Теплопроводность кирпичной кладки и стены: коэффициент, сопротивление теплопередаче
Автор: Евгений Воронов | 26.12.2015
Теплопроводность – один из важнейших показателей, характеризующих качество возводимого сооружения. И это неудивительно: ведь от этого коэффициента зависят не только затраты на отопление помещений, но и степень комфортности проживания в доме. Также в строительных расчетах часто фигурирует коэффициент теплосопротивления (сопротивление теплоотдаче), обратный теплопроводности (чем выше первый, тем ниже второй, и наоборот).
Теплопроводность сооружения зависит от показателей используемого вида кирпича, от параметров раствора, типа кладки, применяемых строительных технологий и утепляющих материалов.
Содержание статьи
- 1 Коэффициент теплопроводности кирпичей
- 2 Теплопроводность кладки
- 3 Расчет стены
- 4 Уменьшение коэффициента теплоотдачи стены
- 4. 1 Похожие статьи
Коэффициент теплопроводности кирпичей
Данный коэффициент обозначается буквой λ и выражается в W/(m*K).
Показатель λ достаточно широко варьируется, в зависимости от типа кирпичей и способа их изготовления. В основном, на данный коэффициент влияют материал кирпича (клинкерный, силикатный, керамический) и относительное содержание пустот. До 13% пустотности кирпичи считаются полнотелыми, выше – пустотелыми. По уменьшению коэффициента λ линейка строительной продукции будет выглядеть следующим образом:
- Клинкерный кирпич λ= от 0,8 до 0,9. Этот тип стройматериалов не предназначен для строительства утеплённых стен и чаще используется для изготовления полов и мощёных дорог.
- Силикатный кирпич полнотелого типа λ= от 0,7 до 0,8. Чуть ниже, чем у предыдущего типа, но строительство стены с его использованием требует серьёзных мер по утеплению.
- Керамический кирпич полнотелый λ= от 0,5 до 0,8 (в зависимости от сорта).
- Силикатный, с техническими пустотами λ= 0,66.
- Керамический кирпич пустотелого исполнения λ= 0,57.
- Керамический кирпич щелевого типа λ= 0,4.
- Силикатный кирпич щелевого типа – показатель λ аналогичен керамическому щелевому (0,4).
- Керамический поризованный λ= 0,22.
- Тёплая керамика λ= 0,11. Имея отличные показатели теплосопротивления, тёплая керамика уступает прочим видам кирпичной продукции по прочности, и поэтому применение её ограничено.
Важно при расчёте также учитывать, что для различных климатических регионов сопротивление теплоотдаче материалов будут варьироваться, в достаточно широких пределах Информацию о соотнесении теплоотдачи с климатическими параметрами, можно почерпнуть в СНиПе 23-02-2003.
Теплопроводность кладки
Теплосопротивление кирпичей является важнейшим коэффициентом и в ряде случаев является определяющим параметром при проектировании здания и выбора кладки. Вместе с тем, сопротивление теплоотдачи сооружения зависит не только от показателя λ используемых кирпичей, но и от применяемого строительного раствора.
Наиболее частым является случай, когда теплосопротивление раствора существенно ниже, чем сопротивление кирпича.
Так, коэффициент теплоотдачи раствора на основе цемента и песка равен 0,93 W/(m*K), а цементно-шлакового раствора – 0,64.
Путем суммирования коэффициентов сопротивления теплоотдаче кирпича и раствора разработаны специальные таблицы коэффициента теплопередачи, которые можно посмотреть в ГОСТе 530-2007. Ниже приведена выдержка из таблицы:
Таблица – Теплопроводность кладки
Тип кирпича | Тип раствора | Теплоотдача |
Глиняный | Цементно-песчаный | 0,81 |
Цементно-шлаковый | 0,76 | |
Цементно-перлитовый | 0,7 | |
Силикатный | Цементно-песчаный | 0,87 |
Керамический пустотный 1,4т/м3 | Цементно-песчаный | 0,64 |
Керамический пустотный 1,3т/м3 | 0,58 | |
Керамический пустотный 1,0т/м3 | 0,52 | |
Силикатный, 11-ти пустотный | Цементно-песчаный | 0,81 |
Силикатный, 14-ти пустотный | 0,76 |
Расчет стены
Для того, чтобы использовать коэффициент теплосопротивления кирпичной стенки на практике, необходимо воспользоваться следующей формулой:
r = (толщина кладки, м)/(теплоотдача, W/(m * K)),
где r – сопротивление теплоотдаче кирпичной стены. При расчетах также необходимо учитывать степень влажности помещения и климатический регион.
Уменьшение коэффициента теплоотдачи стены
В ряде случаев коэффициент λ оставляет желать много лучшего. К тому же нарушение технологии строительства может привести к изменению теплоотдачи в большую сторону. Если применять жидкий раствор при возведении стены из щелевого кирпича, то связующий материал проникнет в пустоты и отрицательно скажется на показателях теплосбережения (сопротивление теплопередаче уменьшится).
Что делать, чтобы увеличить сопротивление теплоотдаче?
Методы уменьшения теплопередачи стены:
- Применение более энергосберегающих материалов (кирпичей с большей степенью пустотности).
- При строительстве из щелевого кирпича применять густой раствор.
- Прокладывание во внутреннем слое теплоизолирующих материалов. На рынке представлен огромный выбор теплоизоляции. Из наиболее популярных можно назвать стекло- и минераловатные материалы, пенополистирол, керамзит и другие. При применении утеплителей необходимо обеспечить пароизоляцию стены, чтобы избежать разрушения материалов.
- Оштукатуривание поверхности.
Похожие статьи
Категория: Стены-
www.auto-raktu-gamyba.lt
auto-raktu-gamyba.lt
Водка коскенкорва купить спб
водка коскенкорва купить в спб
joiastore.ru
© 2021 PlusKirpich.ru — Плюс Кирпич — Сайт о применении кирпичей в строительстве.
При копировании материалов с сайта активная гиперссылка на сайт обязательна.
Теплопроводность кирпича, коэффициенты для разных видов материала
Оглавление:
- Виды кирпичей
- Назначение и отличительные признаки материала
- Что такое теплопроводность
Новые материалы не могут не вызывать восхищение своими характеристиками и возможностями. Преимущества технологий строительства с их помощью неоспоримы. Искусственные и комбинированные строительные материалы превосходят традиционные сразу по нескольким важнейшим параметрам, зачастую – в несколько раз. Однако, традиционные материалы нельзя сбрасывать со счетов: кирпич, к примеру, был и остается востребованным.
Большинство зданий построено из кирпича: в этом не сложно убедиться. То есть, о способности этого материала успешно противостоять атмосферным явлениям, знают все.
Механическая прочность и долговечность этого материала также известна, как и экологическая безопасность. Кроме того, кирпич обладает хорошими тепло- и звукоизоляционными свойствами, морозостойкостью. Все эти качества делают его одним из лучших строительных материалов.
Виды кирпичей
Раньше этот материал выпускался двух видов: белый (силикатный) и красный (керамический) полнотелый. Иногда встречался керамический пустотелый. Современные керамические кирпичи бывают разных цветов и оттенков: желтые, кремовые, розовые, бордовые. Фактура их также может быть различной. Однако, по способу изготовления и составу они по-прежнему подразделяются на керамический и силикатный.
Общего у них, кроме геометрических параметров, нет ничего. Керамический состоит из обожженной глины (с различными добавками), а силикатный изготавливается из извести, кварцевого песка и воды. Эксплуатационные характеристики обоих видов регламентируются разными нормативными документами, что обязательно учитывается в строительной отрасли.
Большей популярностью пользуется керамический кирпич. Его разновидности: полнотелый, пустотелый, облицовочный с различной фактурой поверхности. Свойства этого строительного материала и его эстетические качества, разнообразие цветов и форм делают его уникальным и пригодным для возведения любых строений.
Назначение кирпичей различных видов и их отличительные признаки
Кирпич по назначению подразделяют на специальный, строительный и облицовочный. Для кладки стен применяется строительный, для облагораживания фасадов – облицовочный, а в особых случаях – специальный (например, для кладки печи, камина или печной трубы).
Полнотелый кирпич содержит не более 13% пустот: его используют для возведения стен (внешних и внутренних), столбов, колонн и так далее. Конструкции, построенные из такого материала, способны нести дополнительную нагрузку благодаря высокой прочности на сжатие, на изгиб, хорошей морозостойкости керамического полнотелого кирпича. Теплоизолирующие свойства зависят от пористости, от нее же зависит и водопоглощение, способность материала к сцеплению с кладочным раствором. Данный материал обладает не слишком хорошим сопротивлением к теплопередаче, в связи с чем стены жилых строений необходимо сооружать достаточной толщины или утеплять дополнительно.
У пустотелого кирпича объем пустот может доходить до 45% от общего объема изделия, поэтому его вес меньше, чем у полнотелого. Он пригоден для строительства легких перегородок и наружных стен, им заполняют каркасы многоэтажных зданий. Пустоты в нем могут быть как сквозными, так и закрытыми с какой-либо стороны. Форма пустот бывает круглой, квадратной, овальной, прямоугольной.
У пустотелого кирпича объем пустот может доходить до 45% от общего объема изделия.
Пустоты позволяют экономить довольно много материала, из которого изготавливают кирпич. Кроме того, это значительно повышает его теплоизолирующие свойства. При этом важно, чтобы консистенция раствора была такой густоты, чтобы воздушные полости им не заполнялись.
Облицовочный кирпич применяют, соответственно, для облицовки зданий. Обычно, его размеры такие же, что и у стандартного, но в продаже есть и изделия с меньшей шириной. Чаще всего он изготавливается пустотелым, что определяет его высокие теплотехнические характеристики.
Среди специальных кирпичей чаще всего распространены огнеупорный (печной) и теплоизолирующий. И тот, и другой применяются для возведения каминов и печей (в том числе и мартеновских). Они изготавливаются из специальной, шамотной глины, но имеют разное назначение.
Огнеупорный призван выдерживать температуры, превышающие 1600 °С, а теплоизолирующий – для предотвращения нагревания внешних стенок печей и потери тепла. Если возводить стены из этого материала, то они будут хорошо сохранять тепло. Но слабая прочность материала позволяет лишь заполнять им простенки.Клинкерным кирпичом облицовывают цоколи зданий. Он обладает высокой морозостойкостью и механической прочностью благодаря применению тугоплавких глин при их изготовлении. Обжигание сырца производится при более высоких температурах, чем обычно.
Что такое теплопроводность
Этот термин обозначает способность материала передавать тепловую энергию. Эту способность, в данном случае, выражает коэффициент теплопроводности кирпича. У клинкерного этот показатель составляет порядка 0,8… 0,9 Вт/м К.
Силикатный обладает меньшей теплопроводностью и в зависимости от количества пустот, в нем содержащихся, подразделяется на: щелевой (0,4 Вт/м К), с техническими пустотами (0, 66 Вт/м К), полнотелый (0,8 Вт/м К).
Керамический является еще более легким, вследствие чего данный показатель у него еще более низкий. Для полнотелого кирпича он находится в пределах 0,5… 0,8 Вт/м К, для щелевого – 0,34… 0,43 Вт/м К и для поризованного – 0,22 Вт/м К. Кирпич пустотелый характеризуется коэффициентом теплопроводности, равным 0,57 Вт/м К. Данный показатель не постоянен и меняется в зависимости от пористости материала, количества и расположения пустот.
Утверждение, что кирпич обладает высокой теплопроводностью, не совсем корректно: некоторые виды этого материала проводят тепло даже хуже, чем газобетонные блоки. Сочетание прочностных качеств полнотелых кирпичей и теплоизолирующих свойств пустотелых (а еще лучше – поризованной керамики) позволяет возводить надежные и энергоэкономичные здания.
Теплоизоляция монолитных стен недооценена
Oula Lehtinen – CC BY-SA 3. 0
В Англии насчитывается около 5,7 млн домов со сплошными стенами, что составляет 25% жилого фонда. Большинство из них были построены между 1750 и 1914 годами. Исследования показывают, что их энергоэффективность недооценивалась на протяжении десятилетий.
Английское обследование жилищного строительства (EHS) определяет строительство со сплошными стенами как здание, внешние несущие стены которого выполнены из кирпича, блоков, камня или кремня без полости. В Англии переход к использованию полностенного кирпичного строительства начался во время великой перестройки с середины 16 века.
В современном английском жилищном фонде подавляющая часть жилищ со сплошными стенами, построенных в основном из кирпича, возникла в результате роста населения с середины 18 века до начала Первой мировой войны. Сплошные стены оставались наиболее распространенной конструкцией для бытового сектора до британского жилищного бума 1920-х и 1930-х годов.
Толщина стенки
Наиболее широко используемая оценка коэффициента теплопередачи (показатель теплопроводности) свойства твердой стенки в Великобритании составляет 2,1 Wm-2 K-1 . Тем не менее, появляется все больше свидетельств того, что значения U для сплошных стен намного ниже, чем предполагалось ранее. Несколько исследований, проведенных в последние годы, показали, что средние или медианные значения U, измеренные для конструкций со сплошными стенками, составляли около 1,3–1,4 Вт·м–2 K–1. Есть две причины такого большого расхождения.
Во-первых, стандартные значения коэффициента теплопередачи для сплошной кирпичной стены основаны на предполагаемой толщине стены в 220 мм кирпича и примерно 12 мм плотной штукатурки. Современные кирпичи имеют длину 220 мм, поэтому это предположение было бы логичным для современной кирпичной стены. Однако толщина 220 мм использовалась как консервативная оценка для учета изменений в производстве кирпича. После Великого лондонского пожара в 1666 году потребовалось построить двухэтажное кирпичное здание со стенами толщиной более одного кирпича.
Следовательно, требуемая толщина несущих каменных стен в Англии увеличивается с высотой здания. В то время как двухэтажные здания могут быть построены со стенами толщиной чуть более 200 мм, для трехэтажных зданий требуется минимум 300 мм, а для четырехэтажных зданий — стены толщиной не менее 400 мм. Следовательно, очевидно, что средняя толщина сплошных стен в жилом фонде Великобритании, вероятно, будет больше, чем номинальные 220 мм одинарной кирпичной стены.
Воздушные полости
Во-вторых, так называемые «сплошные стены» на самом деле часто не являются полностью сплошными. Кирпичные стены могут быть построены по разным схемам, но обычно строятся из смеси типов кирпича, причем некоторые из них проходят прямо через всю глубину стены, известные как перемычки, а некоторые укладываются бок о бок, известные как подрамники. (см. изображение выше). Чтобы можно было построить стены с обычным типом кладки, общая ширина двух соседних ложков меньше длины коллектора на ширину строительного шва, которая обычно составляет 5–10 мм.
Хотя некоторое количество раствора будет проникать в пространство в виде соплей из швов между носилками, практические ограничения кирпичной кладки означают, что этот зазор часто не заполняется раствором. Существует большая вероятность того, что сегменты со сплошными стенками, построенные с помощью подрамников, содержат воздушные зазоры. Если предположить, что подложки составляют 50–80% поверхности стены с воздушными зазорами порядка ≈10 мм, то прямой расчет с теми же предположениями относительно плотности кирпича и т. д. дает оценки коэффициента теплопередачи в диапазоне 1,65–1,8. Вт−1 м2 К,
«Сплошные» каменные стены могут также содержать остаточные воздушные полости по тем же причинам. Стены, построенные из камня, часто в целом толще, чем стены из одинарного кирпича, и часто имеют сердцевину, заполненную щебнем. Почти наверняка внутри этих сердцевин есть пустоты, которые увеличивают тепловое сопротивление элемента по сравнению с полностью твердой стенкой.
Последствия
Среди многих последствий для политики несоответствие между реальными значениями U и значениями U, принятыми в энергетическом моделировании и стандартных протоколах оценки зданий Великобритании, предполагает, что стандартные значения U для сплошных стен могут быть неподходящими для энергетической сертификации или для оценки экономической эффективности капиталовложений в изоляцию со сплошными стенами.
Уменьшение представленного коэффициента теплопередачи сплошных стен на складе с 2,1 до 1,3 Вт·м–2 K–1 снижает расчетную среднегодовую потребность в отоплении помещений на 16% и приводит к изменению приблизительно одной трети всех жилищ со сплошными стенами. Диапазон сертификации энергоэффективности (EPC).
Источник:
Li, Francis GN, et al. «Значения U сплошной стены: измерения теплового потока по сравнению со стандартными предположениями». Строительные исследования и информация 43.2 (2015): 238-252. http://www.tandfonline.com/doi/full/10.1080/09
Плотность, теплоемкость, теплопроводность стандартные блоки, используемые в строительстве. Три основных типа кирпича — это необожженный, обожженный и химически затвердевший кирпич. Каждый тип изготавливается по-разному. Обожженные кирпичи обжигаются в печи, что делает их прочными. Современные обожженные глиняные кирпичи формируются одним из трех процессов: мягким шламом, сухим прессованием или экструдированием.
В зависимости от страны наиболее распространенным является метод экструдированного или мягкого бурового раствора, поскольку они наиболее экономичны.Сводка
Имя | Кирпич |
Фаза на STP | твердый |
Плотность | |
Предел прочности при растяжении | 2,8 МПа |
Предел текучести | Н/Д |
Модуль упругости Юнга | Н/Д |
Твердость по Бринеллю | Н/Д |
Точка плавления | 1727 °С |
Теплопроводность | 1,31 Вт/мК |
Теплоемкость | 800 Дж/г К |
Цена | 0,2 $/кг |
Плотность кирпича
Типичные плотности различных веществ даны при атмосферном давлении. Плотность определяется как масса на единицу объема . Это интенсивное свойство , которое математически определяется как масса, деленная на объем: общий объем (V), занимаемый этим веществом. Стандартная единица СИ составляет кг на кубический метр ( кг/м 3 ). Стандартная английская единица измерения – 90 035 фунтов массы на кубический фут 9.0036 ( фунтов/фут 3 ).
Плотность кирпича 1700 кг/м 3 .
Пример: Плотность
Рассчитайте высоту куба из кирпича, который весит одну метрическую тонну.
Решение:
Плотность определяется как масса на единицу объема . Математически он определяется как масса, деленная на объем: ρ = m/V
Так как объем куба равен третьей степени его сторон (V = a 3 ), высоту этого куба можно рассчитать:
Тогда высота этого куба равна a = 0,838 м .
Плотность материалов
Механические свойства кирпича
Прочность кирпича
В механике материалов прочность материала на деформацию — это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Сопротивление материалов в основном рассматривает взаимосвязь между внешние нагрузки , приложенные к материалу, и результирующая деформация или изменение размеров материала. При проектировании конструкций и машин важно учитывать эти факторы, чтобы выбранный материал имел достаточную прочность, чтобы противостоять приложенным нагрузкам или силам и сохранять свою первоначальную форму.
Прочность материала – это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Для напряжения растяжения способность материала или конструкции выдерживать нагрузки, имеющие тенденцию к удлинению, известна как предел прочности при растяжении (UTS). Предел текучести или предел текучести — это свойство материала, определяемое как напряжение, при котором материал начинает пластически деформироваться, тогда как предел текучести — это точка, в которой начинается нелинейная (упругая + пластическая) деформация. В случае растягивающего напряжения однородного стержня (кривая напряжения-деформации) Закон Гука описывает поведение стержня в упругой области. Модуль упругости Юнга представляет собой модуль упругости при растягивающем и сжимающем напряжении в режиме линейной упругости при одноосной деформации и обычно оценивается испытаниями на растяжение.
См. также: Прочность материалов
Предел прочности кирпича при растяжении
Предел прочности кирпича при растяжении 2,8 МПа.
Предел текучести кирпича
Предел текучести кирпича — Н/Д.
Модуль упругости кирпича
Модуль упругости Юнга кирпича Н/Д.
Твердость кирпича
В материаловедении твердость – это способность выдерживать поверхностные вдавливания ( локализованная пластическая деформация ) и царапание . Тест на твердость по Бринеллю – один из тестов на твердость с вдавливанием, разработанный для определения твердости. В тестах Бринелля твердый сферический индентор вдавливается под определенной нагрузкой в поверхность испытуемого металла.
Число твердости по Бринеллю (HB) представляет собой нагрузку, деленную на площадь поверхности вмятины. Диаметр вдавления измеряют с помощью микроскопа с наложенной шкалой. Число твердости по Бринеллю вычисляется по уравнению:
Твердость по Бринеллю приблизительно равна N/A.
См. также: Твердость материалов
Пример: Прочность
Допустим пластиковый стержень, сделанный из Кирпича. Этот пластиковый стержень имеет площадь поперечного сечения 1 см 2 . Рассчитайте усилие на растяжение, необходимое для достижения предела прочности на растяжение для этого материала, которое составляет: UTS = 2,8 МПа.
Решение:
Напряжение (σ) можно приравнять нагрузке на единицу площади или силе (F), приложенной к площади поперечного сечения (A) перпендикулярно силе, как:
, следовательно, растяжение усилие, необходимое для достижения предела прочности на растяжение:
F = UTS x A = 2,8 x 10 6 x 0,0001 = 280 N
Прочность материалов
ЭЛАСТИЧЕСКИЕ МАТЕРИАЛЫ
ГРУЗСИТЕЛЬНОСТЬ
9003.
Кирпич – температура плавления
Температура плавления кирпича 1727 °C .
Обратите внимание, что эти точки связаны со стандартным атмосферным давлением. В целом плавление является фазовым переходом вещества из твердой фазы в жидкую. точка плавления вещества — это температура, при которой происходит это фазовое превращение. Точка плавления также определяет состояние, при котором твердое тело и жидкость могут существовать в равновесии. Для различных химических соединений и сплавов трудно определить температуру плавления, так как они обычно представляют собой смесь различных химических элементов.
Кирпич – теплопроводность
Теплопроводность кирпича 1,31 Вт/(м·К) .
Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеряемой в Вт/м·K . Это мера способности вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье применим ко всей материи, независимо от ее состояния (твердое, жидкое или газообразное), поэтому он также определен для жидкостей и газов.
Теплопроводность большинства жидкостей и твердых тел зависит от температуры. Для паров это также зависит от давления. В общем случае:
Большинство материалов почти однородны, поэтому обычно мы можем написать k = k (T) . Аналогичные определения связаны с теплопроводностями в направлениях y и z (ky, kz), но для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.
Кирпич – Удельная теплоемкость
Удельная теплоемкость кирпича 800 Дж/г K .
Удельная теплоемкость или удельная теплоемкость – это свойство, связанное с внутренней энергией , которое очень важно в термодинамике. Интенсивные свойства c v и c p определены для чистых простых сжимаемых веществ как частные производные внутренней энергии u(T, v) и энтальпии h(T, p) , соответственно:
где индексы v и p обозначают сохраняющиеся при фиксированных переменных переменные. Свойства c v и c p называются удельной теплоемкостью (или теплоемкостью ), потому что при определенных особых условиях они связывают изменение температуры системы с количеством энергии, добавленной теплопередача. Их единицы СИ Дж/кг K или Дж/моль K .
Пример: расчет теплопередачи
Теплопроводность определяется как количество тепла (в ваттах), передаваемое через квадратный участок материала заданной толщины (в метрах) из-за разницы температур. Чем ниже теплопроводность материала, тем выше его способность сопротивляться теплопередаче.
Рассчитайте скорость теплового потока через стену площадью 3 м x 10 м (A = 30 м 2 ). Стена имеет толщину 15 см (L 1 ) и выполнена из кирпича с теплопроводностью k 1 = 1,31 Вт/м·К (плохой теплоизолятор). Предположим, что внутренняя и наружная температуры составляют 22°C и -8°C, а коэффициенты конвекционной теплопередачи на внутренней и внешней сторонах равны h 1 = 10 Вт/м 2 K и h 2 = 30 Вт/м 2 К соответственно. Обратите внимание, что эти коэффициенты конвекции сильно зависят, в частности, от окружающих и внутренних условий (ветер, влажность и т. д.).
Рассчитайте тепловой поток ( потери тепла ) через эту стену.
Решение:
Как уже было сказано, многие процессы теплопередачи включают составные системы и даже включают комбинацию проводимости и конвекции .