Содержание

Что такое тепловой узел?

Тепловой узел — это система элементов, созданных для учета теплоэнергии и ее рационального использования.

Все приборы, входящие узел учета тепловой энергии, выполняют одну или несколько задач. Среди них — сбор информации об объеме и подаваемого тепла, измерение давления в теплоносителе, температуры жидкости, и т. д.

Узел учета тепловой энергии включает:

— Запорную арматуру. Используется для принудительного отключения или приостановки теплоносителя на конкретном участке трубы или радиатора. Как правило, это различные задвижки и краны.
— Теплосчетчик. Является основным элементом, монтируется на границе балансовой принадлежности тепловых сетей (ввод тепла в дом) и  предназначен для измерения фактически потребленной и переданной энергии. Состоит из расходометра. Датчиков температуры
— Грязевик. Используется для защиты элементов системы от грязи, поступающей вместе с теплоносителем, и вычислителя.
— Термопреобразователь. Измеряет температуру. Устанавливается либо в поток, либо в защитную гильзу с маслом. Рекомендуется располагать непосредственно рядом с узлом учета.

— Расходометр. Играет роль преобразователя расхода.
— Термодатчик. Устанавливается на обратном трубопроводе рядом с датчиками расхода и запорными элементами, что дает возможность измерять как температуру жидкости, так и объемы ее потребления.

Схемы тепловых пунктов:

— Параллельное одноступенчатое подключение горячей воды. Считается одной из самых простых и недорогих схем. Теплообменник для нагрева один и установлен параллельно системе отопления. Сначала жидкость поступает в подогреватель, откуда подается в теплопровод. Основной минус такого подключение — неэкономичности из-за большого расхода сетевой воды.

— Последовательное двухступенчатое подключение горячей воды. Для подогрева здесь применяются  теплообменники двух ступеней. Первая из них связана с обратным трубопроводом, где холодная вода нагревается до 40 градусов, а вторая с подающим, где жидкость доходит до нужной температуры. В отличие от предыдущей схемы расходы теплоносителя здесь ниже, так как специальной ее подачи не требуется. Минус — требуется установка температурного регулятора.

— Двухступенчатая смешанная схема. Часто используется для подключения к системе ГВС общественных зданий. Может применяться как при нормальной, так и повышенной температуре сетевой воды. Главное отличие в том, что подключение  здесь последовательное, а не параллельное. Принцип работы как во второй схеме. Однако в этом случае требуется дополнительный расход воды для подогревателей.

Монтаж теплового узла

Что касается установки узла учета, все начинается с обследования объекта и разработки проектных документов, включающие точные расчеты и подбор подходящего оборудования. Монтаж же выполняется только после согласования проекта у организации — поставщика теплоэнергии. Акт о допуске узла учета к эксплуатации также подписывают представители теплоснабжающей компании.

Помните, что работа теплового узла будет запрещена, если:
— имеются врезки в трубопроводы, не отраженные в проекте;
— счетчик работает с отклонениями от норм точности;
— на счетчике и других элементах есть механические повреждения;
— имеется нарушение пломб и др.


Схема теплового узла отопления

В любой здании, в том числе и в частном доме, присутствует несколько систем жизнеобеспечения. Одна из них – это отопительная система. В частных домах могут использоваться разные системы, которые выбираются в зависимости от размеров постройки, количества этажей, особенностей климата и других факторов. В данном материале мы подробно разберем, что представляет собой тепловой узел отопления, как он работает и где используется. Если у вас уже стоит элеваторный узел, то вам будет полезно узнать про дефекты и способы их устранения.Так выглядит современный элеваторный узел. Здесь изображен агрегат с электроприводом. Также встречаются другие виды этого изделия.

 

Простыми словами, тепловой узел представляет собой комплекс элементов, служащих для соединения тепловой сети и потребителей тепла. Наверняка у читателей возник вопрос, можно ли установить этот узел самостоятельно. Да, можно, если вы умеете читать схемы. Мы рассмотрим их, причем одна схема будет разобрана подробно.

Принцип работы

Чтобы понять, как работает узел, необходимо привести пример. Для этого мы возьмем трехэтажный дом, так как элеваторный узел применяется именно в многоэтажных домах. Основная часть оборудования, которая относится к этой системе, расположена в подвальном помещении. Лучше понять работу нам поможет схема ниже. Мы видим два трубопровода:

  1. Подающий.
  2. Обратный.
Схема узла отопления для многоэтажного дома.

 

Теперь нужно найти на схеме тепловую камеру, через которую вода отправляется в подвальное помещение. Также можно заметить запорную арматуру, которая должна в обязательном порядке стоять на входе. Выбор арматуры зависит от типа системы. Для стандартной конструкции используют задвижки. Но если речь идет о сложной системе в многоэтажном доме, то мастера рекомендуют брать стальные шаровые краны.

При подключении теплового элеваторного узла необходимо придерживаться норм. В первую очередь это касается температурных режимов в котельных. При эксплуатации допускаются следующие показатели:

  • 150/70°C;
  • 130/70°С;
  • 95(90)/70°C.

Когда температура жидкости находится в пределах 70-95°C, она начинает равномерно распределяться по всей системе за счет работы коллектора. Если же температура превышает 95°C, элеваторный узел начинает работать на ее понижение, так как горячая вода может повредить оборудование в доме, а также запорную арматуру. Именно поэтому в многоэтажных домах используется такой тип конструкции – он контролирует температуру автоматически.

Разбор схемы

Как вы поняли, узел состоит из фильтров, элеватора, контрольно-измерительных приборов и арматуры. Если вы планируете самостоятельно заниматься установкой этой системы, то стоит разобраться со схемой. Подходящим примером будет многоэтажка, в подвальном помещении которой всегда стоит элеваторный узел.

 

На схеме элементы системы отмечены цифрами:

1, 2 – этими цифрами обозначены подающий и обратный трубопроводы, которые установлены в теплоцентрали.

3,4 – подающий и обратный трубопроводы, установленные в системе отопления постройки (в нашем случае это многоэтажный дом).

5 – элеватор.

6 – под этой цифрой обозначены фильтры грубой очистки, которые также известны как грязевики.

7 – термометры

8 – манометры.

В стандартный состав этой системы отопления входят приборы контроля, грязевики, элеваторы и задвижки. В зависимости от конструкции и назначения, в узел могут добавляться дополнительные элементы.

Интересно! Сегодня в многоэтажных и многоквартирных домах можно встретить элеваторные узлы, которые оснащены электроприводом. Такая модернизация нужна для того, чтобы регулировать диаметр сопла. За счет электрического привода можно корректировать тепловой носитель.

Стоит сказать, что с каждым годом коммунальные услуги дорожают, это касается и частных домов. В связи с этим производители систем снабжают их устройствами, направленными на сбережение энергии. К примеру, теперь в схеме могут присутствовать регуляторы расхода и давления, циркуляционные насосы, элементы защиты труб и очистки воды, а также автоматика, направленная на поддержание комфортного режима.Еще один вариант схемы теплового элеваторного узла для многоэтажного дома.

 

Также в современных системах может быть установлен узел учета тепловой энергии. Из названия можно понять, что он отвечает за учет потребления тепла в доме. Если это устройство отсутствует, то не будет видна экономия. Большинство владельцев частных домов и квартир стремятся поставить счетчики на электроэнергию и воду, ведь с ними платить приходится значительно меньше.

Характеристики узла и особенности работы

По схемам можно понять, что элеватор в системе нужен для охлаждения перегретого теплоносителя. В некоторых конструкциях присутствует элеватор, который может и нагревать воду. Особенно такая система отопления актуальна в холодных регионах. Элеватор в этой системе запускается только тогда, когда остывшая жидкость смешивается с горячей водой, поступающей из подающей трубы.Схема. Под номером «1» обозначена подающая линия тепловой сети. 2 – это обратная линия сети. Под цифрой «3» обозначен элеватор, 4 – регулятор расхода, 5 – местная система отопления.

 

По этой схеме можно понять, что узел значительно повышает эффективность работы всей системы отопления в доме. Он работает одновременно как циркуляционный насос и смеситель. Что касается стоимости, то обойдется узел достаточно дешево, особенно тот вариант, который работает без электроэнергии.

Но любая система имеет и недостатки, коллекторный узел не стал исключением:

  • Для каждого элемента элеватора нужны отдельные расчеты.
  • Перепады компрессии не должны превышать 0,8-2 Бар.
  • Отсутствие возможности контролировать высокую температуру.

Как устроен элеватор

В последнее время элеваторы появились в коммунальном хозяйстве. Почему же выбрали именно это оборудование? Ответ прост: элеваторы остаются стабильными даже в том случае, когда в сетях происходят перепады гидравлического и теплового режимов. Состоит элеватор из нескольких частей – камеры разряжения, струйного устройства и сопла. Также можно услышать про «обвязку элеватора» – речь идет о запорной арматуры, а также измерительных приборов, которые позволяют поддерживать нормальную работу всей системы.

Как было упомянуто выше, сегодня используются элеваторы, оснащенные электроприводом. За счет электрического привода механизм автоматически контролирует диаметр сопла, как результат, в системе поддерживается температура. Использование таких элеваторов способствует уменьшению счетов за электроэнергию.На изображение показаны все элементы элеватора.

 

Конструкция оснащена механизмом, который вращается за счет электрического привода. В более старых версиях используется зубчатый валик. Предназначен механизм для того, чтобы дроссельная игла можно двигать в продольном направлении. Таким образом меняется диаметр сопла, после чего можно изменить расход теплового носителя. За счет этого механизма расход сетевой жидкости можно снизить до минимума или повысить на 10-20%.

 

Возможные неисправности

Частой неисправностью можно назвать механическую поломку элеватора. Это может произойти из-за увеличения диаметра сопла, дефектов запорной арматуры или засорения грязевиков. Понять, что элеватор вышел из строя, довольно просто – появляются ощутимые перепады температуры теплового носителя после и до прохода через элеватор. В случае, если температура небольшая, то устройство просто засорилось. При больших перепадах требуется ремонт элеватора. В любом случае, при появлении неисправности требуется диагностика.

Сопло элеватора довольно часто засоряется, особенно в тех местах, где вода содержит множество добавок. Этот элемент можно демонтировать и прочистить. В случае, когда увеличился диаметра сопла, необходима корректировка или полная замена этого элемента.На фото показан процесс обслуживания элеваторной системы отопления.

 

К остальным неисправностям можно отнести перегревы приборов, протечки и прочие дефекты, присущие трубопроводам. Что касается грязевика, то степень его засорения можно определить по показателям манометров. Если давление увеличивается после грязевика, то элемент нужно проверить.

Тепловой узел что это такое

Тепловой узел. Узел учета тепловой энергии. Схемы тепловых узлов

December 21, 2015

Тепловой узел представляет собой совокупность устройств и приборов, осуществляющих учет энергии, объема (массы) теплоносителя, а также регистрацию и контроль его параметров. Узел учета конструктивно представляет собой совокупность модулей (элементов), подключаемых к системе трубопроводов.

Назначение

Организуется узел учета тепловой энергии для следующих целей:

  • Контролирование рационального использования теплоносителя и тепловой энергии.
  • Контролирование тепловых и гидравлических режимов систем теплопотребления и теплоснабжения.
  • Документирование параметров теплоносителя: давления, температуры и объема (массы).
  • Осуществление взаимного финансового расчета между потребителем и организацией, занимающейся поставкой тепловой энергией.

Основные элементы

Тепловой узел состоит из комплекта устройств и приборов учета, которые обеспечивают выполнение как одной, так и одновременно нескольких функций: хранение, накопление, измерение, отображение информации о массе (объеме), количестве тепловой энергии, давлении, температуре циркулирующей жидкости, а также времени работы.

Как правило, в качестве прибора учета выступает теплосчетчик, в состав которого входит термопреобразователь сопротивлений, тепловычислитель и первичный преобразователь расхода. Дополнительно теплосчетчик может комплектоваться фильтрами и датчиками давления (в зависимости от модели первичного преобразователя). В теплосчетчиках могут использоваться первичные преобразователи со следующими вариантами измерения: вихревое, ультразвуковое, электромагнитное и тахометрическое.

Устройство узла учета

Состоит узел учета тепловой энергии из следующих основных элементов:

  • Запорная арматура.
  • Теплосчетчик.
  • Термопреобразователь.
  • Грязевик.
  • Расходомер.
  • Термодатчик обратного трубопровода.
  • Дополнительное оборудование.

Тепловой счетчик

Теплосчетчик – это основной элемент, из которого должен состоять узел тепловой энергии. Его устанавливают на вводе тепла в отопительную систему в непосредственной близости к границе балансовой принадлежности тепловой сети.

При удаленном монтаже прибора учета от данной границы, тепловые сети дополнительно к показаниям по счетчику добавляют потери (для учета тепла, которое выделяется поверхностью трубопроводов на участке от границы балансового разделения до теплосчетчика).

Функции теплосчетчика

Прибор любого типа должен выполнять следующие задачи:

1. Автоматическое измерение:

  • Продолжительности работы в зоне ошибок.
  • Времени наработки при поданном напряжении питания.
  • Избыточного давления циркулирующей в системе трубопроводов жидкости.
  • Температуры воды в трубопроводах систем горячего, холодного водоснабжения и теплоснабжения.
  • Расхода теплоносителя в трубопроводах горячего водоснабжения и теплоснабжения.
  • Потребленного количества тепла.
  • Объема теплоносителя, протекающего по трубопроводам.
  • Тепловой потребляемой мощности.
  • Разности температуры циркулирующей жидкости в подающем и обратном трубопроводе (трубопроводе холодного водоснабжения).

Запорная арматура и грязевик

Запорные устройства отсекают систему отопления дома от тепловой сети. Грязевик при этом обеспечивает защиту элементов теплосчетчика и тепловой сети от грязи, которая присутствует в теплоносителе.

Термопреобразователь

Данный прибор устанавливается после грязевика и запорной арматуры в наполненную маслом гильзу. Гильза либо посредством резьбового соединения закрепляется на трубопроводе, либо вваривается в него.

Расходомер

Расходомер, установленный в тепловой узел, выполняет функцию преобразователя расхода. На участке измерения (до и после расходомера) рекомендуется устанавливать специальные задвижки, благодаря которым будет упрощено проведение сервисных и ремонтных работ.

Поступив в подающий трубопровод, теплоноситель направляется в расходомер, а затем уходит в отопительную систему дома. Далее охлажденная жидкость возвращается в обратном направлении по трубопроводу.

Термодатчик

Данное устройство монтируется на обратном трубопроводе совместно с запорной арматурой и расходомером. Такое расположение позволяет не только измерять температуру циркулирующей жидкости, но и ее расход на входе и выходе.

Расходомеры и термодатчики подключаются к теплосчетчикам, которые позволяют производить расчет потребленного тепла, хранение и архивацию данных, регистрацию параметров, а также их визуальное отображение.

Как правило, тепловычислитель размещается в отдельном шкафу со свободным доступом. Кроме того, в шкафу можно устанавливать дополнительные элементы: источник бесперебойного питания или модем. Дополнительные устройства позволяют обрабатывать и контролировать данные, которые передаются узлом учета дистанционно.

Основные схемы систем отопления

Итак, прежде чем рассмотреть схемы тепловых узлов, необходимо рассмотреть, какими бывают схемы отопительных систем. Среди них наиболее популярной считается конструкция верхней разводки, при которой теплоноситель протекает по главному стояку и направляется в магистральный трубопровод верхней разводки. В большинстве случаев главный стояк располагается в помещении чердака, откуда идет его разветвление на второстепенные стояки и после чего распределяется по нагревательным элементам. Подобную схему целесообразно использовать в одноэтажных строениях с целью экономии свободного пространства.

Также существуют схемы отопительных систем с нижней разводкой. В таком случае тепловой узел располагается в помещении подвала, откуда выходит магистральный трубопровод с теплой водой. Стоит обратить внимание, что, независимо от типа схемы, на чердаке здания рекомендуется располагать еще и расширительный бачок.

Схемы тепловых узлов

Если говорить о схемах тепловых пунктов, следует отметить, что самыми распространенными являются следующие типы:

  • Тепловой узел – схема с параллельным одноступенчатым подключением горячей воды. Эта схема является наиболее распространенной и простой. В таком случае горячее водоснабжение подключается параллельно к той же сети, что и отопительная система здания. Теплоноситель подается в подогреватель из наружной сети, затем охлажденная жидкость в обратном порядке перетекает непосредственно в теплопровод. Главным недостатком такой системы, по сравнению с другими типами, является большой расход сетевой воды, который используется для организации горячего водоснабжения.

  • Схема теплового пункта с последовательным двухступенчатым подключением горячей воды. Данную схему можно разделить на две ступени. Первая ступень отвечает за обратный трубопровод отопительной системы, вторая – за подающий трубопровод. Основным преимуществом, которым обладают тепловые узлы, подключенные по такой схеме, является отсутствие специальной подачи сетевой воды, что существенно сокращает ее расход. Что же касается недостатков – это потребность в монтаже системы автоматического регулирования для настройки и корректировки распределения тепла. Такое подключение рекомендуется использовать в случае отношения максимального расхода тепла на отопление и горячее водоснабжение, находящегося в интервале от 0,2 до 1.

  • Тепловой узел – схема со смешанным двухступенчатым подключением подогревателя горячей воды. Это наиболее универсальная и гибкая в настройках схема подключения. Ее можно использовать не только для нормального температурного графика, но и для повышенного. Основной отличительной особенностью стоит назвать тот момент, что подключение теплообменника к подающему трубопроводу осуществляется не параллельно, а последовательно. Дальнейший принцип строения подобен второй схеме теплового пункта. Тепловые узлы, подключенные по третьей схеме, нуждаются в дополнительном потреблении сетевой воды для подогревательного элемента.

Порядок установки узла учета

Прежде чем установить узел учета тепловой энергии, важно провести обследование объекта и разработать проектную документацию. Специалисты, которые занимаются проектированием отопительных систем, производят все необходимые расчеты, осуществляют подбор контрольно-измерительных приборов, оборудования и подходящего теплового счетчика.

После разработки проектной документации, необходимо получить согласование от организации, которая занимается поставкой тепловой энергии. Этого требуют действующие правила учета тепловой энергии и нормы проектирования.

Только после согласования можно спокойно устанавливать тепловые узлы учета. Монтаж состоит из врезки запорных устройств, модулей в трубопроводы и электромонтажных работ. Работы по электромонтажу завершаются подключением к вычислителю датчиков, расходомеров и последующим запуском вычислителя для проведения учета энергии тепла.

После этого осуществляется наладка прибора учета тепловой энергии, заключающаяся в проверке работоспособности системы и программировании вычислителя, а затем производится сдача объекта согласующим сторонам на коммерческий учет, который выполняется специальной комиссией в лице теплоснабжающей компании. Стоит отметить, что такой узел учета должен функционировать некоторое время, которое у разных организаций колеблется от 72 часов до 7 дней.

Чтобы объединить несколько узлов учета в единую сеть диспетчеризации, потребуется организовать дистанционное снятие и мониторинг учета информации с теплосчетчиков.

Допуск к эксплуатации

При допуске теплового узла к эксплуатации проверяется соответствие заводского номера прибора учета, который указан в его паспорте и диапазона измерений установленных параметров теплосчетчика диапазону измеряемых показаний, а также наличие пломб и качество монтажа.

Эксплуатация теплового узла запрещена в следующих ситуациях:

  • Наличие врезок в трубопроводы, которые не предусмотрены проектной документацией.
  • Работа прибора учета за пределами норм точности.
  • Присутствие механических повреждений на приборе и его элементах.
  • Нарушение пломб на устройстве.
  • Несанкционированное вмешательство в работу теплового узла.

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

10 загадочных фотографий, которые шокируют Задолго до появления Интернета и мастеров «Фотошопа» подавляющее большинство сделанных фото были подлинными. Иногда на снимки попадали поистине неверо.

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Что такое тепловой узел в системах отопления?

Построение правильного проекта монтажа представленного оборудования важно для поддержания нормальной температуры отопления в каждом полезном помещении многоквартирного дома без необходимости жильцам подключать автономную систему нагрева.

Регулярная проверка полученных данных, полученных от описанной аппаратуры позволяет устранить возможные недостатки построенной ранее схемы отопления или ее поломки.

1 Что такое тепловой узел учета энергии?

Тепловой узел – комплекс оборудования, монтаж проекта которых обеспечивается с целью предоставления принципиального учета и регулирования энергии, объема теплоносителя, а также произведение регистрации и контроля его параметров.

Тепловой узел учета энергии

Узел учета тепловой энергии – автоматический модуль, монтаж которого производится к системе трубопроводов для предоставления учетных данных по проекту эксплуатации и регулирования отопительных ресурсов.

1.1 Где устанавливаются тепловые узлы?

Установка тепловых узлов и их обслуживание, как правило, производится в типовые многоквартирные дома, с коммунальными системами отопления.

В свою очередь, узлы учета тепловой энергии устанавливаются в многоквартирном доме для выполнения следующих задач:

  • проверки и регулирования эксплуатации теплоносителя и тепловой энергии;
  • проверки и регулирования гидравлических и отопительных систем;
  • записи данных теплоносителя, таких как температура, давление и объем.
  • произведение денежного расчета потребителя и поставщика тепловой энергии, после того как будет осуществлена проверка полученных данных.

Монтаж узлов учета тепловой энергии

При осуществлении установки проекта отопительного оборудования следует учесть. что потребление ресурсов, подаваемых в центральное отопление в многоквартирном доме несет за собой определенные финансовые затраты пользователей (в данном случае – жильцов многоквартирного дома).

Снизить расходы, как и поддерживать работоспособность построенного узла по проектированной ранее схеме продолжительное время, квартирный дом сможет, если будут своевременно будет предоставляться грамотная проверка учетного оборудования и его обслуживание, включая качественный монтаж аппаратуры и трубопровода.

2 Устройство и схема теплового узла

Тепловой узел, монтаж которого обеспечивается по предварительному проекту в коммунальные системы многоквартирных домов, изготавливается из целого комплекса оборудования и приборов. Такое устройство способно выполнять от одной до нескольких функций, таких как:

  1. Измерение количества и массы тепловой энергии, ее давления, температуры жидкости, циркулирующей по трубопроводу и времени функционирования.
  2. Накопление и хранение этой информации на локальном носителе.
  3. Отображение ее на приборах учета.

На основе полученных данных осуществляется проверка за работой отопительного оборудования в многоквартирных домах, его регулирование и обслуживание.

Учетным прибором выступает такое устройство, как счетчик, схема которого состоит из:

  1. Термопреобразователя сопротивлений.
  2. Тепловычислителя.
  3. Первичного преобразователя расхода.

Зависимо от того, установка какой модели первичного преобразователя имела место (с вихревым, ультразвуковым, электромагнитным или тахометрическим вариантами измерения), теплосчетчик может иметь в своем составе фильтры и датчики давления.

Принципиальная схема теплового узла

Узел учета тепловой энергии состоит из следующих элементов:

  1. Запорной арматуры.
  2. Теплового счетчика.
  3. Термопреобразователя.
  4. Грязевика.
  5. Расходомера.
  6. Теплового датчика обратного трубопровода.
  7. Дополнительного оборудования.

Монтаж схемы учетного оборудования тепловой энергии в квартирный дом, в свою очередь, подразумевает следующие принципиальные требования:

  • необходимость производить монтаж схемы учетного оборудования исключительно у границ раздела балансовой принадлежности трубопроводах в местах, наиболее приближенных к основным задвижкам источника отопления;
  • запрет на организации проекта отбора теплоносителя на личные нужды в системе коммунального теплоснабжения;
  • регулирования среднечасовых и среднесуточных параметров теплоносителя производятся по показаниям учетного оборудования;
  • учетные прибора монтируются на обратных трубопроводах магистралей и размещаются до места подсоединения подбиточного трубопровода.

Для осуществления грамотного регулирования и контроля за описываемым оборудованием компетентными службами осуществляется грамотная проверка их монтажа и функционирования.

2.1 Кто устанавливает и обслуживает тепловой узел в квартирных домах?

В многоквартирных зданиях работает центральное отопление (ТС) и горячее водоснабжение (ГВС), магистральный трубопровод для подачи которых располагается в подвалах, оснащая его запорной арматурой. Последняя позволяет отключать внутридомовую систему подачи отопления от внешней сети.

Сам тепловой узел оснащается грязевиками, запорной арматурой, контрольно-измерительными приборами и имеет в конструкции такое устройство, как элеватор. Из них постоянного обслуживания требует, как правило, грязевик, которые представляет собой стальную трубу диаметром Ду=159-200мм и необходим для сбора грязи, поступающей из магистрального трубопровода для защиты трубопроводов и отопительных приборов от загрязнения.

Установка термо-узла, его обслуживание, в том числе очистка – работа слесарей обслуживающих жилой дом, выполняя требования организации, предоставляющей жилищно-коммунальные услуги.

2.2 Тепловой узел учета энергии (видео)

Схема элеваторного узла отопления

Теплоноситель в системах центрального теплоснабжения проходит по тепловому пункту до того, как попасть непосредственно в секции радиаторов каждой квартиры и отдельного помещения. В таком узле вода приводится к расчетной температуре, а баланс обеспечивается благодаря тому, что правильно работает схема элеваторного узла отопления. В подвале любого многоэтажного дома, отапливаемого по центральной магистрали, можно найти такой элеватор.

Принцип работы узла

Разбираясь, что такое элеватор, стоит отметить необходимость этого комплекса для соединения с его помощью тепловых сетей и частных потребителей. Тепловой узел – это модуль, выполняющий функции насосного оборудования. Чтобы увидеть, что такое элеватор в системе отопления, необходимо опуститься в подвал практически любого многоквартирного дома. Там среди запорной арматуры и измерителей давления удастся обнаружить искомый элемент отопительной системы (схема указана на рисунке ниже).

Выясняя, элеватор, что это такое, стоит определить его функционал по выполняемым задачам. В их число входит перераспределение давления изнутри отопительной системы, при этом выдается теплоноситель с допустимой температурой. Фактически объем воды удваивается, перемещаясь по магистралям от котельной. Такой эффект достигается при наличии воды в отдельном герметизированном сосуде.

Температура теплоносителя, поступающего из котельной, обычно находится в пределах 105-150 0 С. Использовать его с данным параметром в бытовых условиях не представляется возможным по соображениям безопасности.

Нормативными документами регламентировано граничное температурное значение для теплоносителя, которое должно составлять не более 95 0 С.

Для справки. В настоящее время активно обсуждается вопрос о снижении температуры горячей воды с 60 0 С, предусмотренной СанПин, до 50 0 С, мотивируя это необходимостью экономить на ресурсах. Как отмечают эксперты, такую минимальную разницу потребитель не заметит, а для того, чтобы ежесуточно проводилась надлежащая дезинфекция воды в трубах, рекомендуется повышать ее до 70 0 С. Насколько эта инициатива рациональна и обдумана, пока рано судить. Изменения в СанПин еще не внесены.

Возвращаясь к теме элеватора системы отопления, отметим, что температуру в системе обеспечивает именно он. Благодаря данным действиям удается снизить риски:

  • с чрезмерно перегретыми батареями легко получить ожег;
  • радиаторы отопления не всегда способны выдерживать длительное время воздействие повышенной температуры теплоносителя под давлением;
  • разводка из полимерных или металлопластиковых труб не предусматривает их применение с таким горячими теплоносителями.

Чем удобен именно этот узел

Элеваторный узел в любом многоквартирном доме

Можно услышать мнение о том, что было бы удобнее не использовать элеватор отопления с таким принципом работы, а подавать напрямую воду меньшей температуры. Однако, это мнение ошибочное, ведь придется существенно повысить диаметры магистралей для передачи более холодного теплоносителя.

ВИДЕО: Элеваторный узел магистрали ЦО

Фактически, грамотная схема теплового узла отопления позволяет подмешивать в подающий объем воды часть объема из обратки, который уже остыл. Хотя в некоторых источниках элеваторный узел системы отопления относят к устаревшему гидравлическому оборудованию, но он доказал свою эффективность в работе. Более современными приборами, используемыми вместо схемы элеваторного узла, являются следующие типы:

  • пластинчатый теплообменник;
  • смеситель с трехходовым клапаном.

Функционирование элеватора

Рассматривая, элеваторный узел системы отопления, что это такое и как работает, стоит отметить, что у рабочей конструкции есть сходство с водяными насосами. Однако, эксплуатация не требует передачи энергии из других систем. Свою надежность он проявляет при определенных условиях.

Снаружи базовая часть аппарата внешне схожа с гидравлическим тройником, смонтированным на обратной ветке. Однако, сквозь стандартный тройник теплоноситель безболезненно проникал бы в обратку без прохождения по радиаторам. Такое поведение являлось бы бессмысленным.

Стандартная схема элеватора

В классической схеме элеваторного узла системы отопления присутствуют следующие составные части:

  • Предкамера, подающая труба, на конце которой расположено сопло определенного диаметра. В нее поступает теплоноситель из обратки.
  • В выходной части вмонтирован диффузор. Он передает воду потребителям.

Сегодня встречаются узлы, где диаметр сопла регулируется электрическим приводом. Это дает возможность оптимизировать температуру теплоносителя в автоматическом режиме.

Выбор узла с электроприводом основан на том, что можно изменять коэффициент смешения теплоносителя в пределах 2-5, что невозможно в элеваторах, где диаметр сопла не регулируется. Таким образом система с регулируемым соплом позволяет значительно экономить на отоплении, что возможно в домах, где установлены центральные счетчики.

Как работает схема теплового узла

В целом принцип работы можно описать таким образом:

  • вода перемещается по магистрали от котельной к входу в сопло;
  • во время прохода по небольшому диаметру существенно повышается скорость рабочего теплоносителя;
  • формируется район с небольшим разряжением;
  • за счет образовавшегося вакуума вода подсасывается из обратки;
  • турбулентные потоки однородной массой отправляются к выходу сквозь диффузор.

Более подробно можно все рассмотреть на рабочей схеме.

Для эффективной работы системы, в которой задействована схема элеваторного узла системы отопления, нужно обеспечить величину по значениям давления между подачей и обраткой больше, чем значение расчетного гидросопротивления.

Недостатки системы

Кроме позитивных качеств, тепловой узел или схема теплового узла имеют определенный недостаток. Он заключаются в следующем. Элеватор системы отопления не имеет возможности проводить регулировку выходной температурной смеси. В такой ситуации понадобится замерить разогретый теплоноситель из магистрали или от обратного трубопровода. Понижать температуру удастся лишь при изменении габаритов сопла, что конструкционно не получается сделать.

В некоторых случаях спасают элеваторы, имеющие электропривод. В их конструкцию входит механический привод. Данный узел приводится в действие с помощью электрического привода. Таким способом удается варьировать в диаметре сопла. Базовым элементом такой конструкции является дроссельная иголка, имеющая конусный вид. Она входит в отверстие по внутреннему диаметру конструкции. Перемещаясь на определенное расстояние, ей удается корректировать температуру смеси именно за счет изменения диаметра сопло.

На валу бывает смонтирован как привод ручной в виде рукоятки, так и запускаемый дистанционно электроприводной движок.

За счет таких модернизированных решений котельная в подвале не претерпевает значительных дорогостоящих переоборудований. Достаточно смонтировать регулятор, чтобы получить современный тепловой узел.

Неисправности

В большинстве случаев поломки вызваны следующими факторами:

  • засорение оборудования;
  • постепенное увеличение диаметра сопло в процессе эксплуатации, в результате чего температуру теплоносителя сложнее контролировать;
  • забитые грязевики;
  • поломка арматуры;
  • выход из строя регуляторов и т.д.

Определить поломку этого устройства несложно, она сразу сказывается на температуре теплоносителя и на ее резком перепаде. При незначительных отклонениях от нормы, скорее всего, речь идет о засорении или небольшом увеличении диаметра сопло. Если перепад очень значительный (более 5 градусов), тогда уже нужно проводить диагностику и вызывать специалиста для ремонта.

Диаметр сопло увеличивается либо в процессе коррозии при контакте с водой, либо в результате непроизвольного сверления. И то, и другое в итоге приводит к разбалансировке системы и должно быть устранено незамедлительно.

Нужно знать, что современные модернизированные системы могут эксплуатироваться с узлами учета потребления электроэнергии. При отсутствии данного устройства в цепи отопления тяжело добиться экономичного эффекта. Установка же счетчиков тепла и горячей воды позволяет существенно снижать коммунальные платежки.

ВИДЕО: Принцип работы узла

Источники: http://fb.ru/article/220674/teplovoy-uzel-uzel-ucheta-teplovoy-energii-shemyi-teplovyih-uzlov, http://stroypotencial.ru/vodyanoe-otoplenie/teplovoj-uzel.html, http://www.portaltepla.ru/montagh-otopleniya/shema-elevatornogo-uzla-otopleniya/

Тепловой пункт — Википедия

Тепловой пункт (ТП) — комплекс устройств, расположенный в обособленном помещении, состоящий из элементов тепловых энергоустановок, обеспечивающих присоединение этих установок к тепловой сети, их работоспособность, управление режимами теплопотребления, преобразование, регулирование параметров теплоносителя и распределение теплоносителя по видам потребителей[1]. Тепловой пункт — сооружение с комплектом оборудования, позволяющее изменить температурный и гидравлический режимы теплоносителя, обеспечить учет и регулирование расхода тепловой энергии и теплоносителя[2].

Тепловой пункт и присоединённое здание в жилом районе Марьинский Парк (Москва)

Основными задачами ТП являются[1][2]:

  • учет тепловых потоков и расходов теплоносителя и конденсата
  • контроль параметров теплоносителя
  • регулирование расхода теплоносителя
  • распределение теплоносителя по системам потребления теплоты
  • преобразование вида теплоносителя или его параметров
  • защита местных систем от аварийного повышения параметров теплоносителя
  • заполнение и подпитка систем потребления теплоты
  • сбор, охлаждение, возврат конденсата и контроль его качества
  • аккумулирование теплоты
  • подготовка воды для систем горячего водоснабжения
  • отключение систем потребления теплоты
Центральный тепловой пункт в подвальном

ТП различаются по количеству и типу подключенных к ним систем теплопотребления, индивидуальные особенности которых определяют тепловую схему и характеристики оборудования ТП, а также по типу монтажа и особенностям размещения оборудования в помещении ТП. Различают следующие виды ТП[3]:

  • Индивидуальный тепловой пункт (ИТП). Используется для обслуживания одного потребителя (здания или его части). Как правило, располагается в подвальном или техническом помещении здания, однако, в силу особенностей обслуживаемого здания, может быть размещён в отдельностоящем сооружении.
  • Центральный тепловой пункт (ЦТП). Используется для обслуживания группы потребителей (зданий, промышленных объектов). Чаще располагается в отдельностоящем сооружении, но может быть размещен в подвальном или техническом помещении одного из зданий.
  • Блочный тепловой пункт (БТП). Изготавливается в заводских условиях и поставляется для монтажа в виде готовых блоков. Может состоять из одного или нескольких блоков. Оборудование блоков монтируется очень компактно, как правило, на одной раме. Обычно используется при необходимости экономии места, в стесненных условиях. По характеру и количеству подключенных потребителей БТП может относиться как к ИТП, так и к ЦТП.

Источники тепла и системы транспорта тепловой энергии[править | править код]

Источником тепла для ТП служат теплогенерирующие предприятия (котельные, теплоэлектроцентрали). ТП соединяется с источниками и потребителями тепла посредством тепловых сетей. Тепловые сети подразделяются на первичные магистральные теплосети, соединяющие ТП с теплогенерирующими предприятиями, и вторичные (разводящие) теплосети, соединяющие ТП с конечными потребителями. Участок тепловой сети, непосредственно соединяющий ТП и магистральные теплосети, называется тепловым вводом.

Магистральные тепловые сети, как правило, имеют большую протяжённость (удаление от источника тепла до 10 км и более). Для строительства магистральных сетей используют стальные трубопроводы диаметром до 1400 мм. В условиях, когда имеется несколько теплогенерирующих предприятий, на магистральных теплопроводах делаются закольцовки, объединяющие их в одну сеть. Это позволяет увеличить надёжность снабжения тепловых пунктов, а в конечном счёте и потребителей, теплом. Например, в городах, в случае аварии на магистрали или местной котельной, теплоснабжение может взять на себя котельная соседнего района. Также, в некоторых случаях, общая сеть даёт возможность распределять нагрузку между теплогенерирующими предприятиями. В качестве теплоносителя в магистральных теплосетях используется специально подготовленная вода. При подготовке в ней нормируются показатели карбонатной жёсткости, содержания кислорода, содержания железа и показатель pH. Неподготовленная для использования в тепловых сетях вода (в том числе водопроводная, питьевая) непригодна для использования в качестве теплоносителя, так как при высоких температурах, вследствие образования отложений и коррозии, будет вызывать повышенный износ трубопроводов и оборудования. Конструкция ТП предотвращает попадание относительно жёсткой водопроводной воды в магистральные теплосети.

Вторичные тепловые сети имеют сравнительно небольшую протяжённость (удаление ТП от потребителя до 500 метров) и в городских условиях ограничиваются одним или двумя кварталами. Диаметры трубопроводов вторичных сетей, как правило, находятся в пределах от 50 до 150 мм. При строительстве вторичных тепловых сетей могут использоваться как стальные, так и полимерные трубопроводы. Использование полимерных трубопроводов наиболее предпочтительно, особенно для систем горячего водоснабжения, так как жёсткая водопроводная вода в сочетании с повышенной температурой приводит к усиленной коррозии и преждевременному выходу из строя стальных трубопроводов. В случае с индивидуальным тепловым пунктом вторичные тепловые сети могут отсутствовать.

Источником воды для систем холодного и горячего водоснабжения служат водопроводные сети.

Системы потребления тепловой энергии[править | править код]

В типичном ТП имеются следующие системы снабжения потребителей тепловой энергией:

  • Система горячего водоснабжения (ГВС). Предназначена для снабжения потребителей горячей водой[4]. Различают закрытые и открытые системы горячего водоснабжения. Часто тепло из системы ГВС используется потребителями для частичного отопления помещений, например ванных комнат в многоквартирных жилых домах.
  • Система отопления. Предназначена для обогрева помещений с целью поддержания в них заданной температуры воздуха[5]. Различают зависимые и независимые схемы присоединения систем отопления.
  • Система вентиляции. Предназначена для обеспечения подогрева поступающего в вентиляционные системы зданий наружного воздуха. Также может использоваться для присоединения зависимых систем отопления потребителей.
  • Система холодного водоснабжения. Не относится к системам потребляющим тепловую энергию, однако присутствует во всех тепловых пунктах, обслуживающих многоэтажные здания. Предназначена для обеспечения необходимого давления в системах водоснабжения потребителей.

Принципиальная схема теплового пункта[править | править код]

Схема ТП зависит, с одной стороны, от особенностей потребителей тепловой энергии, обслуживаемых тепловым пунктом, с другой стороны, от особенностей источника, снабжающего ТП тепловой энергией. Далее, как наиболее распространённый, рассматривается ТП с закрытой системой горячего водоснабжения и независимой схемой присоединения системы отопления.

Принципиальная схема теплового пункта

Теплоноситель, поступающий в ТП по подающему трубопроводу теплового ввода, отдает своё тепло в подогревателях систем ГВС и отопления, а также поступает в систему вентиляции потребителей, после чего возвращается в обратный трубопровод теплового ввода и по магистральным сетям отправляется обратно на теплогенерирующее предприятие для повторного использования. Часть теплоносителя может расходоваться потребителем. Для восполнения потерь в первичных тепловых сетях на котельных и ТЭЦ существуют системы подпитки, источниками теплоносителя для которых являются системы водоподготовки этих предприятий.

Водопроводная вода, поступающая в ТП, проходит через насосы ХВС, после чего часть холодной воды отправляется потребителям, а другая часть нагревается в подогревателе первой ступени ГВС и поступает в циркуляционный контур системы ГВС. В циркуляционном контуре вода при помощи циркуляционных насосов горячего водоснабжения движется по кругу от ТП к потребителям и обратно, а потребители отбирают воду из контура по мере необходимости. При циркуляции по контуру вода постепенно отдает своё тепло и для того, чтобы поддерживать температуру воды на заданном уровне, её постоянно подогревают в подогревателе второй ступени ГВС.

Система отопления также представляет собой замкнутый контур, по которому теплоноситель движется при помощи циркуляционных насосов отопления от ТП к системе отопления зданий и обратно. По мере эксплуатации возможно возникновение утечек теплоносителя из контура системы отопления. Для восполнения потерь служит система подпитки теплового пункта, использующая в качестве источника теплоносителя первичные тепловые сети.

  • Соколов Е.Я. Теплофикация и тепловые сети: учебник для вузов. — 8-е изд., стереот. / Е.Я. Соколов. — М.: Издательский дом МЭИ, 2006. — 472 с.: ил.
  • СНиП 41-01-2003. ОТОПЛЕНИЕ, ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ.
  • СНиП 2.04.07-86 Тепловые сети (изд. 1994 с изменением 1 БСТ 3-94, изменением 2, принятым постановлением Госстроя России от 12.10.2001 N116 и исключением раздела 8 и приложений 12-19). Тепловые пункты.
  • СП 41-101-95 «Своды правил по проектированию и строительству. Проектирование тепловых пунктов».

Тепловой узел. Узел учета тепловой энергии. Схемы тепловых узлов

Тепловой узел представляет собой совокупность устройств и приборов, осуществляющих учет энергии, объема (массы) теплоносителя, а также регистрацию и контроль его параметров. Узел учета конструктивно представляет собой совокупность модулей (элементов), подключаемых к системе трубопроводов.

тепловой узел

Назначение

Организуется узел учета тепловой энергии для следующих целей:

  • Контролирование рационального использования теплоносителя и тепловой энергии.
  • Контролирование тепловых и гидравлических режимов систем теплопотребления и теплоснабжения.
  • Документирование параметров теплоносителя: давления, температуры и объема (массы).
  • Осуществление взаимного финансового расчета между потребителем и организацией, занимающейся поставкой тепловой энергией.
тепловые узлы

Основные элементы

Тепловой узел состоит из комплекта устройств и приборов учета, которые обеспечивают выполнение как одной, так и одновременно нескольких функций: хранение, накопление, измерение, отображение информации о массе (объеме), количестве тепловой энергии, давлении, температуре циркулирующей жидкости, а также времени работы.

Как правило, в качестве прибора учета выступает теплосчетчик, в состав которого входит термопреобразователь сопротивлений, тепловычислитель и первичный преобразователь расхода. Дополнительно теплосчетчик может комплектоваться фильтрами и датчиками давления (в зависимости от модели первичного преобразователя). В теплосчетчиках могут использоваться первичные преобразователи со следующими вариантами измерения: вихревое, ультразвуковое, электромагнитное и тахометрическое.

Устройство узла учета

Состоит узел учета тепловой энергии из следующих основных элементов:

  • Запорная арматура.
  • Теплосчетчик.
  • Термопреобразователь.
  • Грязевик.
  • Расходомер.
  • Термодатчик обратного трубопровода.
  • Дополнительное оборудование.

Тепловой счетчик

Теплосчетчик – это основной элемент, из которого должен состоять узел тепловой энергии. Его устанавливают на вводе тепла в отопительную систему в непосредственной близости к границе балансовой принадлежности тепловой сети.

узел учета тепловой энергии

При удаленном монтаже прибора учета от данной границы, тепловые сети дополнительно к показаниям по счетчику добавляют потери (для учета тепла, которое выделяется поверхностью трубопроводов на участке от границы балансового разделения до теплосчетчика).

Функции теплосчетчика

Прибор любого типа должен выполнять следующие задачи:

1. Автоматическое измерение:

  • Продолжительности работы в зоне ошибок.
  • Времени наработки при поданном напряжении питания.
  • Избыточного давления циркулирующей в системе трубопроводов жидкости.
  • Температуры воды в трубопроводах систем горячего, холодного водоснабжения и теплоснабжения.
  • Расхода теплоносителя в трубопроводах горячего водоснабжения и теплоснабжения.

2. Вычисление:

  • Потребленного количества тепла.
  • Объема теплоносителя, протекающего по трубопроводам.
  • Тепловой потребляемой мощности.
  • Разности температуры циркулирующей жидкости в подающем и обратном трубопроводе (трубопроводе холодного водоснабжения).

Запорная арматура и грязевик

Запорные устройства отсекают систему отопления дома от тепловой сети. Грязевик при этом обеспечивает защиту элементов теплосчетчика и тепловой сети от грязи, которая присутствует в теплоносителе.

Термопреобразователь

Данный прибор устанавливается после грязевика и запорной арматуры в наполненную маслом гильзу. Гильза либо посредством резьбового соединения закрепляется на трубопроводе, либо вваривается в него.

узел учета тепловой

Расходомер

Расходомер, установленный в тепловой узел, выполняет функцию преобразователя расхода. На участке измерения (до и после расходомера) рекомендуется устанавливать специальные задвижки, благодаря которым будет упрощено проведение сервисных и ремонтных работ.

Поступив в подающий трубопровод, теплоноситель направляется в расходомер, а затем уходит в отопительную систему дома. Далее охлажденная жидкость возвращается в обратном направлении по трубопроводу.

Термодатчик

Данное устройство монтируется на обратном трубопроводе совместно с запорной арматурой и расходомером. Такое расположение позволяет не только измерять температуру циркулирующей жидкости, но и ее расход на входе и выходе.

Расходомеры и термодатчики подключаются к теплосчетчикам, которые позволяют производить расчет потребленного тепла, хранение и архивацию данных, регистрацию параметров, а также их визуальное отображение.

Как правило, тепловычислитель размещается в отдельном шкафу со свободным доступом. Кроме того, в шкафу можно устанавливать дополнительные элементы: источник бесперебойного питания или модем. Дополнительные устройства позволяют обрабатывать и контролировать данные, которые передаются узлом учета дистанционно.

Основные схемы систем отопления

Итак, прежде чем рассмотреть схемы тепловых узлов, необходимо рассмотреть, какими бывают схемы отопительных систем. Среди них наиболее популярной считается конструкция верхней разводки, при которой теплоноситель протекает по главному стояку и направляется в магистральный трубопровод верхней разводки. В большинстве случаев главный стояк располагается в помещении чердака, откуда идет его разветвление на второстепенные стояки и после чего распределяется по нагревательным элементам. Подобную схему целесообразно использовать в одноэтажных строениях с целью экономии свободного пространства.

Также существуют схемы отопительных систем с нижней разводкой. В таком случае тепловой узел располагается в помещении подвала, откуда выходит магистральный трубопровод с теплой водой. Стоит обратить внимание, что, независимо от типа схемы, на чердаке здания рекомендуется располагать еще и расширительный бачок.

Схемы тепловых узлов

Если говорить о схемах тепловых пунктов, следует отметить, что самыми распространенными являются следующие типы:

  • Тепловой узел – схема с параллельным одноступенчатым подключением горячей воды. Эта схема является наиболее распространенной и простой. В таком случае горячее водоснабжение подключается параллельно к той же сети, что и отопительная система здания. Теплоноситель подается в подогреватель из наружной сети, затем охлажденная жидкость в обратном порядке перетекает непосредственно в теплопровод. Главным недостатком такой системы, по сравнению с другими типами, является большой расход сетевой воды, который используется для организации горячего водоснабжения.
тепловой узел схема
  • Схема теплового пункта с последовательным двухступенчатым подключением горячей воды. Данную схему можно разделить на две ступени. Первая ступень отвечает за обратный трубопровод отопительной системы, вторая – за подающий трубопровод. Основным преимуществом, которым обладают тепловые узлы, подключенные по такой схеме, является отсутствие специальной подачи сетевой воды, что существенно сокращает ее расход. Что же касается недостатков – это потребность в монтаже системы автоматического регулирования для настройки и корректировки распределения тепла. Такое подключение рекомендуется использовать в случае отношения максимального расхода тепла на отопление и горячее водоснабжение, находящегося в интервале от 0,2 до 1.
схемы тепловых узлов
  • Тепловой узел – схема со смешанным двухступенчатым подключением подогревателя горячей воды. Это наиболее универсальная и гибкая в настройках схема подключения. Ее можно использовать не только для нормального температурного графика, но и для повышенного. Основной отличительной особенностью стоит назвать тот момент, что подключение теплообменника к подающему трубопроводу осуществляется не параллельно, а последовательно. Дальнейший принцип строения подобен второй схеме теплового пункта. Тепловые узлы, подключенные по третьей схеме, нуждаются в дополнительном потреблении сетевой воды для подогревательного элемента.

Порядок установки узла учета

Прежде чем установить узел учета тепловой энергии, важно провести обследование объекта и разработать проектную документацию. Специалисты, которые занимаются проектированием отопительных систем, производят все необходимые расчеты, осуществляют подбор контрольно-измерительных приборов, оборудования и подходящего теплового счетчика.

После разработки проектной документации, необходимо получить согласование от организации, которая занимается поставкой тепловой энергии. Этого требуют действующие правила учета тепловой энергии и нормы проектирования.

Только после согласования можно спокойно устанавливать тепловые узлы учета. Монтаж состоит из врезки запорных устройств, модулей в трубопроводы и электромонтажных работ. Работы по электромонтажу завершаются подключением к вычислителю датчиков, расходомеров и последующим запуском вычислителя для проведения учета энергии тепла.

эксплуатация теплового узла

После этого осуществляется наладка прибора учета тепловой энергии, заключающаяся в проверке работоспособности системы и программировании вычислителя, а затем производится сдача объекта согласующим сторонам на коммерческий учет, который выполняется специальной комиссией в лице теплоснабжающей компании. Стоит отметить, что такой узел учета должен функционировать некоторое время, которое у разных организаций колеблется от 72 часов до 7 дней.

Чтобы объединить несколько узлов учета в единую сеть диспетчеризации, потребуется организовать дистанционное снятие и мониторинг учета информации с теплосчетчиков.

Допуск к эксплуатации

При допуске теплового узла к эксплуатации проверяется соответствие заводского номера прибора учета, который указан в его паспорте и диапазона измерений установленных параметров теплосчетчика диапазону измеряемых показаний, а также наличие пломб и качество монтажа.

Эксплуатация теплового узла запрещена в следующих ситуациях:

  • Наличие врезок в трубопроводы, которые не предусмотрены проектной документацией.
  • Работа прибора учета за пределами норм точности.
  • Присутствие механических повреждений на приборе и его элементах.
  • Нарушение пломб на устройстве.
  • Несанкционированное вмешательство в работу теплового узла.

Тепловой узел — это… Что такое Тепловой узел?

Тепловой узел – комплекс устройств для присоединения систем теплопотребления к тепловой сети.

[Правила техники безопасности при эксплуатации теплопотребляющих установок и тепловых сетей потребителей. Госэнергонадзор ]

Рубрика термина: Тепловое оборудование

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. — Калининград. Под редакцией Ложкина В.П.. 2015-2016.

определение, виды, устройство, принцип работы

Содержание статьи

Введение

Горячая вода, отопление, теплый пол, чистый приточный воздух, нагретый до нужной температуры – все это составляющие не только комфорта, но и требование санитарных норм (для больниц, детских садов, школ, интернатов).

Для всех этих систем необходим теплоноситель. Его подготовка для подачи конечному потребителю с требуемыми параметрами осуществляется в Тепловых пунктах. Что такое тепловой пункт, какие виды ТП бывают и чем они отличаются – об этом читайте далее.

Что такое тепловой пункт – определение

Тепловой пункт (ТП) – это помещение, либо здание, в котором происходит подключение систем отопления, вентиляции, горячего водоснабжения к тепловой сети.

Пример теплового пункта

Рис. 1. Тепловой пункт

Что входит в тепловой пункт?

Тепловые пункты включают в себя следующее оборудование:

  • Запорную арматуру;
  • Теплообменники;
  • Насосы;
  • Расширительные баки;
  • Регуляторы давления;
  • Приборы для контроля, управления, автоматизации.

Назначение тепловых пунктов

Тепловые пункты предназначены для:

  • Подготовки теплоносителя для внутренних систем до необходимого уровня давления и температуры;
  • Контроля значений температуры и давления теплоносителя;
  • Учета потребленного тепла;
  • Регулирования температуры, либо количества теплоносителя;
  • Распределения теплоносителя по отдельным системам;
  • Защиты систем здания от повышения температуры или давления теплоносителя;
  • Подготовки горячего водоснабжения.

Принцип работы теплового пункта

Принцип работы и устройства теплового пункта

Рис. 2. Устройство теплового пункта

  1. ТЭЦ или котельные, как источники тепла, нагревают теплоноситель, далее по магистральным сетям он поступает в тепловой пункт.
  2. Температура теплоносителя от ТЭЦ, как правило, составляет 150/70 ᵒС. Воду с такой высокой температурой подавать в системы отопления здания и ГВС нельзя, так как будут нежелательные последствия, такие как ожоги. В связи с этим необходимо понизить температуру теплоносителя. Это решается следующими вариантами:
  • При зависимом присоединении используются элеваторы, либо насосы, которые подмешивают воду из обратной магистрали в подающую.
  • При независимом присоединении используются теплообменники. Таким образом, вода из тепловой сети циркулирует через теплообменник, нагревая внутренний контур.

Подробно о зависимой и независимой системах теплоснабжения можно прочитать в данной статье.

  1. Для того чтобы теплоноситель циркулировал по системам отопления, в тепловом пункте устанавливаются циркуляционные насосы.
  2. С целью исключения нежелательных последствий аварийного повышения давления в магистральных тепловых сетях предусматривают установку регуляторов давления.
  3. Количество тепла, которое подается от магистральных тепловых сетей, рассчитывается на максимальную нагрузку, чтобы в самые холодные зимние дни потребители не замерзли. Когда температура наружного воздуха повышается, то необходимо уменьшить количество тепла, которое подается в отопительные приборы, иначе произойдет перегрев внутреннего воздуха помещений. Таким образом, в тепловом пункте происходит регулирование отпуска тепла.
  4. Вода для систем ГВС также подготавливается в тепловом пункте в теплообменнике.
  5. Обязательным элементом является узел учета тепла. Его наличие обусловлено законом об энергосбережении № 261-ФЗ.
  6. Заключительным элементом является распределительная гребенка, от которой теплоноситель распределяется по необходимым системам.

Виды тепловых пунктов

Тепловые пункты подразделяются на:

  • ЦТП – центральные тепловые пункты. Обслуживают несколько зданий, микрорайон.
  • ИТП – индивидуальные тепловые пункты. Обслуживают только одно здание. Чаще всего размещаются в специальном помещении подвала обслуживаемого здания.
  • БТП – блочные тепловые пункты. Представляют из себя готовое изделие, которое поставляется в здание несколькими блоками – остается только присоединить посредством фланцев. За счет этого сокращаются сроки монтажа и ввода в эксплуатацию ТП. Могут применяться как для ЦТП, так и для ИТП.

Все эти тепловые пункты имеют одно назначение и принцип работы у всех одинаков. Единственное различие – это количество обслуживаемых зданий.

Что лучше: ИТП или ЦТП?

В настоящее время для присоединения здания к наружным тепловым сетям применяют в основном индивидуальные тепловые пункты.

Различия между этими тепловыми пунктами представлены в таблице:

ЦТП

ИТП

Средний температурный режим для всех обслуживаемых зданий. В связи с этим здание, которое расположено ближе к ЦТП будет перегрето, а здание, которое расположено дальше от ЦТП, будет недогрето.

Температурный режим устанавливается индивидуально для конкретного здания.

Невозможно установить оптимальную температуру ГВС для конкретного здания.

Так как все здания, подключенные к ЦТП, имеют различную длину трубопроводов, то горячая вода по-разному остывает по пути от ЦТП до конкретного дома.

Температура горячей воды оптимальна, т.к. теплообменник ГВС установлен  непосредственно в доме, а значит, исключены потери тепла по трубопроводам.

Циркуляция ГВС не обеспечивается должным образом, поэтому в некоторых квартирах из крана с горячей водой некоторое время бежит холодная вода.

Постоянная циркуляция ГВС в доме, следовательно,  у потребителя из крана с горячей водой всегда поступает горячая вода.

Большие потери тепла по трубопроводам от ЦТП до потребителя.

Меньшие потери тепла, так как длина магистральных труб от точки врезки в тепловые сети до ИТП минимальна.

В случае какой либо неисправности в ЦТП без горячей воды и тепла окажутся жители сразу нескольких домов.

Меньшее количество аварийных отключений тепла у потребителей.

Каждый год летом происходит плановое отключение горячей воды у потребителей на продолжительное время для проведения технического обслуживания и профилактического ремонта.

Отключение ГВС не затрагивает сразу большое количество абонентов, профилактическое обслуживание не занимает продолжительное время.

Заключение

  1. Тепловые пункты – это необходимая часть инженерного обеспечения любого здания.
  2. В новом строительстве применяются в основном ИТП, так как они:
  • Обеспечивают наиболее оптимальные параметры теплоносителя;
  • Минимизируют потери тепла при транспортировке теплоносителя по магистралям;
  • Проще в обслуживании и эксплуатации;
  • Обладают более точной регулировкой.
  1. Производители БТП существенно облегчили жизнь монтажным бригадам, так как после того, как модули БТП поставляются на объект, монтажникам остается лишь подключить БТП к трубопроводам и электрическим сетям.