Содержание

Теплопроводность пенопласта от 50 мм до 150 мм

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

Высокий уровень энергосбережения пенопласт обеспечивает за счет низкой теплопроводности. Например, если построить стену из кирпича толщиной 201 см или воспользоваться древесным материалом толщиной 45 см, то для пенопласта толщина составит всего на всего 12 см для определенной величины энергосбережения.

Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

Размеры листов

Изготовление пенополистирольных плит, осуществляется по нормам ГОСТ. При производстве пенопласта регулируется как состав, так и размеры листов. Стандартная длина листа колеблется от 100 см до 200 см. Ширина должна быть равна 100 см, а толщина от 2 см до 5 см. Теплопроводность пенопласта 50 мм – относительно высока, благодаря небольшой толщине и характеристикам материала, он является наиболее ходовым из всех.

А что же покупать?

На рынке строительных материалов представлен огромный выбор пенополистирольных плит. Высокая теплопроводность плит утеплителей зависит от их вида. Например: лист пенопласта ПСБ-С 15 обладает до 15 кг/м3 плотностью и 2 см толщиной. Для листа от 2-х до 50 см плотность составляет не более 35 кг/м3. При сравнении пенопласта с другими подобными материалами можно легко проследить зависимость теплопроводности пенополистирольных плит от его толщины.

Так, например: теплопроводность пенопласта 50 мм, больше в два раза, чем у минеральной ваты такого же объема, в таком случае теплопроводность пенопласта, толщина 150 мм, вообще в 6 раз превысит эти показатели. Базальтовая вата, тоже очень сильно проигрывает пенопласту.

Для того чтобы применить один из способов изоляции, необходимо верно выбрать габариты материала. По следующему алгоритму можно выполнить расчет:

  • Необходимо уточнить общее тепло-сопротивление. Эта величина зависит от региона, в котором необходимо выполнить расчет, а именно от его климата.
  • Для вычисления тепло-сопротивления стены можно воспользоваться формулой R=p/k, где ее толщина равна значению р, а k-коэффициент теплопроводности пенопласта.
  • Из постоянных показателей можно сделать вывод, какое сопротивление должно быть у изоляции.
  • Нужную величину можно вычислить по формуле р=R*k, найти значение R можно исходя из предыдущего шага и коэффициента теплопроводности.

Марки пенопласта

Если Вас заинтересовал вопрос, какой лучше всего марки приобрести пенопласт, и какая у него теплопроводность, то мы ответим вам на него. Ниже приведены самые популярные марки продукции, а также отображены величины плотности и коэффициент теплопроводности пенопласта.

  • ПCБ-C15. С теплопроводностью 0,042 Вт/мK, а плотность равна 11-15 кг/м3
  • ПCБ-C25. С теплопроводностью 0,039 Вт/мK, а плотность равна 15-25 кг/м3
  • ПCБ-С35. С теплопроводностью 0,037 Вт/мK, а плотность равна 25-35кг/м3

Завершает наш список пенопласт ПCБ-C5, теплопроводность которого составляет 0,04 Вт/мК, а плотность равна 35-50 кг/м3. Проведя анализ плотности и теплопроводности можно с уверенностью сказать, что плотность существенно не влияет на основное качество пенопласта, тепло-сбережение.

Показатели теплопроводности экструдированного и обычного пенополистирола

Климат в России очень холодный, поэтому практически любой дом, построенный за городом, приходится утеплять. Для этого можно использовать самые разные материалы. Одним из наиболее популярных является пенополистирол. Монтируется этот утеплитель элементарно. Коэффициент же теплопроводности у него ниже, чем у любого другого современного изолятора.

Что представляет собой пенополистирол

Изготавливается этот материал примерно по тому же принципу, что и любые другие вспененные утеплители. Сначала в специальную установку наливается жидкий стирол. После добавления в него особого реагента происходит реакция с выделением большого количества пены. Готовая вспененная густая масса до застывания пропускается через формовочный аппарат. В результате получаются листы материала с огромным количеством мелких воздушных камер внутри.

Такая структура плит и объясняет высокие изоляционные качества пенополистирола. Ведь воздух, как известно, тепло сохраняет очень хорошо. Существуют виды пенополистирола, в ячейках которых содержатся и другие газы. Однако самыми эффективными изоляторами все же считаются плиты именно с воздушными камерами.

Входящие в структуру пенополистирола ячейки могут иметь размер от 2 до 8 мм. На их стенки при этом приходится примерно 2% массы материала. Таким образом, пенополистирол на 98% состоит из воздуха.

Что такое теплопроводность

Узнать, насколько хорошо тот или иной материал способен сохранять тепло, можно по коэффициенту его теплопроводности. Определяют этот показатель очень просто. Берут кусок материала
площадью в 1 м2
и толщиной в метр. Одну из его сторон нагревают, а противоположную ей оставляют холодной. При этом разница температур должна быть десятикратной. Далее смотрят какое количество тепла достигнет холодной стороны за один час. Измеряют теплопроводность в ваттах, разделенных на произведения метра и градуса (Вт/мК). При покупке пенополистирола для обшивки дома, лоджии или балкона обязательно следует посмотреть на этот показатель.

От чего зависит теплопроводность

Способность пенополистирольных плит сохранять тепло зависит в основном от двух факторов: плотности и толщины. Первый показатель определяется по количеству и размеру воздушных камер, составляющих структуру материала. Чем плотнее плита, тем больший коэффициент теплопроводности у нее будет.

Зависимость от плотности

В таблице ниже можно посмотреть каким именно образом теплопроводность пенополистирола зависит от его плотности.

Плотность (кг/м3)Теплопроводность (Вт/мК)
100.044
150.038
200.035
250.034
300.033
350.032

Представленная выше справочная информация, однако, скорее всего, может пригодиться только владельцам домов, использовавшим пенополистирол для утепления стен, пола или потолка довольно-таки давно. Дело в том, что при изготовлении современных марок этого материала производители используют специальные графитовые добавки, в результате чего зависимость теплопроводности от плотности плит сводится практически на нет. В этом можно убедиться, взглянув на показатели в таблице:

МаркаТеплопроводность (Вт/мК)
EPS 500.031-0.032
EPS 700.033-0.032
EPS 800.031
EPS 1000.03-0.033
EPS 1200.031
EPS 1500.03-0.031
EPS 2000.031

Зависимость от толщины

Разумеется, чем толще материал, тем лучше он сохраняет тепло. У современного пенополистирола толщина может колебаться в пределах 10-200 мм. По этому показателю его принято

классифицировать на три больших группы:

  1. Плиты до 30 мм. Этот тонкий материал обычно используется при утеплении перегородок и внутренних стен зданий. Коэффициент его теплопроводности не превышает 0.035 Вт/мК.
  2. Материал толщиной до 100 мм. Пенополистирол этой группы может применяться для обшивки как внешних, так и для внутренних стен. Тепло такие плиты сохраняют очень хорошо и с успехом используются даже в регионах страны с суровым климатом. К примеру, материал толщиной 50 мм имеет теплопроводность в 0.031-0.032 Вт/Мк.
  3. Пенополистирол толщиной более 100 мм. Такие габаритные плиты чаще всего используются для изготовления опалубок при заливке фундаментов на Крайнем Севере. Теплопроводность их не превышает 0.031 Вт/мК.

Расчет необходимой толщины материала

Точно вычислить толщину необходимого для утепления дома пенополистирола довольно-таки сложно. Дело в том, что при выполнении этой операции следует учитывать массу самых разных факторов. К примеру, таких, как теплопроводность материала, выбранного для сооружения утепляемых конструкций и его разновидность, климат местности, тип облицовки и пр. Однако примерно рассчитать необходимую толщину плит все-таки можно. Для этого понадобятся

следующие справочные данные:

  • показатель требуемого теплосопротивления ограждающих конструкций для данного конкретного региона;
  • коэффициент теплопроводности выбранной марки утеплителя.

Собственно сам расчет производится по формуле R=p/k, где p — толщина пенопласта, R — показатель теплосопротивления, k — коэффициент теплопроводности. К примеру, для Урала показатель R равен 3,3 м2•°C/Вт. Допустим, для утепления стен выбран материал марки EPS 70 с коэффициентом теплопроводности 0.033 Вт/мК. В этом случае расчет будет выглядеть следующим образом:

  • 3.3=p/0.033;
  • p=3.3*0.033=100.

То есть толщина утеплителя для наружных ограждающих конструкций на Урале должна составлять минимум 100 мм. Обычно владельцы домов холодных регионов обшивают стены, потолки и полы двумя слоями пенополистирола на 50 мм. При этом плиты верхнего слоя располагают таким образом, чтобы они перекрывали швы нижнего. Таким образом можно получить максимально эффективное утепление.

Экструдированный пенополистирол

Обычный утеплитель этого типа маркируется буквами EPS. Вторая разновидность материала — экструдированный пенополистирол обозначается буквами XPS. Отличаются такие плиты от обычных, прежде всего, структурой ячейки. Он у них не открытая, а закрытая. Поэтому экструдированный пенополистирол гораздо меньше простого набирает влагу. То есть способен сохранять свои теплоизоляционные качества в полной мере даже под воздействием самых неблагоприятных факторов внешней среды. Коэффициент теплопроводности экструдированного пенополистирола в зависимости от марки может составлять 0.027-0.033 Вт/мК.

Сравнение утеплителей

Таким образом, экструдированный и обычный пенополистирол считаются у владельцев загородных участков едва ли не самыми лучшими видами утеплителя. Ниже представляем вашему вниманию таблицу с коэффициентами теплопроводности других видов изоляторов.

МатериалКоэффициент теплопроводности (Вт/мК)
Минеральная вата0.045-0.07
Стекловата0.033-0.05
Керамзит0.16
Керамзитобетон0.31
Пенополиуретан0.02-0.041

Как видите, лучше пенополистирола, коэффициент теплопроводности которого составляет 0.031-0.033 Вт/мК, стены, потолки и полы можно утеплить только пенополиуретаном. Однако последний стоит очень дорого. К тому же при его нанесении используется специальное конструктивно сложное оборудование. А следовательно, наилучшим вариантом изолятора в плане способности сохранять тепло на данный момент является все же именно пенополистирол.

Оцените статью: Поделитесь с друзьями!

Экструзионный пенополистирол | утеплитель пенополистирол: характеристики, плотность

ПЕНОПЛЭКС® представляет собой вспененный экструдированный пенополистирол, изготавливаемый методом экструзии из полистирола общего назначения.

Процесс экструдирования пенополистирола разработан более 50 лет назад в США. Данный метод позволяет получить экологически чистый утеплитель с равномерной структурой, состоящий из миллионов мелких ячеек размерами 0,1-0,2 мм. Экструдированный пенополистирол Пеноплэкс отличается множеством полезных свойств: не боится воды, имеет малую массу и легко монтируется. Пеноплэкс – великолепная наружная теплоизоляция и не менее эффективная теплоизоляция внутри помещений. 

Преимущества утеплителя Пеноплэкс:

  • низкая теплопроводность;
  • минимальное водопоглощение;
  • высокая прочность на сжатие;
  • долговечность;
  • морозостойкость;
  • экологичность.

Утеплитель ПЕНОПЛЭКС® обладает стабильно низким расчетным коэффициентом теплопроводности, поэтому для теплоизоляции дома требуется гораздо более тонкий слой ПЕНОПЛЭКС®, чем других утеплителей.


ПЕНОПЛЭКС® - экструзионный пенополистерол: технические характеристики

Физико-механические свойства

Технические нормы

Ед. изм.

«ПЕНОПЛЭКС»

Прочность на сжатие при 10% линейной деформации, не менее

ГОСТ EN 826-2011

МПа (т/м2)

0,20
(20)

Предел прочности при статическом изгибе

ГОСТ 17177-94

МПа

0,25

Водопоглощение за 24 часа, не более

ГОСТ 15588-86

% по объему

0,4

Категория стойкости к огню

ФЗ-123

группа

Г3 (с антипиренами)

Коэффициент теплопроводности λлаб.

ГОСТ 30256-94

Вт/м∙ºК

0,033

Стандартные размеры

толщина

ТУ 5767-006-54349294-2014

мм

20, 30, 40, 50, 60, 80, 100, 120, 150

ширина

600

длина

1200

Температурный диапазон эксплуатации

ТУ 5767-006-54349294-2014

ºС

-100….+75

Области применения:

Утепление экструзионным пенополистиролом широко применяется в промышленном и гражданском, в том числе малоэтажном строительстве, сельском хозяйстве, холодильной промышленности, строительстве спортивных сооружений, а также при прокладке железных дорог, взлетно-посадочных полос, автомагистралей и трубопроводов.

Утеплитель ПЕНОПЛЭКС® — по природе химически инертен, не подвержен гниению, упруг и пластичен. Работать с ним можно при любых погодных условиях без каких-либо средств защиты от атмосферных осадков.

Утеплитель пенополистирол, плиты из которого легко обрабатываются и чрезвычайно просты в монтаже, становится все популярнее буквально день ото дня, являясь наиболее востребованным теплоизоляционным материалом не только современности, но и обозримого будущего.

ПЕНОПЛЭКС® — яркий представитель нового поколения теплоизоляционных материалов. Он идеально подходит для решения задач по сбережению тепла. Основные достоинства материала делают его незаменимым в гражданском и промышленном строительстве.

 

По вопросам сотрудничества обращайтесь к дистрибьюторам ПЕНОПЛЭКС® в своем регионе.

Теплопроводность пенопласта, сравнение с Пеноплексом, цена листов разных марок

Эффективность – первое, что мы ищем, выбирая утеплитель. Разнообразные материалы изначально оцениваются именно по этому критерию, и только потом в дело вступают другие характеристики, особенность монтажа и стоимость. Сегодня мы рассмотрим теплопроводность пенопласта как самого доступного по цене и потому востребованного, а также сравним его с иными видами изоляции.

Оглавление:

  1. Что такое теплопроводность?
  2. Характеристики пенопласта разных марок
  3. Сравнение с другими материалами и расценки

Определение

Теплопроводность – величина, обозначающая количество тепла (энергии), проходящего за час сквозь 1 м любого тела при определенной разнице температур с одной и другой его стороны. Она измеряется и рассчитывается для нескольких исходных условий эксплуатации:

  • При 25±5 °С – это стандартный показатель, закрепленный в ГОСТах и СНиП.
  • «А» – так обозначается сухой и нормальный режим влажности в помещениях.
  • «Б» – в эту категорию относят все прочие условия.

Собственно теплопроводность гранул пенопласта, спрессованных в легкую плиту, не так важна сама по себе, как в связке с толщиной утеплителя. Ведь основная цель – добиться оптимального уровня сопротивления всех слоев стены в соответствии с требованиями для конкретного региона. Для получения первоначальных цифр достаточно будет воспользоваться самой простой формулой: R = p÷k.

  • Сопротивление теплопередаче R можно найти в специальных таблицах СНиП 23-02-2003, к примеру, для Москвы принимают 3,16 м·°С/Вт. И если основная стена по своим характеристикам недотягивает до этого значения, разницу должен перекрыть именно утеплитель (минвата или тот же пенопласт).
  • Показатель р – обозначает искомую толщину изолирующего слоя, выраженную в метрах.
  • Коэффициент k – как раз и дает представление о проводимости тел, на которую мы ориентируемся при выборе.

Теплопроводность самого материала проверяют с помощью нагрева одной стороны листа и измерения количества энергии, переданной методом кондукции на противоположную поверхность в единицу времени.

Показатели для разных марок пенополистирола

Из приведенной упрощенной формулы можно заключить, что чем тоньше лист утеплителя, тем меньшей эффективностью он обладает. Но кроме обычных геометрических параметров на конечный результат оказывает влияние и плотность пенопласта, хоть и незначительно – всего в пределах 1-5 тысячных долей. Для сравнения возьмем две близкие по марке плиты:

  • ПСБ-С 25 проводит 0,039 Вт/м·°С.
  • ПСБ-С 35 при большей плотности – 0,037 Вт/м·°С.

А вот с изменением толщины разница становится куда более заметной. К примеру, у самых тонких листов в 40 мм при плотности 25 кг/м3 показатель теплопроводности может составлять 0,136 Вт/м·°С, а 100 мм того же пенополистирола пропускают всего 0,035 Вт/м·°С.

Зависимость нелинейная, что связано с особенностью кондуктивной передачи. Но поскольку коэффициент высчитывается в единицу времени, а плотность материала остается неизменной, разница температур с внешней поверхностью при «продвижении» энергии сквозь плиту становится все меньше. И если толщина пенополистирола оказывается значительной, тепло просто не успевает передаться обратной стороне, что, в общем-то, и требуется от хорошей изоляции.

Сравнение с другими материалами

Средняя теплопроводность ПСБ лежит в пределах 0,037-0,043 Вт/м·°С, на него и будем ориентироваться. Здесь пенопласт в сравнении с минватой из базальтовых волокон, кажется, выигрывает незначительно – у нее примерно те же показатели. Правда, при вдвое большей толщине (95-100 мм против 50 мм у полистирола). Также принято сопоставлять проводимость утеплителей с различными стройматериалами, необходимыми для возведения стен. Хотя это и не слишком корректно, но весьма наглядно:

1. Красный керамический кирпич имеет коэффициент теплопередачи 0,7 Вт/м·°С (в 16-19 раз больше, чем у пенопласта). Проще говоря, чтобы заменить 50 мм утеплителя понадобится кладка толщиной около 80-85 см. Силикатного и вовсе нужно не меньше метра.

2. Массив дерева в сравнении с кирпичом в этом плане получше – здесь всего 0,12 Вт/м·°С, то есть втрое выше, чем у пенополистирола. В зависимости от качества леса и способа возведения стен, эквивалентом ПСБ толщиной 5 см может стать сруб шириной до 23 см.

Куда логичнее сравнивать стиролы не с минватой, кирпичом или деревом, а рассматривать более близкие материалы – пенопласт и Пеноплекс. Оба они относятся к вспененным полистиролам и даже изготавливаются из одних и тех же гранул. Вот только разница в технологии их «склеивания» дает неожиданные результаты. Причина в том, что шарики стирола для производства Пеноплекса с введением порообразователей одновременно обрабатываются давлением и высокой температурой. В итоге пластичная масса приобретает большую однородность и прочность, а пузырьки воздуха равномерно распределяются в теле плиты. Пенопласт же просто обдается паром в форме, как поп-корн, поэтому связи между вспученными гранулами оказываются слабее.

Как следствие, теплопроводность Пеноплекса – экструдированного «родственника» ПСБ – тоже заметно улучшается. Она соответствует показателям 0,028-0,034 Вт/м·°С, то есть 30 мм хватит, чтобы заменить 40 мм пенопласта. Однако сложность производства увеличивает и стоимость ЭППС, так что на экономию рассчитывать не стоит. Кстати, здесь есть один любопытный нюанс: обычно экструдированный пенополистирол немного теряет в эффективности при увеличении плотности. Но при введении в состав Пеноплекса графита эта зависимость практически исчезает.

Впрочем, если вопрос высокой прочности на повестке дня не стоит, и вам нужен просто хороший утеплитель, проще и дешевле действительно купить пенопласт. В сравнении с такими материалами, как минвата, дерево и керамический кирпич, он безусловно хорош. Главное – не использовать его на пожароопасных объектах и всегда стараться выполнять теплоизоляцию снаружи зданий.

Цены на листы пенопласта 1000х1000 мм (рубли):

Толщина листа, ммПСБ-С 15ПСБ-С 25ПСБ-С 35ПСБ-С 50
20376182124
305595123185
4073122164247
5091152205308
70127213264431
80145243328493
100181304409616

Теплопроводность пенопласта: цифры, факты и схемы

Все о ней говорят, но никто не видел. Разумеют, что она нужна, а где взять, не знают. Понимают, что надо её понижать, но как, не ведают. Ведь разговор идет о способности утеплителя не допускать передачу тепловой энергии через занятую им площадь, а проще говоря, о его низкой теплопроводности. Теплопроводность пенопласта является основной характеристикой, определяющей порядок его использования в утеплении зданий и сооружений.

Основа низкой теплопроводности

Всем своим имеющимся положительным и отрицательным свойствам, пенопласт (вспененный пенополистирол) обязан стиролу и особой технологии производства.

Вначале стирол насыщают газом или воздухом, превращая в пустотелые гранулы. Затем под воздействием горячего пара происходит многократное увеличение объёма гранул с последующим спеканием их при наличии связующего состава. Таким образом, получаемый лист состоит из множества сфер правильной формы, наполненных газом.

Стирольные стенки тонкие, но очень прочные. Даже при приложении значительных усилий, разрушить оболочку не так уж и просто. Удерживаемый внутри газ остается неподвижным при любых условиях эксплуатации, обеспечивая высокую тепловую изоляцию защищаемого объёма.

Наполнение объёма утеплителя газами зависит от его плотности. Меняется от 93 до 98 %. Чем больше процент, тем меньше плотность, тем легче материал, тем выше теплопроводность, и обычно выше качество утепления и другие важные характеристики.

Вникаем в смысл понятия

Понять смысл «теплопроводность пенополистирола» можно через физическую размерность. Измеряется данная величина в Вт/м ч К. Расшифровать её можно следующим образом: сколько ватт тепловой энергии пройдёт через толщину утеплителя площадью 1 м2 в час при снижении температуры нагретой поверхности на 1 К (Кельвин). 1 К равен 1оС.

Схема утечки тепла через утеплитель

В технических характеристиках материала разной плотности указывается коэффициент теплопроводности пенопласта. Он колеблется в диапазоне от 0,032 до 0,04 единицы. При увеличении плотности плиты это значение уменьшается.

Теплопроводность простыми словами: сколько ватт тепловой энергии пройдёт через толщину утеплителя площадью 1 м2 в час при снижении температуры нагретой поверхности на 1 К (Кельвин). 1 К равен 1оС.

Но бесконечно повышая плотность материала, невозможно добиться нулевых теплопотерь. Перейдя некоторую границу и продолжая увеличивать плотность, получим скачкообразный рост потери тепла. Необходимо понимание того, что при увеличении плотности, объём и количество газа в материале сокращаются, и как следствие, термоизоляция ухудшается.

Опытным путём установлено, что максимальная способность изолятора удерживать тепло достигается при его плотности от 8 до 35 кг/м3. Это число, указанное на упаковке, показывает, сколько весит 1 м3 утеплителя при заявленной плотности. Малая плотность – малый вес. Малый вес – удобство монтажа и укладки.

Всё тоньше, всё теплее

Для того чтобы представить эту физическую величину наглядно, проведём сравнение теплопроводности пенопласта с другими строительными материалами. Представьте, что вы стоите и смотрите с торца на разрезы стен из разных материалов. Сначала перед глазами проплывает бетонная стена толщиной 3,2 м, затем кирпичная кладка в 5 кирпичей (1,25 м), потом относительно тоненькая деревянная перегородка шириной с предплечье взрослого человека (0,40 м). И уже где-то в самом конце, незаметный лист пенопласта толщиной 0,1 м. Что же объединяет все эти материалы необъятной толщины? Только одно.

У них одинаковый коэффициент удельной теплопроводности.

Используя его низкую теплопроводимость, можно в значительной степени сократить расход достаточно дорогих в приобретении и укладке стройматериалов. Дом, построенный в 2,5 кирпича так же надёжен, как и дом с толщиной стен в 5 кирпичей. Только в первом случае расходы на отопление больше. Хотите дом теплее? Не надо возводить ещё такую же стену. Достаточно утеплить стену 50 мм плитой. Почувствуйте разницу. 2,5 кирпича по периметру дома и лист пенопласта толщиной в 50 мм. Экономим время, деньги, силы.

Трудность выбора

Кто-то может возразить, что это некорректное сравнение. Нельзя сравнивать материалы, настолько разные по своему происхождения и внутреннему составу. Хорошо. Тогда сравним современные утеплители: минеральные (базальтовые), вспененный и экструдированный пенополистиролы, пенополиуретан.

Проводимое сравнение явно не в пользу плит и матов из волокнистых материалов. Их теплоёмкость почти в 1,5 раза больше, чем у пенопласта. Это сразу понижает их потребительскую ценность и ставит на нижнюю степень по этому показателю.

Сравнить теплопроводность экструдированного пенополистирола и пенопласта достаточно затруднительно. Физически и математически показатели очень близки. Признавая лидерство, имеющего более низкий коэффициент теплопроводности экструдированного пенополистирола, вспененный полистирол отвечает ему своим преимуществом – ценой. Разницу в 4 сотых единицы указанного коэффициента, вспененный полистирол перекрывает ценой, которая в 4 раза ниже, чем у именитых конкурентов.

Даже при сравнении теплопроводности пенополиуретана и пенопласта можно сказать о том, что вспененный пенополистирол «хорошо держит удар». Коэффициент теплопроводности пенополиуретана только на 30% меньше, чем у вспененного полистирола. А цена… Не стоит забывать о том, что его монтаж требует определённой квалификации, оборудования. Что потребует дополнительных затрат. Утепление дома пенопластом можно провести своими руками.

Так что есть над чем поразмышлять, прежде чем сделать выбор утеплителя.

Применяем, ориентируясь на числа

Именно коэффициент теплопроводности пенополистирола определяет порядок и место его применения.

Материал с невысокой плотностью и высокой теплопроводностью применяется для утепления вертикальных конструкций внутри помещений. Это пенополистиролы с числом «15» в маркировке. Они имеют небольшую толщину и не сильно поглощают внутренние объёмы.

Утеплитель, обозначенный числом «25», имеет возможность использования при наружном утеплении стен, межэтажных (чердачных, подвальных) перекрытий, скатных и плоских кровель, как частных домовладений, так и многоэтажных строений.

Самую высокую плотность и самое низкое значение удельной теплопроводности имеют пенопласты с числом «35» в наименовании. Они достойно утепляют заглубленные фундаменты, автомобильные дороги, взлётно-посадочные полосы.

Наверное, нет такого строительного материала, который не мог бы утеплить пенопласт. Если невозможно увидеть его высокую термоизоляции, это не значит, что её нет. В этом можно убедиться после утепления дома, получив счёт за потреблённые энергоресурсы.

от чего зависит, сравнение с минватой и Пеноплексом, цены

Одна из самых важных характеристик при выборе любого утеплителя – теплопроводность. Ее коэффициент показывает, сколько тепла проходит через материал (пенопласт, Penoplex, кирпич, минвату) за определенное время. Чем дольше длится процесс такого теплообмена, тем ниже будет его значение и, соответственно, тем больше тепла останется внутри помещения.

Оглавление:

  1. От чего зависит теплопроводность?
  2. Сравнение с Пеноплексом и минватой
  3. Цена пенополистирола

Что влияет на теплопередачу?

Существует несколько факторов, которые значительно влияют на ее величину:

  • наличие пор и их структура;
  • плотность, толщина;
  • влагопоглощаемость.

Благодаря наличию пор в материале, как, например, в пенопласте и Пеноплексе, они имеют низкую теплопередачу. Внутри гранул нет ничего, кроме воздуха, а он имеет самую малую величину коэффициента – 0,022 Вт/м·К. Закрытые и маленького размера поры также затрудняют передачу тепловой энергии, а если они открытые и соединены между собой, то появляется конвекция, из-за которой повышается теплопроводность.

Чем плотнее материал, тем быстрее он пропускает тепло, как, например, металл или графит. Для сравнения, плотность пенопласта составляет 18 кг/м3, а у сплошного силикатного кирпича – около 1800 кг/м3, следовательно, у первого теплопередача будет очень низкая, а у второго – весьма высокая. Ко всему этому немаловажное значение имеет способность утеплителя поглощать воду, так как при попадании влаги внутрь она вытесняет сухой воздух, тем самым повышая передачу тепловой энергии.

Таблица с величинами коэффициентов теплопроводности:

Наименование теплоизоляции Плотность, кг/м3 Теплопроводность, Вт/м·К
Минвата 200 0,08
125 0,07
Пенополистирол ПСБ-С 15 до 15 0,043
ПСБ-С 25 15,1-25 0,041
ПСБ-С 35 15,1-35 0,038
ПСБ-С 50 15,1-50 0,041
Пеноплекс 33-45 0,03-0,032
Пустотелый керамический кирпич 1200 0,52
Сплошной силикатный кирпич 1800 0,47
Стекловата 75-175 0,032-0,041

Значение величины теплопроводности гранул пенопласта в зависимости от толщины:

Толщина, мм Коэффициент теплопередачи, Вт/м·К
30 0,04
50 0,03-0,037
100 0,03-0,046
150 0,02

Сравнение с другими утеплителями

Пенопласт получается в результате вспенивания полистирола, благодаря чему появляются наполненные газом поры, а Пеноплекс – экструдированный пенополистирол, произведенный методом экструзии, поэтому его гранулы имеют меньший размер. К тому же из-за равномерного и упорядоченного расположения ячеек в экструзионном, он является более прочным утеплителем, что позволяет ему сильнее изгибаться и меньше продавливаться под нагрузкой. Оба материала имеют наивысшие степени пожароопасности, поэтому обязательно следует учитывать это во время монтажа.

Сравнительная таблица Пеноплекса и пенополистирола:

Пенопласт Пеноплекс
Плотность, кг/м3 18 25-32
Влагопоглощаемость, % 0,8-1,2 0,4
Паропроницаемость, мг/(м·ч·Па) 0,05 0,02
Теплопроводность, Вт/м·К 0,031-0,041 0,03

По величине теплопроводности пенопласт проигрывает Пеноплексу, и по другим показателям также. Но даже если утеплять дом обычным вспененным полистиролом, то теплопотери могут сократиться практически на 40%. Главное – провести все работы по монтажу согласно всем требования производителя, в том числе не допустить попадания влаги между стеной и теплоизоляцией и ограничить доступ для грызунов.

По всем свойствам пенопласт и в сравнении с минватой весьма различается:

Минвата
Плотность, кг/м3 10-300
Влагопоглощаемость, % более 1%
Паропроницаемость, мг/(м·ч·Па) 0,4-0,5
Теплопередача, Вт/м·К 0,045 (при 35 кг/м3) -0,7

По коэффициенту теплопередачи пенопласт имеет наилучшее значение, но по паропроницаемости показатель у минваты намного лучше, в итоге ее свободно можно использовать внутри жилых помещений, к тому же она огнеустойчива, в отличие от вспененного полистирола. Также благодаря производству из минерального сырья она не выделяет во время горения опасных веществ, и, разлагаясь, не загрязняет окружающую среду. Но минвата по сравнению со вспененным полистиролом имеет намного больший вес, поэтому для ее монтажа, особенно на стены, требуется крепкая конструкция.

Стоимость

Таблица цен, по которым можно купить пенопласт:

Наименование марки пенополистирола Размеры, мм (длина/ширина/толщина) Плотность, кг/м3 Стоимость за м2, рубли
Knauf Therm Compack 1000x600x50 10-15 150
Therm Wall Light 1000x1200x100 10-12 190
1000х1200х50 10-12 100
1000х1200х20 10-12 40
Therm Facade 1000x1200x100 15,1-17,2 390
Therm Wall 2000х1200х50 10-12 150
ПСБ-С 15 1000х1000х20 15 50
1000х1000х30 60
1000х1000х40 80
1000х1000х50 90
1000х1000х100 170
ПСБ-С 25 1000х1000х20 20 80
1000х1000х30 120
1000х1000х40 140
1000х1000х50 150
1000х1000х100 300
ПСБ-С 35 1000х1000х20 35 100
1000х1000х30 140
1000х1000х40 180
1000х1000х50 200
1000х1000х100 400

Выбирая утеплитель, следует помнить, что чем выше коэффициент теплопередачи, тем большее количество слоев придется монтировать. Так, например, базальтовая минвата толщиной в 100 мм имеет практически такую же проводимость тепла – 0,042 Вт/м·К, как у пенополистирола размером 50 мм – 0,046 Вт/м·К, а теплопроводность Пеноплекса с 50 мм и 100 мм – 0,03 Вт/м·К. Каждый из них имеет свои плюсы и минусы, так минеральную вату рекомендуется использовать там, где требуется повышенная паропроницаемость и устойчивость к большим температурам, стекловату следует применять для гаражей или любых других мест, где высока вероятность возгорания.

Пенопласт и экструдированный пенополистирол все же лучше располагать снаружи здания, а не внутри, так меньше шансов для образования конденсата между стеной и утеплителем.

Дата: 5 июля 2016

Теплопроводность Пеноплекса и другие технические характеристики материала: видео и фото

Что представляет собой утеплитель пеноплекс, какая у него теплопроводность и какими вообще свойствами он обладает? Мне часто приходится работать с этим материалом, поэтому я готов ответить на поставленные вопросы. Кроме того, приведу вам технические характеристики данного утеплителя, и расскажу в каких случаях имеет смысл его применять.

На фото пеноплекс – универсальный и эффективный полимерный утеплитель от отечественного производителя

Что представляет собой пеноплекс

Характеристики

Сравним характеристики пеноплекса и пенополистирола:

Параметры Пеноплекс Пенополистирол
Коэффициент теплопроводности, Вт/м·ºК 0,03 0,036-0,050
Водопоглощение за сутки, % от объема 0,2 2
Плотность, кг/м3 28-45 15-35
Прочность на сжатие, Мпа (10% деформации) 0,25-0,5 0,05-0,2

По теплопроводности и прочности экструзионный пенополистирол выигрышно смотрится не только по сравнению с пенопластом, но и многими другими материалами, такими как минеральная вата.

Сравнение теплопроводности экструзионного пенопласта с другими материалами

Как вы видите, технические характеристики пеноплекса более высокие.

Общие сведения

Прежде всего давайте разберемся что такое пеноплекс. Итак, это материал представляет собой экструдированный (экструзионный) пенополистирол.

Надо сказать, что в нашей стране принято называть пеноплексом любой экструдированный пенополистирол. В действительности же «Пеноплэкс» – это название компании, выпускающей данный вид утеплителя в России и других странах СНГ. Поэтому далее пойдет речь об экструдированном пенополистироле именно от этой компании.

Напомню, что экструзионный пенополистирол представляет собой полимерный утеплитель, который был придуман в середине прошлого века. По сути, это тот же пенополистирол (пенопласт), но изготавливаемый по особой технологии, в результате чего приобретает особые качества. В частности, можно выделить следующие его отличия от пенопласта:

Структура. Если пенопласт имеет зернистую структуру, то пеноплекс – это более однородный ячеистый материал;

  • Плотность. Экструзионный пенополистирол более плотный, чем пенопласт;
  • Прочность. В результате более высокой плотности и однородной структуры данный утеплитель обладает и более высокой прочностью.

Экструдированный пенополистирол имеет однородную структуру и гладкую поверхность

Внешне пеноплекс легко отличить от пенопласта. Последний имеет белый цвет, в то время как пеноплекс оранжевый. Кроме того, экструзионный пенополистирол обладает гладкой поверхностью.

Достоинства и недостатки

Домашние мастера зачастую интересуются – что лучше пеноплекс или пенополистирол? Чтобы ответить на этот вопрос, далее я приведу положительные и отрицательные качества пеноплекса, и сравню их со свойствами обычного пенополистирола.

Достоинства:

  • Эффективность. Несмотря на то, что рассматриваемый утеплитель имеет более высокую плотность, чем пенопласт, его теплопроводность ниже, т.е. он лучше держит тепло;

Благодаря высокой прочности экструзионный пенопласт можно укладывать под стяжку

  • Прочность. Данный материал способен выдерживать большие нагрузки, что расширяет область его применения;
  • Влагоустойчивость. Утеплитель практически не впитывает влагу, в сравнении с другими материалами, например, пенополистирола;

Пеноплекс практически не впитывает влагу

  • Пожаробезопасность. Относится к слабогорючим материалам. Исключение составляют марки, которые предназначены для утепления фундаментов или полов под стяжку.
    Горючесть пенопласта же практически всегда очень высокая, так как производители в целях экономии не добавляют в него антипирены;
  • Долговечность. Срок службы превышает 50 лет. Как показывает практика, пенополистирол приходит в негодность раньше;
  • Экологичность. При нормальной температуре оба материала не выделяют вредных веществ;
  • Химическая устойчивость. Оба материала устойчивы к большинству химических веществ. Исключение составляют органические растворители, такие как Уайт-спирит.

Пеноплекс может прослужить более 50 лет даже в неблагоприятных условиях эксплуатации

Недостатки. На первый взгляд сравнение материалов говорит о том, что пеноплекс лучше пенополистирола. Однако, как и любой другой утеплитель, он имеет свои минусы:

  • Высокая стоимость. Плиты пеноплекса стоят в несколько раз дороже пенополистирола;
  • Низкая адгезия. На данном материале плохо держатся штукатурно-клеевые смеси. Правда, Пеноплэкс выпускает специальные фасадные плиты, которые имеют шероховатую поверхность, что улучшает их сцепляемость со строительными смесями;
  • Низкая паропроницаемость. Это недостаток свойственен обоим материалам.

Учитывая эти минусы – каждый сам должен решать, что лучше использовать – пенопласт или экструзионный пенополистирол. К примеру, для утепления фундамента или цоколя лучше использовать экструдированный пенопласт.

Пенопласт обладает лучшей адгезией, чем пеноплекс

Если же нужно отделать стены фасада, то невозможно однозначно сказать, что лучше – пенопласт или пеноплекс. Учитывая низкую стоимость пенопласта и его хорошую адгезию, можно отдать предпочтение ему.

Виды и область применения

Итак, мы выяснили что теплее – пеноплекс или пенопласт, а также ознакомились с другими характеристиками утеплителя. Но для каких целей его применяют?

Компания Пеноплэкс выпускает несколько марок экструзионного пенополистирола, у которых разная область применения. Поэтому далее рассмотрим все серии и узнаем в чем разница между ними.

Пеноплэкс Фундамент может выдерживать большие механические нагрузки

Итак, в настоящее время в продаже можно встретить следующие плиты Пеноплэкс:

  • Фундамент. Как не сложно догадаться из названия, эта серия предназначена для утепления фундамента, отмосток, цоколей. Также плиты можно укладывать под стяжку.
    Главная характеристика этих плит, помимо теплопроводности – это высокая прочность. Так как пожаробезопасность значения не имеет, в составе отсутствует антипирен. Поэтому не рекомендуется использовать их в конструкциях, не имеющих защитного слоя;
  • Кровля. Эта марка предназначена специально для плоских крыш. Они обладают небольшим весом и при этом высокой прочностью.
    Главная особенность данной марки заключается в том, что каждая плита имеет кромку Г-образной формы. Благодаря этому при их укладке не образуются щели;

Утеплитель серии «Комфорт» можно использовать для утепления балконов

  • Комфорт. Эта марка предназначена для утепления жилья изнутри. Также плиты подходят для утепления балконов и лоджий.
    Помимо высокой теплопроводности их особенность заключается в высокой экологичности – в составе утеплителя нет никаких вредных химических веществ;

Плиты серии «Скатная кровля» предназначены для утепления крыш

  • Скатная кровля. Плиты этой серии предназначены для утепления скатных крыш. Они имеют невысокую плотность, но при этом влагоустойчивые и жесткие.
    Имеющиеся на кромках шипы и пазы исключают образование мостиков холода при состыковке плит, а также упрощают монтаж своими руками. Кроме того, они могут служить дополнительной защитой от влаги.
  • Фасад. Особенность этих плит заключается в наличии рифленой поверхности. Благодаря этому их можно использовать для утепления стен по технологии «мокрый фасад».
    Надо сказать, что утеплитель пеноплекс данной серии подходит не только для наружного, но и для внутреннего использования;

Несмотря на наличие фактуры, перед нанесением штукатурно-клеевой смеси поверхность утеплителя желательно обработать адгезионной грунтовкой.

Пеноплекс «Фасад» можно использовать для наружного утепления стен «мокрым» способом

  • Стена. Плиты этой серии обладают несколько меньшей плотностью, чем «Фасад». Производитель рекомендует использовать их в качестве наполнителя каркасных стен.
    В то же время данный утеплитель может рассматриваться как замена плитам серии «Фасад», т.е. его можно использовать для мокрых и навесных фасадов;

Пеноплекс стена можно использовать для утепления каркасных стен

  • Основа. Данная серия наиболее универсальная, так как плиты можно использовать для утепления стен, полов, крыш и даже фундамента. Плиты сочетают в себе отличные теплоизоляционные свойства и способность выдерживать большие механические нагрузки.

Плиты серии «основа» можно укладывать под плитный фундамент

Надо сказать, что помимо перечисленных выше серий, которые можно отнести к бытовым, существуют еще промышленные, такие как Пеноплэкс 45. Они применяются при строительстве дорог, взлетных полос аэродромов и т.д. В строительных магазинах такие марки вы не найдете.

Несмотря на влагоустойчивость пеноплекса, инструкция по его монтажу в каркасных деревянных конструкциях (стенах, кровлях и перекрытиях) требует использования пароизоляции и гидроизоляции. В противном случае влага будет скапливаться в деревянных элементах конструкции, что приведет к их гниению и другим негативным последствиям.

Стоимость

Цены в таблице актуальны весной 2017 года:

Модель Цена в рублях
Фундамент (50 мм толщина, 8 шт. в упаковке) 1400
Кровля (80 мм, 5 шт.) 1420
Фасад, (50 мм, 8 шт.) 1350
Комфорт, (40 мм, 10 шт.) 1200
Стена, (50 мм, 8 шт.) 1350
Основа, (50 мм, 8 шт.) 1655

Вот, собственно, и все, что я хотел рассказать вам о пеноплексе.

 

Вывод

Мы выяснили, что представляет собой пеноплекс, какими свойствами он обладает, и в каких случаях его можно использовать. Просмотрите также видео в этой статье. Со всеми вопросами относительно этого утеплителя вы можете обратиться ко мне в комментариях.


Серый полистирол 50 мм (графитовый пенополистирол) для изоляции внешних стен | Продукты EWI

Серый полистирол 50 мм (графитовый пенополистирол) для изоляции внешних стен (упаковка из 12 шт.)

Теплопроводность : 0.031Вт / мК

Прочность на сжатие : 70 кПа

Удельное сопротивление водяному пару : 20 МН.с / г.м

Класс огнестойкости (реакция на огонь) : E

50-миллиметровый серый полистирол (графит) - это высококачественный пенополистирол (EPS) серого цвета с интегрированным графитом внутри бортовой структуры.Частицы графита высокой чистоты, интегрированные в изолирующие валики, отражают лучистое тепло и значительно улучшают изоляционные свойства, обеспечивая до 20% большее значение r, чем традиционный белый пенополистирол той же толщины. Жесткая изоляция из пенополистирола с закрытыми порами удерживает воздух в карманах внутри каждого валика при формировании. Воздух, попавший в эти карманы, плохо проводит тепло и, следовательно, замедляет его передачу в сторону более холодного воздуха.

Серые Полистирольные (графитовые) плиты содержат частицы графита высокой чистоты, внедренные в их ячеистую структуру, которые придают им отражающие свойства и характерный темно-серый цвет.Когда лучистое тепло проходит через графитовую изоляцию, оно отражается сотни раз, значительно замедляя передачу тепла и делая его более энергоэффективным.

Теплый воздух всегда движется в сторону холодного, но для плит из серого полистирола (графита). этот путь проходит через множество изгибов и поворотов, замедляя теплопередачу и сохраняя тепло в помещении. Это улучшает его теплопроводность до 0,031 Вт / мК, что является улучшением по сравнению со стандартными пенополистирольными плитами.

ХАРАКТЕРИСТИКИ

  • Легкий,
  • Легко разрезать острым ножом на любой размер и форму,
  • Высокая устойчивость к росту плесени,
  • Высокая прочность, при использовании в соответствии со спецификациями,
  • Экономичная,
  • Окружающая среда дружественный продукт Green Way.

ПРИМЕНЕНИЕ

  • Новая и существующая оштукатуренная или не оштукатуренная кладка,
  • Стены, полы и крыши с деревянными подкладками.
  • Конструкция стенок полостей.

УСТАНОВКА

  • Плиты сначала прикрепляются к основанию (кладке или дереву) либо с помощью раствора / клея, либо просто механическими креплениями, либо клеем, а также механическими креплениями.
  • Затем плиты покрыть наружным слоем, сайдингом или слоем строительного раствора.
  • Наружную поверхность плиты необходимо отшлифовать или отшлифовать, чтобы получить абразивную поверхность, прежде чем покрыть ее волокнистой сеткой, на которую будет нанесен базовый слой или слой раствора.

СЕРТИФИКАЦИЯ

Изготовлен в соответствии с требованиями стандарта EN-13163.

Сравнение полистиролов: различия между пенополистиролом и XPS

Фото © Bigstock.com

, Джейсон Берджесс
Изоляция - важный компонент, который необходимо учитывать при проектировании функционального, экономичного и энергоэффективного здания.Один из методов теплоизоляции здания - это установка 50–152 мм (2–6 дюймов) изоляции из жесткого пенопласта на внешней стороне каркаса стены. Два наиболее часто устанавливаемых типа изоляции из жесткого пенопласта - это пенополистирол и экструдированный полистирол (EPS и XPS). Оба выполняют одну и ту же основную функцию: обеспечивают средства управления прохождением тепла в системе здания. Однако они существенно различаются.

Основная задача любого изоляционного строительного материала - обеспечить положительные тепловые характеристики.Однако это не единственный фактор, который следует учитывать при выборе изоляционного материала из жесткого пенопласта. Также очень важно знать, как он будет работать в нескольких ситуациях.

XPS производится в процессе непрерывной экструзии, в результате чего получается пенопластовая изоляция с закрытыми ячейками. EPS, с другой стороны, производится путем расширения сферических шариков в пресс-форме, а затем с использованием тепла и давления для сплавления шариков вместе.

У каждого продукта есть сторонники, утверждающие, что одно работает лучше другого.Однако важно понимать, что каждый продукт может больше подходить для конкретного использования, чем другой. Это можно прояснить, изучив термическую и влагозащиту, огнестойкость и водостойкость каждого продукта, а также их значение для проектов, разработанных с учетом экологических требований.

Тепловая и влагозащита
Показатель R - это показатель сопротивления материала теплопередаче. Чем выше значение R, тем лучше изоляция материала. Обычной процедурой тестирования R-значения материала является ASTM C518, Стандартный метод испытаний свойств устойчивой теплопередачи с помощью прибора для измерения теплового потока .Этот метод испытаний требует, чтобы техник измерил тепловое сопротивление образца, помещенного между холодной и горячей пластинами.

Изоляция из жесткого пенопласта в стеновой конструкции обеспечивает отличные R-значения, но не все типы жесткого пенопласта обладают одинаковыми тепловыми характеристиками.

Изоляция из жесткого пенопласта обеспечивает отличные показатели R для такого тонкого продукта, но не все жесткие пенопласты обладают одинаковыми тепловыми характеристиками. Выбор утеплителя следует делать после того, как его характеристики повлияют на качество стен.

EPS - это изоляция, наиболее широко используемая в изоляционных бетонных формах (ICF), конструкционных изоляционных панелях (SIP) и системах внешней изоляции и отделки (EIFS). У него самый низкий средний показатель R для изоляции из жесткого пенопласта, обычно R-4 на 25 мм (1 дюйм). Фактическое значение R для пенополистирола зависит от его плотности, при этом пены с более высокой плотностью имеют более высокие значения R в диапазоне от примерно 3,6 до 4,2 на 25 мм. Менее дорогой пенополистирол (обычно продаваемый в магазинах товаров для дома) имеет плотность 0,4 кг (1 фунт) на 0.02 м 3 (1 куб. Фут), соответственно называемый ППС типа I. Продукты типа I обычно имеют R-3,9 на 25 мм или R-7,8 на 50 мм (2 дюйма).

Однако EPS типа II с номинальной плотностью 0,6 кг (1,5 фунта) имеет значение R от R-4,15 до R-4,2 на 25 мм. Лист толщиной 50 мм будет от R-8,3 до R-8,4. EPS типа II - это то, что будет поставлять большинство дистрибьюторов, если не указано иное. Фактически, многие подрядчики называют EPS типа II «стандартной плотностью», а не «высокой плотностью». (Эта информация взята из Green Building Advisor , издание 2015 года на форуме и может быть найдена на сайте www.greenbuildingadvisor.com.)

XPS с плотностью R-5 на 25 мм имеет лишь немного лучшие тепловые характеристики, чем EPS. Теплоизоляционные характеристики EPS и XPS одинаковой плотности довольно близки. Однако пенополистирол с таким же уровнем плотности дешевле. XPS обычно избегают в областях, где требуются материалы с меньшей плотностью или где материал, который не производится с плотностью ниже определенной, неприменим. В таком строительном случае использование пенополистирола в качестве менее плотного материала обеспечило бы необходимую изоляцию при гораздо более низких затратах.

Synprodo.com -

EPP (вспененный полипропилен) - уникальное сырье, обладающее многими важными характеристиками, делающими его пригодным для широкого спектра применений. Вот некоторые поразительные критерии выбора: поглощение энергии, малый вес и высокая термостойкость.

EPP, в частности, используется для дорогих и уязвимых электронных продуктов или литых деталей, например, для климат-контроля и автомобильной промышленности.Несмотря на свой небольшой вес, EPP может поглощать большое количество энергии и обладает замечательной способностью восстанавливать свою форму после воздействия статической или динамической нагрузки. Деформация очень сбалансирована, независимо от направления удара / нагрузки. EPP термостойкий, практически не впитывает воду и эффективно устойчив к химическим веществам и маслам. Плотность EPP может быть специально адаптирована для каждого применения или цели. Обладает хорошими тепло- и холодоизоляционными свойствами и легко чистится.Поскольку EPP чрезвычайно пригоден для вторичной переработки и не содержит CFC или других пропеллентов, он очень безвреден для окружающей среды.

Свойства ЭПП

  • Высокое энергопоглощение и небольшой вес.
  • Замечательная способность восстанавливать форму после статических и динамических нагрузок.
  • Поглощение энергии после многократных ударных нагрузок практически не изменилось.
  • Сбалансированная деформация, независимо от направления удара / нагрузки.
  • Ограниченное водопоглощение.
  • Термостойкость.
  • Хорошая стойкость к химическим веществам и маслам.
  • Плотность продукта может быть адаптирована для конкретного проекта.
  • Хорошие теплоизоляционные свойства.
  • Легко чистить и стерилизовать.
  • Экологически чистый.
  • Можно очень эффективно переработать.
  • Не содержит CFC или других химических пропеллентов.
  • Теперь также доступны с улучшенными огнестойкими свойствами (EPP-FR)

Основные приложения можно найти в

  • Автомобилестроение
  • Транспортная тара и упаковка
  • Технические детали

Плотность продукта

кг / м3

20

40

60

80

100

Спецификация испытаний

Прочность на разрыв

кПа

260

600

880

1020

1300

DIN EN ISO 1798

Относительное удлинение при разрыве

%

19

17

15

12

10

DIN EN ISO 1798

Сжимающие силы

Деформация 25%

кПа

80

220

430

500

780

DIN 53 421

Деформация 50%

кПа

150

390

560

930

1340

DIN 53 421

Деформация 75%

кПа

330

700

1050

2150

3370

DIN 53 421

Компрессионный комплект 22 ч / КТ / 24 ч 25%

%

12

11

10

DIN EN ISO 1856

Жесткость при сжатии

кПа

50

200

400

DIN EN ISO 3386

Демпфирование

2.8

2,7

2,6

из ISO 4651

Статическая нагрузка на поверхность 5% / 100 дней

кПа

12

23

92

DIN 53 421

Теплопроводность при 10 ° C

Вт / (м * К)

0.039

0,041

0,042

0,043

0,045

DIN 52 612

Водопоглощение за 1 сутки

об .-%

0,5–1,5

0.5-1,5

0,5–1,5

0,5–1,5

0,5–1,5

Согласно DIN 53 428

Водопоглощение за 7 суток

об .-%

1,0–2,5

1,0–2,5

1.0–2,5

1,0–2,5

1,0–2,5

Согласно DIN 53 428

Сопротивление поверхности (23 ° C / относительная влажность 50%)

Ом

5 * 1012

5 * 1012

5 * 1012

5 * 1012

5 * 1012

DIN / VDE 0303


Огнестойкость изделий из EPP

  • Строительный материал класса B3 (легковоспламеняющийся)
  • При использовании с закрытыми торцами строительный материал B2 (обычно горючий)
  • Горизонтальное испытание на огнестойкость классифицированных пеноматериалов

Толщина

Расчетная плотность (кг / м3)

Спецификация испытаний

20

40

60-100

10 мм

B31)

B31)

B31) / B22)

DIN 4102 T1

20 мм

B31)

B22)

B22)

DIN 4102 T1

30 мм

B31) / B22)

B22)

B22)

DIN 4102 T1

12 мм

HBF3)

UL 94

13 мм

соответствует

соответствует

FMVSS 302


Изготовление формованных деталей

Обработка ЭПП осуществляется в формах на автоматическом пенопласте.Воздух в преимущественно закрытых ячейках пены образует пропеллент; в качестве рабочих сред используются только воздух, вода и пар.

Процесс выполняется в пять шагов

  1. Форма заполняется, и в то же время пузырьки сжимаются
  2. Пузырьки пены тают и расширяются
  3. Продукт остывает
  4. Продукт вынут из формы
  5. Детали сушеные

Детали сушатся и приобретают стабильность размеров в результате отпуска.Этот этап производства можно пропустить при плотности продукта более 50 г / л, а также при менее строгих требованиях к точности размеров. Никаких химических реакций не происходит.

Преимущества изделий из ЭПП

  • Быстрая сборка деталей различных типов сложной геометрической формы
  • Возможность производства гибридных компонентов
  • Уменьшение веса
  • Высокое энергопоглощение и демпфирующие свойства
  • Устойчивость к высоким температурам
  • Экологичность благодаря низким выбросам и возможности вторичной переработки

Благодаря своим механическим свойствам EPP особенно подходит для компонентов, которые должны выдерживать давление.Малый вес, высокое поглощение энергии и хорошие деформационные свойства EPP, даже после многократных ударных нагрузок, являются чрезвычайно подходящими свойствами для компонентов в автомобильной промышленности. Кроме того, EPP мало впитывает воду и надежен при самых разных температурах, что делает его пригодным для использования во внутренних и внешних помещениях автомобильной промышленности.

Материал высокой плотности также может использоваться в качестве строительного элемента. Его высокая прочность и хорошая совместимость с другими материалами позволяют создавать компоненты, которые отличаются превосходными механическими свойствами.Поскольку легко изготавливать различные геометрические формы, этот материал чрезвычайно подходит для изготовления фильтрующих элементов и ящиков для инструментов, где небольшой вес на единицу объема значительно снижает общий вес. Системы, собранные из EPP, твердого полипропилена и полипропиленовой пленки, могут быть легко изготовлены, так как материал идентичен. Это означает, что такая система также может быть переработана без разделения материалов. При разработке новых автомобилей большое внимание уделяется экономии веса и возможности вторичной переработки.Ни один другой вспененный материал не отвечает этим требованиям в такой степени, как EPP.

Благодаря этим свойствам продукта могут быть реализованы постоянно более высокие стандарты безопасности. Поскольку вес компонентов может быть уменьшен, может быть достигнута значительная экономия затрат и энергии. Благодаря этим свойствам и возможности повторного использования EPP вносит большой вклад в защиту окружающей среды и сокращение использования сырья.

EPP в технических частях Свойства EPP позволяют ему быть универсальным строительным материалом, который может выполнять несколько задач одновременно: он может служить упаковочным материалом, кожухом или защитой от ударов, но также и тепловым и звуковым изоляция, например, электронного оборудования и нагревательных принадлежностей.В устройствах и при создании электронного оборудования можно использовать совершенно новые методы установки.

Многоразовая упаковка и транспортные контейнеры
По сравнению с другими вспененными материалами, EPP чрезвычайно подходит для многоразовой упаковки и транспортных контейнеров. Его способность сохранять форму после статической и динамической нагрузки в сочетании с его стойкостью к химическим веществам, эффективными демпфирующими характеристиками и малым весом делают EPP идеальным для таких применений. В зависимости от загрузки он может регулярно обрабатывать сотни и более транспортных циклов.Таким образом, EPP помогает сократить упаковочные материалы и затраты.

Благодаря высокой термостойкости изделия из EPP можно стерилизовать, что особенно удобно для медицинских применений и пищевых контейнеров.

Существуют также электропроводящие версии для упаковки чувствительных электронных товаров. Чтобы удовлетворить потребности рынка, эти продукты могут изготавливаться с различными типами проводящих поверхностей.

Вспененный полипропилен (EPP)

Вспененный полипропилен (EPP) - это универсальный пенопласт с закрытыми порами, который обеспечивает уникальный набор свойств, включая превосходное поглощение энергии, множественную ударопрочность, теплоизоляцию, плавучесть, водо- и химическую стойкость, исключительно высокое отношение прочности к весу и 100%. % пригодности к вторичной переработке.EPP может быть изготовлен в широком диапазоне плотностей, от 15 до 200 граммов на литр, которые трансформируются путем формования в плотности от 18 до 260 граммов на литр. Отдельные бусинки сливаются в конечную форму продукта в процессе формования парового сундука, в результате чего получается прочная и легкая форма.

Хотите купить EPP?


Как обрабатывать EPP

Производственный процесс сложен и требует как технических знаний, так и специализированного оборудования.Полипропиленовая смола комбинируется с другими ингредиентами в запатентованном многоступенчатом процессе. В строго контролируемых условиях экструдированные гранулы расширяются, превращаясь в шарики из вспененного полипропилена одинаковой формы. Для получения вариаций формы конечного продукта могут использоваться другие специализированные производственные технологии.

Гранулы вспененного EPP впрыскиваются в формы. Во многих случаях используются недорогие алюминиевые формы с несколькими полостями. Давление и тепло пара превращают шарики в готовую форму.Готовая деталь из вспененного полипропилена становится ключевым компонентом в узлах, входящих в состав оригинального продукта производителя оборудования.


Недвижимость


Доступные марки

EPP доступен в сортах, необходимых для широкого спектра применений, в зависимости от технических требований. Марки с высокой плотностью используются там, где важно управление энергопотреблением, например, в автомобильных бамперах и компонентах внутренней безопасности пассажиров.Марки низкой плотности используются для упаковки, а марки средней плотности находят применение в мебели и других потребительских товарах.

Марки с низким уровнем выбросов сводят к минимуму выделение ЛОС для деталей интерьера автомобилей. Доступны антистатические, рассеивающие и проводящие классы, обычно используемые для специальных требований к упаковке.

Уникальные рабочие характеристики

Пористый EPP состоит из полипропиленовых шариков цилиндрической формы, которые добавляют воздушное пространство между шариками в окончательной формованной форме, что усиливает полезные звукоизолирующие эффекты и снижает вес.

EPP обычно окрашивается в черный цвет для автомобильной промышленности, хотя часто встречается в белом цвете для упаковки продуктов. EPP доступен от некоторых поставщиков в ярких цветах, подходящих для текстурированной поверхности презентационного уровня.

Физические свойства

Диапазон плотности EPP, от 20 г / л до 200 г / л

Предел прочности (кПа) от 270 до 1930
Относительное удлинение при растяжении (%) от 21 до 7.5

Прочность на сжатие (кПа)
Напряжение 25% от 80 до 2000
Напряжение 50% от 150 до 3000
75% деформация от 350 до 9300

Набор для сжатия (%)
Напряжение 25%, 22H, 23 ° C от 13,5 до 10,5
Скорость горения (мм / мин) от 100 до 12

Химическая стойкость

Экспозиционная среда Погружение на 7 дней при 22 ° C
ПОЯСНЕНИЕ: 1 = без изменений 2 = небольшое набухание

Бензин / бензин 2
Газойль 2
Керосин 2
Минеральное масло 2
Толуол 2
Ацетон 2
Этиловый спирт 1
н- Гептан 2
Этилацетат 1
Метилэтилкетон 2
10% серная кислота 1
10% азотная кислота 1
10% соляная кислота 1
10% гидроксид натрия 1
Раствор аммония 1


Приложения

EPP широко используется производителями автомобилей из-за его преимуществ в отношении управления энергопотреблением, легкости, расширенной функциональности, долговечности и возможности вторичной переработки.Применения включают сиденья, бамперы, системы хранения, дверные панели, стойки, выравниватели пола, полки для пакетов, подголовники, наборы инструментов, солнцезащитные козырьки и бесчисленное множество наполнителей.

Многоразовая промышленная упаковка, известная как dunnage, часто изготавливается из EPP из-за ее прочности и присущей ей способности поглощать энергию при транспортировке. EPP все чаще используется в мебели, игрушках, таких как модели самолетов, и других потребительских товарах из-за его универсальности в качестве конструкционного материала и его легкого веса, а также других эксплуатационных характеристик.

EPP одобрен для использования с пищевыми продуктами. Его теплоизоляционные свойства и структурная прочность делают его подходящим для контейнеров, таких как контейнеры для доставки еды, охладители напитков и тому подобное. EPP не поддерживает рост микробов и может быть стерилен с помощью очистки паром.


История EPP

EPP был впервые разработан в 1970-х годах в результате исследований новых форм полипропилена.Первые применения этого материала были в автомобильной продукции в Японии в 1982 году. Спрос на EPP с тех пор резко вырос во всех регионах мира, частично из-за потребности автопроизводителей в улучшении функций управления энергопотреблением при одновременном снижении веса и улучшении экологических преимуществ. Первым автомобильным применением EPP был элемент, поглощающий энергию в системе бампера. В настоящее время EPP широко используется для многих других автомобильных деталей и систем, включая сиденья и другие внутренние компоненты.


Анализ тепловых характеристик конструкции железобетонного пола с системой теплого пола в многоквартирном доме

Использование эластичных материалов в системах теплого пола железобетонного пола в многоквартирном доме тесно связано с уменьшением шума удара пола и потери тепловой энергии. В этом исследовании изучалась теплопроводность пенополистирола (EPS), используемого в качестве упругого материала в Южной Корее, и анализировалась теплопередача железобетонной конструкции пола в соответствии с теплопроводностью упругих материалов.Для измерения теплопроводности использовалось 82 образца EPS. Измеренная кажущаяся плотность упругих материалов EPS составляла от 9,5 до 63,0 кг / м 3 , а теплопроводность - от 0,030 до 0,046 Вт / (м · К). По мере увеличения плотности упругих материалов из пенополистирола теплопроводность имеет тенденцию пропорционально уменьшаться. Чтобы установить разумные требования к теплоизоляции для систем теплого пола, необходимо определить термические свойства конструкции пола в соответствии с теплоизоляционными материалами.Моделирование теплопередачи было выполнено для анализа температуры поверхности, потерь тепла и теплового потока конструкции пола с системой лучистого отопления. Поскольку теплопроводность упругого материала EPS увеличилась в 1,6 раза, потери тепла увеличились на 3,4%.

1. Введение

В Корее многоквартирные дома занимали наибольшее количество жилых домов - 86,4%. На многоквартирные дома приходится более 50% всех типов жилья, и с 1990-х годов были построены многоэтажные многоквартирные дома выше 15 этажей, иногда 30 этажей, чтобы эффективно использовать относительно небольшую площадь земельного участка (99 373 км 2 ). Корея с высокой плотностью населения [1].Некоторые домохозяйства живут по соседству друг с другом, разделенные только стеной или полом. Поскольку одна железобетонная плита разделяет домохозяйства в квартирах, ударный шум пола и потери тепла сверху могут быть легко перенесены в дом внизу и за пределы дома. Так что возникает много проблем, связанных с теплоизоляцией и звукоизоляцией. В частности, звук удара пола вызывает раздражение у жителей и вызывает множество жалоб в жилых домах, таких как квартиры.Энергия для отопления помещений и нагрева воды - это наибольшее потребление энергии в жилых зданиях.

Конструкция железобетонного пола с системой лучистого теплого пола (ONDOL) традиционно используется для жилых домов в Корее [2, 3]. Эта конструкция пола из железобетона (ЖБИ) состоит из железобетонной плиты, изоляционного слоя с упругими материалами, слоя лучистого теплого пола, слоя аккумулирования тепла и материалов для отделки пола. Горячая вода из бойлера подается в пластиковую трубу в слое лучистого теплого пола под поверхностью пола.Горячая вода циркулирует по встроенной пластиковой трубе, нагревая пол для обогрева помещения. Установка упругих материалов между бетонной плитой и слоем лучистого теплого пола в системе лучистого теплого пола известна как самый популярный метод снижения ударного шума пола и потерь тепла в жилых домах в Корее. Обычно толщина упругих материалов составляет 10–20 мм.

Использование эластичных материалов в системах напольного отопления тесно связано с уменьшением ударного шума пола и потерь тепловой энергии.В Корее характеристики теплоизоляции ограждающих конструкций здания просто включают в себя толщину изоляционных материалов и свойства теплопередачи систем стен и полов по регионам [4, 5]. Конструкция пола в многоквартирных домах должна обладать определенными характеристиками ударного шума пола (легкий ударный звук составляет 58 дБ или меньше, а тяжелый ударный звук составляет 50 дБ или меньше) и термическое сопротивление (1,23 м 2 K / Вт). В предыдущем исследовании Kim et al. [1] опубликовали исследование, в котором утверждается, что по мере уменьшения динамической жесткости упругих материалов уровень ударного шума в системе напольного отопления также снижается.Была корреляция между динамической жесткостью и ударным звуком тяжелого веса. Jeong et al. [6] измерили теплопроводность и плотность упругих материалов и исследовали их корреляцию. Но не было исследований, в которых пытались бы проанализировать теплопередачу конструкции пола из ж / б с системой лучистого теплого пола как тепловое свойство упругих материалов.

Было проведено несколько исследований эффектов теплопередачи и методов анализа в области энергетики зданий.Сонг [2] рекомендовал выбирать материалы для отделки пола над системой подогрева пола в Корее по тепловому потоку, исходя из тепловой нагрузки, и они должны быть теплофизиологически комфортными. Ли и др. [3] опубликовали исследование, показывающее, что тонкие панели пола с повышенной тепловой эффективностью в системе лучистого теплого пола обеспечивают снижение энергии на 7,2% по сравнению с традиционными деревянными панелями пола в многоквартирном доме. Лю и др. [7] разработали двухпотоковую модель существующего процесса теплопередачи для внутриплитного теплого пола.Исследование Jin et al. [8] представляет метод расчета температуры поверхности пола в системе водяного отопления / охлаждения на основе численной модели. Ларби [9] представляет регрессионные модели коэффициента теплопередачи для трех типов строительных стен (стык перекрытия и стены, стык перекрытия и стены и стык кровля-стена) 2D тепловых мостов. Теодосиу и Пападопулос [10] рекомендовали, чтобы тепловые мосты не учитывались в процедуре расчета энергопотребления зданий; фактические тепловые потери в таких зданиях до 35% выше первоначально предполагаемых.Song et al. [11] проанализировали теплопередачу через тепловой мост стыка стена-плита на годовые потери тепла в многоквартирных домах с трехмерным моделированием переходной теплопередачи. Кайнакли [12] провел исследование влияния различных параметров на оптимальную толщину изоляции для наружных стен с учетом затрат и экономии энергии.

В этом исследовании изучается теплопроводность упругого материала, используемого в конструкции пола из ж / б с системами лучистого теплого пола в Корее, и проводится анализ теплопередачи систем пола в соответствии с теплопроводностью упругих материалов в многоквартирном доме.

2. Материалы и методы
2.1. Подготовка образца

Упругие материалы, которые в настоящее время используются в Корее, изготовлены из пенополистирола (EPS), вспененного полипропилена (EPP), уретана, сополимера этилена и винилацетата (EVA), полиэтилена (PE), стекловаты (GW), минеральная вата (MW), экструдированный полистирол (XPS), экструдированные полиэфирные волокна и другие композитные материалы [1, 5]. Упругим материалом, который использовался для измерений в этом исследовании, был пенополистирол (EPS), который широко используется в Южной Корее в качестве строительного изоляционного материала.Пенополистирол - это термопласт, который получают путем сплавления небольших шариков материала. Обычно он белого цвета и изготавливается из бусин из предварительно вспененного полистирола. Это жесткая и прочная конструкция с закрытыми ячейками, достаточно прочная для использования во многих приложениях [13].

В этом исследовании были собраны упругие материалы EPS, которые продавались на рынке строительных материалов Южной Кореи с 2008 по 2010 годы. Из 93 испытательных образцов, собранных в этом исследовании, 82 пенопласта из упругого материала EPS были окончательно отобраны и использовались для проверки теплопроводности. .В этом исследовании были подготовлены образцы для испытаний, размеры которых составляли 300 × 300 мм на плоской доске, а их толщина составляла 20 мм, 30 мм, 50 мм и 90 мм. Для каждой толщины были испытаны по три образца. Им позволили стабилизировать гидротермальные условия при лабораторной температуре (20 ° C) в течение 3 дней. Все испытуемые образцы были протестированы через 3 дня в этом исследовании.

Исследование под микроскопом проводилось с использованием поляризационного микроскопа для фотографирования состояния поверхности испытуемого образца.Мы наблюдали за состоянием поверхности и формой ячеек пенопласта из эластичного пенополистирола. Изображение под микроскопом типичного пенополистирола показано на рисунке 1. Как показано на этом рисунке, упругий материал EPS имеет гладкую поверхность, однородную структуру и структуру с закрытыми ячейками. Эта структура с закрытыми ячейками действует как теплоизолятор.

2.2. Экспериментальный тест

Методы измерения, применяемые для проверки теплопроводности в этом исследовании, - это метод KS L 9016 [14] для измерения теплопроводности изолятора и ISO 8301 [15].Измерения проводились методом теплового расходомера (HFM, рис. 2 (а)). Средняя температура для измерения теплопроводности составляла 20 ± 1 ° C. Результатом измерения значения теплопроводности было среднее значение трех образцов одинаковой толщины. Объем и вес образцов измеряли с помощью цифрового микрометра (рис. 2 (b)) с разрешением 0,001 мм, а кажущуюся плотность измеряли с помощью цифровой шкалы (рис. 2 (c)) с разрешением 0,001 г. Кажущаяся плотность может быть определена с помощью веса, основанного на единице объема, если образец для испытаний включает кожуру во время производства.Во время проведения экспериментов испытательное оборудование и образцы для испытаний выдерживают в условиях окружающей среды при температуре 23 ± 2 ° C и относительной влажности 50 ± 5%.

2.3. Численное моделирование

Конфигурация материалов конструкции пола была смоделирована на основе типового пола [4, 16], применимого к большинству домов в Южной Корее. Типичная конструкция пола из железобетона для дома состоит из четырех слоев: отделочного слоя, нагревательного слоя, изоляционного слоя и структурного слоя.Нагревательный слой имеет теплоаккумулирующий слой и трубу для горячей воды в виде пластиковой трубы. Для этого численного моделирования конструкции пола представляли собой пол из ПВХ (мм), цементный раствор (мм), трубу для горячей воды, легкий бетон (мм), упругий материал (мм) и железобетонную плиту толщиной 210 ​​мм. Для обогрева помещения была установлена ​​труба диаметром 15 мм с узким шагом 230 мм в цементном растворе толщиной 40 мм. Геометрическая модель и конфигурация материала представлены на рисунке 3. В таблице 1 показаны тепловые характеристики каждого строительного материала.Как показано в таблице 1, значение теплопроводности упругого материала было получено из результатов эксперимента, который проводился в этом исследовании.

9106

Материал Толщина Плотность Теплопроводность
(мм) (кг / м 9003 · K) (м) 90 )

Полы из ПВХ 2 1,500 0.19
Цементный раствор 40 2,000 1,4
Труба горячего водоснабжения 15 930 0,324
0,324
1056

9153
Упругий материал 20 9,5–63 -
Бетон 210 2,240 1,6
Гипсовая плита 9 9 9 18


Для анализа тепловых характеристик напольных систем использовалось программное обеспечение Physibel, поскольку оно позволяет анализировать стационарный режим теплопередачи. Программа Physibel TRISCO предназначена для моделирования теплопередачи, которая фокусируется на строительной физике [17]. Эта программа позволяет рассчитывать трехмерный (3D) установившийся теплообмен на основе метода конечных разностей в объектах, описываемых в прямоугольной сетке.Таким образом, он вычисляет распределение теплового потока и температуры в установившемся режиме через сетку. Эта программа позволяет моделировать в полном соответствии со стандартом EN ISO 10211-1 [18]. На рисунке 3 (b) показана имитационная модель, а на рисунке 3 (c) показано вертикальное сечение стыков между наружной стеной и железобетонным полом и конструкции из материалов. Моделирование проводилось на основе модели размером 2,0 м (высота) × 1,2 м (ширина) × 1,0 м (глубина), которая определяет средний этаж многоквартирного дома в Корее.Трехмерное моделирование неустановившейся теплопередачи проводилось с интервалом в 30 минут. Параметры расчета для моделирования показаны в Таблице 2.

56 30 минут итераций

Параметр Присвоенное значение

Интервал временного шага 10,000
Максимальный перепад температур 0.0001 ° C
Расхождение теплового потока для всего объекта 0,001%
Расхождение теплового потока для наихудшего узла 1%
Теплопроводность упругого материала в полу 0,029, 0,031, 0,037 0,046 Вт / (м · К)

Граничные условия задаются как температура поверхности на внешней и внутренней границах, а на периферии стены и пола налагается адиабатический режим.Материалы каждого слоя в этом исследовании однородны, а параметры свойств остаются постоянными. Температура окружающей среды была выбрана в соответствии с фактической температурой наружного воздуха (° C) и температурой отопления помещения (° C) в зимний сезон в Южной Корее. Температура горячей воды составляла 60 ° C, которая поступала в трубу горячей воды в нагревательном слое системы пола. Скорость горячей воды в трубе была установлена ​​на уровне 3 л / мин. Установленная температура для обогрева помещения составляла 20 ° C. Все факторы окружающей среды контролировались в идеальных тепловых и физиологических условиях.

3. Результаты и обсуждение
3.1. Плотность и теплопроводность эластичного материала EPS

Измеренная кажущаяся плотность эластичного материала EPS составляла от 9,5 до 63,0 кг / м 3 , а теплопроводность - от 0,030 до 0,046 Вт / (м · К). На рисунке 4 показана корреляция между теплопроводностью и кажущейся плотностью. Как показано на рисунке 4, измеренная теплопроводность и плотность показывают линейную корреляцию, где - теплопроводность и плотность упругих материалов EPS.Эта пунктирная линия показывает коэффициент корреляции взрывчатых веществ 0,786. Результаты эксперимента показали тесную корреляцию между кажущейся плотностью и теплопроводностью. По мере увеличения плотности упругих материалов из пенополистирола теплопроводность имеет тенденцию к пропорциональному снижению. Полученная пунктирная линия имела наклон, который быстро уменьшался в сторону высокой плотности.


На основании этих результатов было установлено, что плотность является важным фактором тепловых свойств упругих материалов, которые используются в системах перекрытий жилых домов.Чтобы предотвратить большие потери тепла из системы пола из-за разницы температур в помещении и на открытом воздухе, строительные изоляционные материалы должны выбираться на основе соотношения между плотностью и теплопроводностью. Но при той же плотности теплопроводность изменялась из-за других факторов, влияющих на тепловые свойства, то есть физическая структура ячеек материалов варьировалась в зависимости от метода производства, размера и типа внутренних воздушных зазоров, лучистого тепла. скорость потока и т. д.

3.2. Характеристики теплопередачи

Численное моделирование было проведено для исследования влияния и характеристик теплопередачи системы лучистого теплого пола на основе теплопроводности упругого материала. В методе моделирования использовалось установившееся состояние модели теплового баланса, основанное на самой низкой внешней температуре окружающей среды, а значения теплопроводности упругого материала EPS были максимальным, минимальным, средним и медианным.

В таблице 3 и на рисунке 5 приведены результаты численного моделирования. Как показано в таблице 3, количество потерь тепла в каждом случае зависело от тепловых свойств упругого материала EPS. Поскольку теплопроводность упругого материала EPS увеличилась в 1,6 раза, потери тепла в системе теплого пола увеличились на 3,4%. На рис. 5 показано распределение температуры и тепловой поток при самой низкой внешней температуре. Из рисунка 5 видно, что потеря тепла произошла из трубы теплоносителя в системе лучистого теплого пола, которая предназначалась для обогрева пространства во внешней конструкции.Теплопотери произошли в стыке ЖБИ пола и внешней стены. Причина теплопотери - тепловой мост железобетонной конструкции перекрытия в многоквартирном доме. Зависимость от теплопроводности упругого материала EPS была снижена, а изоляционные свойства пола были увеличены. Поскольку поток теплового потока через стык между стеной и полом снижается по направлению к внешней стене, потери тепла уменьшаются. Понятно, что теплопроводность упругого материала конструкции пола из ж / б с системами лучистого теплого пола в многоквартирном доме в Корее может быть важным фактором.

103 (Вт) % 103 (Вт) 70

Теплопроводность Тепловые потери Коэффициент экономии
(Вт / (м · К))

Чехол 0,029 46,83 3,4
Корпус 0,031 47,07 2,9
1,6
Корпус 0,046 48,46 0,0


В Корее энергосберегающий и звуковой дизайн жилых домов должен соответствовать нормам энергосбережения и звукоизоляции жилых домов. Этот код требует, чтобы конструкция пола из ж / б с системой лучистого теплого пола имела значение тепловых характеристик меньше или равное 0,81 Вт / (м 2 · K). Коэффициент теплопроводности упругого материала EPS в конструкции пола должен быть менее 0.031 Вт / (м · К), как в данном исследовании. Когда теплопроводность упругого материала EPS составляет более 0,31 Вт / (м · К) как для корпуса, так и для корпуса, толщина упругого материала EPS также должна быть более 20 мм. Корпус (Вт / (м · К)) должен иметь толщину 24 мм, а корпус (Вт / (м · К)) должен быть толщиной более 30 мм, чтобы сохранить код конструкции.

4. Выводы

Мы исследуем изменения теплопроводности типичных упругих материалов, пенополистирола, в зависимости от их кажущейся плотности.Из результатов мы получаем эмпирическую формулу, которая имеет соотношение между теплопроводностью и плотностью. Чтобы установить разумные требования к теплоизоляции для систем теплого пола из железобетона, необходимо выяснить свойство теплопередачи систем пола в соответствии с характеристиками теплоизоляции. Таким образом, моделирование теплопередачи было выполнено для анализа температуры поверхности и теплопотерь конструкции пола с помощью системы лучистого теплого пола.

Упругие материалы - пенополистирол; по мере увеличения плотности теплопроводность имела тенденцию к уменьшению. Результаты эксперимента показали корреляционное выражение между теплопроводностью и плотностью, что позволило определить подходящие изоляционные материалы и их теплопроводность в соответствии с энергетическим кодексом здания. Когда изоляционные материалы устанавливаются в стены, полы и крыши здания для предотвращения потерь тепла и снижения шума в зданиях, материалы должны использоваться с учетом не только физических свойств материалов, но и их тепловых свойств [6 ].Исследование показало, что проводимость упругих материалов в конструкции железобетонного пола с системой лучистого теплого пола влияет на энергосбережение.

Тепловые характеристики играют важную роль в тепловых потерях здания. Относительная важность тепловых мостов возрастает в энергетическом балансе недавних зданий с высокой изоляцией [19]. Результаты моделирования показали, что температуры внешней поверхности и внутренней поверхности стыковых частей части теплового моста и нормальной части существенно различаются в конструкции пола.Таким образом, эластичные материалы на трубе горячей воды в системе лучистого теплого пола являются важным фактором не только для снижения уровня шума от удара по полу, но и для предотвращения потерь тепла на отопление помещения.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

Интернет-ресурс с информацией о материалах - MatWeb

MatWeb, ваш источник информации о материалах

Что такое MatWeb? MatWeb's база данных свойств материалов с возможностью поиска включает паспорта термопластов и термореактивных полимеров, таких как АБС, нейлон, поликарбонат, полиэстер, полиэтилен и полипропилен; металлы, такие как алюминий, кобальт, медь, свинец, магний, никель, сталь, суперсплавы, сплавы титана и цинка; керамика; плюс полупроводники, волокна и другие инженерные материалы.

Преимущества регистрации в MatWeb
Премиум-членство Функция: - Данные о материалах экспорт в программы CAD / FEA, включая:

Как найти данные о собственности в MatWeb

Нажмите здесь, чтобы узнать, как войти материалы вашей компании в MatWeb.

У нас есть более 150 000 материалы в нашей базе данных, и мы постоянно добавляем к этому количеству, чтобы обеспечить Вам доступен самый полный бесплатный источник данных о собственности материалов в Интернете. Для вашего удобства в MatWeb также есть несколько конвертеров. и калькуляторы, которые делают общие инженерные задачи доступными одним щелчком мыши кнопки. MatWeb находится в стадии разработки.Мы постоянно стремимся найти лучшее способы служить инженерному сообществу. Пожалуйста, не стесняйтесь свяжитесь с нами с любыми комментариями или предложениями.

База данных MatWeb состоит в основном из предоставленных таблиц данных и спецификаций. производителями и дистрибьюторами - сообщите им, что вы видели их данные о материалах на MatWeb.


Рекомендуемый материал:
Меламино-арамидный ламинат




Листы пенополистирола 2.5 x 1,2 м @ 50 мм

Описание

Листы пенополистирола класса M 5 x 1,2M @ 75 мм

Панели из пенополистирола EPS представляют собой универсальное решение из листового пенополистирола, идеально подходящего для строительства и строительства.

Панели из пенополистирола EPS широко используются в различных зданиях и являются универсальным и хорошо зарекомендовавшим себя строительным материалом. Легкие, прочные, чистые и простые в обращении панели из пенополистирола обеспечивают изоляцию от температуры и шума и могут использоваться в качестве основы для штукатурных панелей.

Панели из пенополистирола

идеально подходят для использования как в коммерческих, так и в жилых помещениях, включая склады, фабрики, магазины, офисные здания, дома и многоквартирные дома, навесы, патио и гаражи.

Устойчивые к погодным условиям с отличными теплоизоляционными свойствами и низкой влагопоглощающей способностью, панели из пенополистирола EPS являются идеальным материалом для изоляции холодильных помещений, потолков, перекрытий, стен, а также плоских и перевернутых крыш.

Размеры листов полистирола

Листы пенополистирола

доступны в диапазоне толщины от 10 мм до 600 мм.

Наши стандартные размеры листов следующие:

2,5 млн и 5 млн x 1,2 млн

3M и 6M x 1,2M

Доступны листы нестандартных размеров, которые можно разрезать по вашему индивидуальному заказу, также можно заказать листы различной толщины.

Тепловые свойства

Подходящие для использования в стальных шпильках, деревянных шпильках, бетонных и каменных зданиях, пенополистирольные листы из вспененного полистирола представляют собой эффективное и экономичное решение для изоляции.Часто используемые снаружи каркаса стены поддерживают температуру в полостях, близких к комнатной, что снижает риск конденсации на поверхности и в полостях. Также улучшаются преимущества теплоемкости бетонных и кирпичных стен.

Значения теплопроводности для марок полистирола EPS показаны в ссылке ниже.

SL Класс k = 0,041 Вт / мк *
S Марка к = 0.0397 Вт / мк *
M Марка к = 0,0383 Вт / мк *
Класс H к = 0,0368 Вт / мк *
VH Марка к = 0,0352 Вт / мк *
* значение k при эталонной температуре 25 ° C

R-значение

Номинальные значения R (м²K / Вт) - без учета поверхностного сопротивления

Толщина листа EPS SL Класс SG Класс MGrade H Класс
41 мм 1.00 1,05 1,07 1,11
50 мм 1,25 1,32 1,33 1,39
75 мм 1,90 1,97 2,00 2,08
100 мм 2,50 2,63 2,67 2,78

Поли EPS и влияние влаги

Рекомендуется обеспечить эффективную пароизоляцию в ситуациях, когда вероятно значительное увеличение содержания влаги.Панели из пенополистирола, как правило, устойчивы к проникновению влаги; однако содержание влаги влияет на его тепловые характеристики, как и на все изоляционные материалы.

Существует линейная зависимость между потерей термического сопротивления (значение R) и увеличением содержания влаги по объему. Потеря R-значения составляет примерно 2,5% на 1% содержания влаги при увеличении объема (до 20% м.к. по объему). Панели из полистирола с содержанием влаги 2% по объему будут иметь 95% показателя R в сухом состоянии.

Наша среда

При производстве панелей из пенополистирола EPS не образуются озоноразрушающие газы и не используются хлорфторуглероды (CFC).

На каждый килограмм масла, использованного при производстве изоляции Pol, можно сэкономить до 200 кг топлива для отопления в течение среднего срока службы дома. В свою очередь, это играет положительную роль в сокращении выбросов углекислого газа и последствий глобального потепления.

wettrades.com

Являясь небольшим отлаженным бизнесом, мы можем поставлять качественную продукцию по отличной цене.Хотя мы осуществляем доставку по всей Австралии, наш бизнес предлагает сверхбыстрые и надежные услуги в Мельбурн и особенно в район Бейсайд, поскольку мы находимся в Хигетте. Мы также имеем дело с широким спектром надежных установщиков пенополистирола, поэтому, если вы ищете подходящих специалистов для вашей работы, мы можем незамедлительно связаться с вами.

Этот продукт является частью нашего большого выбора материалов для облицовки, и вы можете найти более подробную информацию о нем на веб-сайте Vicfoam.

Листы пенополистирола EPS

* Доставка этого продукта может повлечь дополнительные расходы из-за большого размера листов полистирола.

.