 | 0,21 | ||
Керамзитобетон, 1000 кг/м3 | 0,27 | ||
Керамзитобетон, 1200 кг/м3 | 0,36 | ||
Керамзитобетон, 1400 кг/м3 | 0,47 | ||
Керамзитобетон, 1600 кг/м3 | 0,58 | ||
Керамзитобетон, 1800 кг/м3 | 0,66 | ||
ладка из керамического полнотелого кирпича на ЦПР | 0,56 | 0,7 | 0,81 |
Кладка из пустотелого керамического кирпича на ЦПР, 1000 кг/м3) | 0,35 | 0,47 | 0,52 |
Кладка из пустотелого керамического кирпича на ЦПР, 1300 кг/м3) | 0,41 | 0,52 | 0,58 |
Кладка из пустотелого керамического кирпича на ЦПР, 1400 кг/м3) | 0,47 | 0,58 | 0,64 |
Кладка из полнотелого силикатного кирпича на ЦПР, 1000 кг/м3) | 0,7 | 0,76 | 0,87 |
Кладка из пустотелого силикатного кирпича на ЦПР, 11 пустот | 0,64 | 0,7 | 0,81 |
Кладка из пустотелого силикатного кирпича на ЦПР, 14 пустот | 0,52 | 0,64 | 0,76 |
Известняк 1400 кг/м3 | 0,49 | 0,56 | 0,58 |
Известняк 1+600 кг/м3 | 0,58 | 0,73 | 0,81 |
Известняк 1800 кг/м3 | 0,7 | 0,93 | 1,05 |
Известняк 2000 кг/м3 | 0,93 | 1,16 | 1,28 |
Песок строительный, 1600 кг/м3 | 0,35 | ||
Гранит | 3,49 | ||
Мрамор | 2,91 | ||
Керамзит, гравий, 250 кг/м3 | 0,1 | 0,11 | 0,12 |
Керамзит, гравий, 300 кг/м3 | 0,108 | 0,12 | 0,13 |
Керамзит, гравий, 350 кг/м3 | 0,115-0,12 | 0,125 | 0,14 |
Керамзит, гравий, 400 кг/м3 | 0,12 | 0,13 | 0,145 |
Керамзит, гравий, 450 кг/м3 | 0,13 | 0,14 | 0,155 |
Керамзит, гравий, 500 кг/м3 | 0,14 | 0,15 | 0,165 |
Керамзит, гравий, 600 кг/м3 | 0,14 | 0,17 | 0,19 |
Керамзит, гравий, 800 кг/м3 | 0,18 | ||
Гипсовые плиты, 1100 кг/м3 | 0,35 | 0,50 | 0,56 |
Гипсовые плиты, 1350 кг/м3 | 0,23 | 0,35 | 0,41 |
Глина, 1600-2900 кг/м3 | 0,7-0,9 | ||
Глина огнеупорная, 1800 кг/м3 | 1,4 | ||
Керамзит, 200-800 кг/м3 | 0,1-0,18 | ||
Керамзитобетон на кварцевом песке с поризацией, 800-1200 кг/м3 | 0,23-0,41 | ||
Керамзитобетон, 500-1800 кг/м3 | 0,16-0,66 | ||
Керамзитобетон на перлитовом песке, 800-1000 кг/м3 | 0,22-0,28 | ||
Кирпич клинкерный, 1800 — 2000 кг/м3 | 0,8-0,16 | ||
Кирпич облицовочный керамический, 1800 кг/м3 | 0,93 | ||
Бутовая кладка средней плотности, 2000 кг/м3 | 1,35 | ||
Листы гипсокартона, 800 кг/м3 | 0,15 | 0,19 | 0,21 |
Листы гипсокартона, 1050 кг/м3 | 0,15 | 0,34 | 0,36 |
Фанера клеенная | 0,12 | 0,15 | 0,18 |
ДВП, ДСП, 200 кг/м3 | 0,06 | 0,07 | 0,08 |
ДВП, ДСП, 400 кг/м3 | 0,08 | 0,11 | 0,13 |
ДВП, ДСП, 600 кг/м3 | 0,11 | 0,13 | 0,16 |
ДВП, ДСП, 800 кг/м3 | 0,13 | 0,19 | 0,23 |
ДВП, ДСП, 1000 кг/м3 | 0,15 | 0,23 | 0,29 |
Линолеум ПВХ на теплоизолирующей основе, 1600 кг/м3 | 0,33 | ||
Линолеум ПВХ на теплоизолирующей основе, 1800 кг/м3 | 0,38 | ||
Линолеум ПВХ на тканевой основе, 1400 кг/м3 | 0,2 | 0,29 | 0,29 |
Линолеум ПВХ на тканевой основе, 1600 кг/м3 | 0,29 | 0,35 | 0,35 |
Линолеум ПВХ на тканевой основе, 1800 кг/м3 | 0,35 | ||
Листы асбоцементные плоские, 1600-1800 кг/м3 | 0,23-0,35 | ||
Ковровое покрытие, 630 кг/м3 | 0,2 | ||
Поликарбонат (листы), 1200 кг/м3 | 0,16 | ||
Полистиролбетон, 200-500 кг/м3 | 0,075-0,085 | ||
Ракушечник, 1000-1800 кг/м3 | 0,27-0,63 | ||
Стеклопластик, 1800 кг/м3 | 0,23 | ||
Черепица бетонная, 2100 кг/м3 | 1,1 | ||
Черепица керамическая, 1900 кг/м3 | 0,85 | ||
Черепица ПВХ, 2000 кг/м3 | 0,85 | ||
Известковая штукатурка, 1600 кг/м3 | 0,7 | ||
Штукатурка цементно-песчаная, 1800 кг/м3 | 1,2 |
Древесина — один из строительных материалов с относительно невысокой теплопроводностью. В таблице даны ориентировочные данные по разным породам. При покупке обязательно смотрите плотность и коэффициент теплопроводности. Далеко не у всех они такие, как прописаны в нормативных документах.
Наименование | Коэффициент теплопроводности | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Сосна, ель поперек волокон | 0,09 | 0,14 | 0,18 |
Сосна, ель вдоль волокон | 0,18 | 0,29 | 0,35 |
Дуб вдоль волокон | 0,23 | 0,35 | 0,41 |
Дуб поперек волокон | 0,10 | 0,18 | 0,23 |
Пробковое дерево | 0,035 | ||
Береза | 0,15 | ||
Кедр | 0,095 | ||
Каучук натуральный | 0,18 | ||
Клен | 0,19 | ||
Липа (15% влажности) | 0,15 | ||
Лиственница | 0,13 | ||
Опилки | 0,07-0,093 | ||
Пакля | 0,05 | ||
Паркет дубовый | 0,42 | ||
Паркет штучный | 0,23 | ||
Паркет щитовой | 0,17 | ||
Пихта | 0,1-0,26 | ||
Тополь | 0,17 |
Металлы очень хорошо проводят тепло. Именно они часто являются мостиком холода в конструкции. И это тоже надо учитывать, исключать прямой контакт используя теплоизолирующие прослойки и прокладки, которые называются термическим разрывом. Теплопроводность металлов сведена в другую таблицу.
Название | Коэффициент теплопроводности | Название | Коэффициент теплопроводности | |
---|---|---|---|---|
Бронза | 22-105 | Алюминий | 202-236 | |
Медь | 282-390 | Латунь | 97-111 | |
Серебро | 429 | Железо | 92 | |
Олово | 67 | Сталь | 47 | |
Золото | 318 |
Как рассчитать толщину стен
Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.
Термическое сопротивление ограждающихконструкций для регионов России
Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.
Расчет толщины стены, толщины утеплителя, отделочных слоев
Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:
Формула расчета теплового сопротивленияR — термическое сопротивление;
p — толщина слоя в метрах;
k — коэффициент теплопроводности.
Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.
Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.
Пример расчета толщины утеплителя
Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.
- Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
- Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.
Рассчитывать придется все ограждающие конструкции
- Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.
Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными. Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание.
Сравнение теплопроводности строительных материалов
Коэффициенты теплопроводности основных строительных материалов в размерности Вт/(м*К)=Вт/(м*С) и плотность. Коэффициент теплопроводности строительных материалов — таблица. Вариант для печати.
Материал | Плотность (для сыпучих – насыпная плотность), кг/м3 | Коэффициент теплопроводности, Вт/ (м*К) |
Алюминий | 2600-2700 | 203,5-221 растет с ростом плотности |
Асбест | 600 | 0,151 |
Асфальтобетон | 2100 | 1,05 |
АЦП асбесто-цементные плиты | 1800 | 0,35 |
Бетон см.также Железобетон | 2300-2400 | 1,28-1,51 растет с ростом плотности |
Битум | 1400 | 0,27 |
Бронза | 8000 | 64 |
Винипласт | 1380 | 0,163 |
Вода при температурах выше 0 градусов С | ~1000 | ~0,6 |
Войлок шерстяной | 300 | 0,047 |
Гипсокартон | 800 | 0,15 |
Гранит | 2800 | 3,49 |
Дерево, дуб — вдоль волокон | 700 | 0,23 |
Дерево, дуб — поперек волокон | 700 | 0,1 |
Дерево, сосна или ель — вдоль волокон | 500 | 0,18 |
Дерево, сосна или ель — поперек волокон | 500 | 0,10—0,15 растет с ростом плотности и влажности |
ДСП, ОСП; древесно- или ориентированно-стружечная плита | 1000 | 0,15 |
Железобетон | 2500 | 1,69 |
Материал | Плотность (для сыпучих – насыпная плотность), кг/м3 | Коэффициент теплопроводности, Вт/ (м*К) |
Картон облицовочный | 1000 | 0,18 |
Керамзит | 200 | 0,1 |
Керамзит | 800 | 0,18 |
Керамзитобетон | 1800 | 0,66 |
Керамзитобетон | 500 | 0,14 |
Кирпич керамический пустотелый (брутто1000) | 1200 | 0,35 |
Кирпич керамический пустотелый (брутто1400) | 1600 | 0,41 |
Кирпич красный глиняный | 1800 | 0,56 |
Кирпич, силикатный | 1800 | 0,7 |
Кладка из изоляционного кирпича | 600 | 0,116—0,209 растет с ростом плотности |
Кладка из обыкновенного кирпича | 600–1700 | 0,384—0,698—0,814 растет с ростом плотности |
Кладка из огнеупорного кирпича | 1840 | 1,05 (при 800—1100°С) |
Краска масляная | — | 0,233 |
Латунь | 8500 | 93 |
Лед при температурах ниже 0 градусов С | 920 | 2,33 |
Линолеум | 1600 | 0,33 |
Литье каменное | 3000 | 0,698 |
Материал | Плотность (для сыпучих – насыпная плотность), кг/м3 | Коэффициент теплопроводности, Вт/ (м*К) |
Магнезия 85% в порошке | 216 | 0,07 |
Медь | 8500-8800 | 384-407 растет с ростом плотности |
Минвата | 100 | 0,056 |
Минвата | 50 | 0,048 |
Минвата | 200 | 0,07 |
Мрамор | 2800 | 2,91 |
Накипь, водяной камень | — | 1,163—3,49 растет с ростом плотности |
Опилки древесные | 230 | 0,070—0,093 растет с ростом плотности и влажности |
Пакля сухая | 150 | 0,05 |
Пенобетон | 1000 | 0,29 |
Пенобетон | 300 | 0,08 |
Пенопласт | 30 | 0,047 |
Пенопласт ПВХ | 125 | 0,052 |
Пенополистирол | 100 | 0,041 |
Пенополистирол | 150 | 0,05 |
Пенополистирол | 40 | 0,038 |
Пенополистирол экструдированый | 33 | 0,031 |
Пенополиуретан | 32 | 0,023 |
Пенополиуретан | 40 | 0,029 |
Пенополиуретан | 60 | 0,035 |
Пенополиуретан | 80 | 0,041 |
Пеностекло | 400 | 0,11 |
Пеностекло | 200 | 0,07 |
Песок сухой | 1600 | 0,35 |
Песок влажный | 1900 | 0,814 |
Полимочевина | 1100 | 0,21 |
Полиуретановая мастика | 1400 | 0,25 |
Полиэтилен | 1500 | 0,3 |
Пробковая мелочь | 160 | 0,047 |
Материал | Плотность (для сыпучих – насыпная плотность), кг/м3 | Коэффициент теплопроводности, Вт/ (м*К) |
Ржавчина (окалина) | — | 1,16 |
Рубероид, пергамин | 600 | 0,17 |
Свинец | 11400 | 34,9 |
Совелит | 450 | 0,098 |
Сталь | 7850 | 58 |
Сталь нержавеющая | 7900 | 17,5 |
Стекло оконное | 2500 | 0,698—0,814 |
Стеклянная вата (стекловата) | 200 | 0,035—0,070 растет с ростом плотности |
Текстолит | 1380 | 0,244 |
Торфоплиты | 220 | 0,064 |
Фанера клееная | 600 | 0,12 |
Фаолит | 1730 | 0,419 |
Чугун | 7500 | 46,5—93,0 |
Шлаковая вата | 250 | 0,076 |
Эмаль | 2350 | 0,872—1,163 |
Понятие теплопроводности
Теплопроводность
– это такое физическое свойство материала, при которой тепловая энергия внутри тела переходит от самой горячей его части к более холодной. Значение показателя теплопроводности показывает степень потери тепла жилыми помещениями. Зависит от следующих факторов:
Количественно оценить свойство предметов пропускать тепловую энергию можно посредством коэффициента теплопроводности
Очень важно сделать грамотный выбор строительных материалов, утеплителя для достижения наибольшего сопротивления теплопередачи. Просчёты или неразумная экономия в будущем могут привести к ухудшению микроклимата в помещении, сырости в здании, мокрым стенам, душным комнатам
А главное – к большим расходам на отопление.
Для сравнения ниже представлена таблица теплопроводностей материалов и веществ.
Таблица 1
Самые высокие значения имеют металлы, низкие – теплоизоляционные предметы.
Таблица теплопроводности теплоизоляционных материалов
Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.
Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций
При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Войлок шерстяной | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Каменная минеральная вата 25-50 кг/м3 | 0,036 | 0,042 | 0,,045 |
Каменная минеральная вата 40-60 кг/м3 | 0,035 | 0,041 | 0,044 |
Каменная минеральная вата 80-125 кг/м3 | 0,036 | 0,042 | 0,045 |
Каменная минеральная вата 140-175 кг/м3 | 0,037 | 0,043 | 0,0456 |
Каменная минеральная вата 180 кг/м3 | 0,038 | 0,045 | 0,048 |
Стекловата 15 кг/м3 | 0,046 | 0,049 | 0,055 |
Стекловата 17 кг/м3 | 0,044 | 0,047 | 0,053 |
Стекловата 20 кг/м3 | 0,04 | 0,043 | 0,048 |
Стекловата 30 кг/м3 | 0,04 | 0,042 | 0,046 |
Стекловата 35 кг/м3 | 0,039 | 0,041 | 0,046 |
Стекловата 45 кг/м3 | 0,039 | 0,041 | 0,045 |
Стекловата 60 кг/м3 | 0,038 | 0,040 | 0,045 |
Стекловата 75 кг/м3 | 0,04 | 0,042 | 0,047 |
Стекловата 85 кг/м3 | 0,044 | 0,046 | 0,050 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0,029 | 0,030 | 0,031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0,14 | 0,22 | 0,26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0,11 | 0,14 | 0,15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0,15 | 0,28 | 0,34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0,13 | 0,22 | 0,28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0,073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0,029 | 0,031 | 0,05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0,035 | 0,036 | 0,041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0,041 | 0,042 | 0,04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | |||
Воздух +27°C. 1 атм | 0,026 | ||
Ксенон | 0,0057 | ||
Аргон | 0,0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0,05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0,033 | ||
Пробка листы 220 кг/м3 | 0,035 | ||
Пробка листы 260 кг/м3 | 0,05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0,05 | ||
Перлит, 200 кг/м3 | 0,05 | ||
Перлит вспученный, 100 кг/м3 | 0,06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0,054 | ||
Полистиролбетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0,038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0,078 | ||
Пробка техническая, 50 кг/м3 | 0,037 |
Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50.13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей
Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала
Как рассчитать толщину стены
Для этого понадобится суммировать коэффициенты теплопроводности всех материалов, которые были использованы при возведении стены. Это неудивительно, т.к. часто этот элемент возводят в несколько слоев. Так, коэффициент теплопроводности кирпича, наружного слоя штукатурки и облицовки надо учесть, как и выравнивающие материалы, используемые для внутренних работ (листы из гипсокартона, плиты, панели и пр.). Показателем воздушной прослойки тоже не стоит пренебрегать.
Существует удельная теплопроводность для каждого региона страны, которую берут за основу вычислений
Важно помнить, что расчетная величина не должна быть больше удельной. В таблице приведены значения по городам, которые рассчитывались с учетом средней температуры и уровня влажности:
Населенный пункт | Теплопроводность |
Москва | 3,14 |
Санкт-Петербург | 3,18 |
Ростов-на-Дону | 2,75 |
Сочи | 2,1 |
Чем южнее, тем показатель должен быть меньше. Следовательно, толщину стены можно уменьшить.
Определение теплопроводности стройматериалов — важный этап при возведении зданий. Благодаря ему в помещении можно обеспечить комфортные условия проживания: зимой в нем не будет холодно, а летом — жарко. Поэтому пренебрегать им не стоит. Кроме этого, нужно знать, от чего зависит теплопроводность.
Как выполнить подсчеты на онлайн калькуляторе
Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.В сервис занесены сведения по каждой отдельной климатической зоне:
- t воздуха;
- средняя температура в отопительный сезон;
- длительность отопительного сезона;
- влажность воздуха.
Сведения, одинаковые для всех регионов:
- температура и влажность воздуха внутри помещения;
- коэффициенты теплоотдачи внутренних, наружных поверхностей;
- перепад температур.
Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:
Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.
Теплопроводность – что это такое
Теплопроводностью называется способность всех видов газов, жидкости или материалов передавать тепло. Это значит, что когда объект нагревается с одной стороны, он трансформируется в теплопроводник, т.к. передает свою энергию дальше. При охлаждении процесс происходит также.
Например, если во время приготовления пищи перемешивать продукты деревянной лопаткой, то изменений в температуре не последует. Но, если для этих целей использовать кухонную утварь из металла, то она быстро нагреется так, что держать ее станет в руке невозможно. Таких примеров теплопроводности привести можно немало.
Объяснение этого с точки зрения физики: тепловая энергия стремится от среды с высокой температурой к среде с низкой температурой. Причем ей требуется время, чтобы пройти через стройматериал. Чем больше его нужно, тем ниже скорость передачи тепла.
Внимание!
Если температура по обе стороны используемого материала одинаковая, то переход тепловой энергии не состоится.
Так,
- теплопроводность кирпича и стали составляет 0,56 и 58Вт/м●К соответственно;
- древесины – 0,09-0,1;
- песка – 0,35
Можно заметить, что не все материалы обладают одинаковой теплоэффективностью, это зависит от факторов:
- Пористая структура свидетельствует о ее неоднородности и наличии воздуха в порах.
- Структура пор – небольшие размеры и их замкнутость приводит к снижению теплового потока.
- Плотность – чем она выше, тем больше коэффициент проводимости тепла.
- Влажность – негативный фактор, который повышает скорость теплопередачи. Поэтому надо качественно произвести гидроизоляцию сооружения, правильно сделать вентиляцию и использовать влагоустойчивые стройматериалы.
Формула теплопроводности создана с учетом воздействия температуры на это свойство материала. Выглядит она так:
λ=λ0●(1+b●t), где
- λ0 — коэффициент теплопроводности при 0°С, измеряется который в Вт/м●℃;
- b – справочная величина температуры;
- t – непосредственно температура.
Коэффициент теплопроводности
Зачастую в паспорте стройматериалов указан коэффициент теплопроводности – единица измерения которого Вт/(м●℃). Она характеризует любой материал как проводник тепла. В формуле она определяется греческой буквой λ.
Внимание!
Часто в формулах можно увидеть не градусы по Цельсию, а по Кельвину, обозначающиеся как K. Суть от этого не меняется.
Данный коэффициент демонстрирует способность используемого материала передавать тепло на определенную дистанцию за время. При этом показатель определяет именно сырье, а его размеры значения не имеют.
Рассчитать коэффициент теплообмена можно для материала строительного и иного назначения. Например, коэффициент теплоотдачи стали использовать как теплоотвод или теплообменник. Но для больше части стройматериалов ситуация обратная – чем меньше этот показатель для стен, тем меньше тепла здание потеряет зимой.
Сопротивление теплопередаче
Коэффициент теплопередачи – это показатель, характеризующий используемый материал. Но, как показывает практика, лучше оперировать какой-то величиной, которая будет описывать теплопроводные способности определенного сооружения. Иными словами, учитываться должны особенности его строения и параметров.
Термическое сопротивление – это и есть такая величина. Можно считать, что она обратная коэффициенту теплопроводности и учитывающая толщину стройматериала. Для этого показателя существует следующее обозначение – R. Формула при этом выглядит следующим образом:
R = h/λ, где
- R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²•℃/Вт;
- h — толщина этого слоя в метрах;
- λ — коэффициент теплопроводности материала конструкции, Вт/(м•℃).
Часто стены сооружают многослойными, один слой при этом – утеплитель с низким коэффициентом теплопроводности. Благодаря такому подходу нужный показатель повышается. Это связано с тем, что надо прибавить все слои сопротивления теплопередаче, из которых состоит ограждающая конструкция. Не стоит забывать и о суммировании приграничных слоев воздуха внутри и снаружи сооружения.
Последовательность действий
Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.
Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.
Как рассчитать теплопроводность по закону Фурье
В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:
q → = − ϰ х grad х (T), где:
- q → – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
- ϰ – удельный коэффициент теплопроводности материала;
- T – температура материала.
Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:
- P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
- P – общая мощность потерь теплоотдачи;
- S – сечение предмета;
- ΔT – разница температуры по стыкам сторон предмета;
- l – расстояние между стыками сторон предмета – длина фигуры.
Если объяснять на пальцах
Для наглядности и понимания, что такое теплопроводность, можно сравнить кирпичную стену, толщиной 2 м 10 см с другими материалами. Таким образом, 2,1 метра кирпича, сложенного в стену на обычном цементно-песчаном растворе равны:
- стене толщиной 0,9 м из керамзитобетона;
- брусу, диаметром 0,53 м;
- стене, толщиной 0,44 м из газобетона.
Если речь заходит от таких распространённых утеплителях, как минеральная вата и пенополистирол, то потребуется всего 0,18 м первой теплоизоляции или 0,12 м второй, чтобы значения теплопроводности огромной кирпичной стены оказались равными тонюсенькому слою теплоизоляции.
Сравнительная характеристика теплопроводности утеплительных, строительных и отделочных материалов, которую можно произвести, изучив СНиПы, позволяет проанализировать и правильно составить утеплительный пирог (основание, утеплитель, финишная отделка). Чем ниже теплопроводность, тем выше цена. Ярким примером могут послужить стены дома, сложенные из керамических блоков или обычного высококачественного кирпича. Первые имеют теплопроводность всего 0,14 – 0,18 и стоят намного дороже любого, самого лучшего кирпича.
Разные материалы имеют различную теплопроводность, и чем она ниже, тем меньше теплообмен внутренней среды обитания с внешней. Это значит, что зимой в таком доме сохраняется тепло, а летом – прохлада
Теплопроводность — количественная характеристика способности тел к проведению тепла. Для того чтобы иметь возможность сравнения, а также точных расчетов при строительстве, представляем цифры в таблице теплопроводности, а также прочности, паропроницаемости большинства строительных материалов.
Советы и рекомендации по выбору материалов
- Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
- Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.
- Прежде, чем приступать к укладке утеплителя, убедитесь, что поверхность стены или перекрытия не имеет влаги. В противном случае через время между поверхностями образуется плесень.
- Если вы планируете монтировать невлагостойкий материал на внешней стене, позаботьтесь о тщательной обработке гидроизоляционным клеем.
- Не стоит производить внутреннее утепление поверхностей синтетическими материалами. Это негативно скажется на вашем здоровье.
Сравнение проводимости тепла у самых распространённых утеплителей
Чтобы иметь представление о проводимости тепла разных материалов, предназначенных для утепления, нужно сравнить их коэффициенты (Вт/м*К), приведённые в следующей таблице:
Номер п/п | Название утеплителя | Коэффициент теплопроводности по СНиП |
1. | Керамзит | 0,099 – 0,19 |
2. | Глина | 0,5 |
3. | Саман | 0,3 |
4. | Минеральная вата | 0,036 – 0,048 |
5. | Пенопласт | 0,036 – 0,05 |
6. | Пеноплекс | 0,029 – 0,031 |
7. | Эковата | 0,037 – 0,042 |
8. | Пеноизол | 0,028 – 0,038 |
9. | Пенополиуретан | 0,019 – 0,05 |
Понятие теплопроводности на практике
Теплопроводность учитывается на этапе проектирования здания
При этом берется во внимание способность материалов удерживать тепло. Благодаря их правильному подбору жильцам внутри помещения всегда будет комфортно
Во время эксплуатации будут существенно экономиться денежные средства на отопление.
Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.
Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла
Зрительно это можно увидеть на фотографии в начале статьи.
Если задумано индивидуальное строительство
При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки). Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:
Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:
Номер п/п | Материал для стен, строительный раствор | Коэффициент теплопроводности по СНиП |
1. | Кирпич | 0,35 – 0,87 |
2. | Саманные блоки | 0,1 – 0,44 |
3. | Бетон | 1,51 – 1,86 |
4. | Пенобетон и газобетон на основе цемента | 0,11 – 0,43 |
5. | Пенобетон и газобетон на основе извести | 0,13 – 0,55 |
6. | Ячеистый бетон | 0,08 – 0,26 |
7. | Керамические блоки | 0,14 – 0,18 |
8. | Строительный раствор цементно-песчаный | 0,58 – 0,93 |
9. | Строительный раствор с добавлением извести | 0,47 – 0,81 |
Важно. Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.. Это связано с несколькими причинами:
Это связано с несколькими причинами:- Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
- Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
- Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.
Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.
Особенности теплопроводности готового строения
Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.
В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением
Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.
Утепление построек из бетона или камня повышает комфортные условия внутри здания
Разновидности утепления конструкций
Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:
Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов
Особенности монтажа теплоизолирующего материала с внутренней стороны
Коэффициент теплопроводности вакуума
Интересно рассмотреть с этой точки зрения коэффициент теплопроводности вакуума. Он близок нулю — причем, чем вакуум глубже вакуум, тем его теплопроводность ближе к нулевой. Почему? Дело в том, что в вакууме крайне низкая концентрация материальных частиц, которые способны переносить тепло. Но тепло в вакууме всё же передаётся — при помощи излучения. Так, например, чтобы довести до минимума теплопотери, термос делают с двойными стенками, откачивая между ними воздух. А также делают «серебрение». На том же качестве, что зеркальная поверхность отражает излучение лучше, основаны свойства таких материалов, как фольгированный пенофол и другие подобные изоляционные материалы.
Ниже смотрим познавательные видеоматериалы для более полного представления такого физического понятия, как теплопроводность, на конкретных примерах.
Расчет многослойной конструкции
При расчете многослойной конструкции суммируйте показатели теплосопротивляемости всех материалов
Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.
В этом случае стоит работать по формуле:Rобщ= R1+ R2+…+ Rn+ Ra, где:
R1-Rn- термическое сопротивление слоев разных материалов;
Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:
https://youtube.com/watch?v=0bwsJcTqaXQ
Материалы из бетона с добавлением пористых заполнителей
Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:
Пенобетон. Производится с добавлением пенообразующих веществ, за счет которых характеризуется пористой структурой с плотностью 500-1000 кг/м3. При этом способность передавать тепло определяется значением 0,1-0,37Вт/м*К.
Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то плотность керамзитобетона составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.
10 лучших теплопроводных материалов
Теплопроводность — это мера способности материала пропускать через него тепло. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды. Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).
10 лучших измеряемых теплопроводных материалов и их значения приведены ниже.Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.
Материалы теплопроводящие
Diamond — 2000 — 2200 Вт / м • K
Алмаз является ведущим теплопроводным материалом и имеет измеренные значения проводимости в 5 раз выше, чем у меди, наиболее производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной передачи тепла.Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.
Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.
Серебро — 429 Вт / м • K
Серебро — относительно недорогой и распространенный теплопроводник. Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.
Медь — 398 Вт / м • K
Медь — наиболее часто используемый металл для производства токопроводящих приборов в США. Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.
Золото — 315 Вт / м • K
Золото — редкий и дорогой металл, который используется для специальных проводящих применений.В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.
Карбид кремния — 270 Вт / м • K
Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплавлении кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.
Оксид бериллия– 255 Вт / м • K
Оксид бериллия используется во многих высокопроизводительных деталях для таких приложений, как электроника, поскольку он обладает высокой теплопроводностью и является хорошим электрическим изолятором.
Алюминий — 247 Вт / м • K
Алюминий обычно используется в качестве экономичной замены меди. Хотя алюминий не такой проводящий, как медь, его много, и с ним легко работать из-за его низкой температуры плавления. Алюминий — важнейший компонент L.Фары E.D (светодиоды). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.
Вольфрам — 173 Вт / м • K
Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, подвергающихся воздействию высоких уровней электричества. Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов.Он также часто используется в лампах и как компонент электронно-лучевых трубок.
Графит 168 Вт / м • K
Графит — это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к смесям полимеров для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.
Цинк 116 Вт / м • K
Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов).20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.
Список литературы
Мокхена, Т. К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. DOI: 10.5772 / intechopen.75676
Оксид бериллия Получено с https://thermtest.com/materials-database#Beryllium-Oxide
База данных материалов Thermtest. https://thermtest.com/materials-database
Автор: Каллиста Уилсон, младший технический писатель Thermtest
Теплопроводность — избранные материалы и газы
Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как
«количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади — из-за градиента единичной температуры в условиях устойчивого состояния»
Теплопроводность единицами измерения являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.
См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды
Теплопроводность для обычных материалов и продуктов: