Теплопроводность пенопласта

Содержание

  • Что нужно знать о теплопроводности пенопласта
  • От чего зависит теплопроводность пенопласта
    • Влияние плотности и влажности окружающей среды
    • Влияние химического состава на теплопроводность
  • Заключение

Основной характеристикой, благодаря которой пенополистирол получил широкое признание в качестве материала для утепления №1, является сверхнизкая теплопроводность пенопласта. Относительно небольшая прочность материала с лихвой компенсируется такими преимуществами, как стойкость к воздействию большинства агрессивных соединений, небольшой вес, нетоксичность и безопасность при работе. Хорошие теплоизолирующие свойства пенопласта дают возможность обустроить утепление дома по относительно небольшой цене, при этом долговечность такого утепления рассчитана на срок не менее 25 лет службы.

Что нужно знать о теплопроводности пенопласта

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙Со, то становится понятным, что это величина удельная, то есть определенная для следующих условий:

  • Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
  • Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
  • Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20оС.

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции.

Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя.

В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

От чего зависит теплопроводность пенопласта

Величина теплопроводности пенопласта, как и любого другого материала, зависит от трех основных составляющих:

  1. температуры воздуха;
  2. плотности пенопластовой плиты;
  3. уровня влажности среды, в которой используется утеплитель.

Как видно из схемы, при низких температурах воздуха градиент по толщине стенки линейно меняется от отрицательных значений на наружной поверхности облицовки до +20оС внутри помещения. Необходимо так подобрать теплопроводность и толщину материала, чтобы точка росы или, другими словами, температура, при которой начинают конденсироваться пары воды, находилась внутри массива пенопласта.

Влияние плотности и влажности окружающей среды

Несмотря на все заверения производителей, пенопласт способен поглощать и проводить водяные пары, для сравнения, величина паропроницаемости для пенопластового листа всего лишь на 20% ниже проницаемости древесины. Естественно, наличие водяных паров в толще пенопласта существенным образом влияет на его теплопроводность. Найти зависимость в справочниках практически невозможно, поэтому при расчетах делают эмпирическую поправку на теплопроводность, исходя из толщины теплоизоляции.

Пенопласт способен поглощать в поверхностных слоях до 3% воды. Глубина поглощения составляет 2 мм, поэтому при определении теплопроводности материала эти миллиметры выбрасывают из эффективной толщины теплоизоляции. Поэтому лист пенопласта толщиной в 10 мм будет в сравнении с листом в 50 мм иметь теплопроводность не в 5 раз больше, а в 7 крат. При значительной толщине пенопласта, более 80 мм, теплосопротивление увеличивается значительно быстрее, чем его толщина.

Вторым фактором, влияющим на теплопроводность, является плотность материала. При одинаковой толщине материал разных марок может иметь плотность в два раза больше. Принято считать, что 98% структуры утеплителя составляет высушенный воздух. С увеличением вдвое количества полистирола в плите, естественно, теплопроводность также увеличивается, примерно на 3%.

Но дело даже не в количестве полистирола, меняется размер шариков и ячеек, из которых состоит пенопласт, образуются локальные участки с очень высокой теплопроводностью, или мостики холода. Особенно это касается трещин и стыков, любых зон деформации и установки креплений. Поэтому при установке зонтичных дюбелей количество креплений рекомендуют ограничивать 3 точками.

Влияние химического состава на теплопроводность

Мало кто обращает внимание на особые свойства пенопласта. Сегодня наиболее серьезной проблемой пенопласта считается его способность к воспламенению и выделению токсичных продуктов сгорания. СНиП и ГОСТ требуют, чтобы пенопласт, используемый для утепления жилых зданий, имел время самозатухания не более 4 с. Для этого используются соли ряда цветных металлов, таких как хром, никель, железо, включение в состав веществ, выделяющих углекислый газ при нагревании.

В результате на практике пенопласт с индексом «С» — самозатухающий имеет теплопроводность значительно выше, чем обычные марки пенополистирола. Практика использования пенополистирола для утепления в Евросоюзе показала, что более выгодным и дешевым является нанесение на внешнюю поверхность немодифицированного пенопласта специального покрытия из газообразующих агентов. Такое решение позволяет сохранить теплосберегающие свойства и экологичность материала, одновременно значительно повысить пожаробезопасность.

Заключение

Теплопроводность пенопласта практически не меняется с течением времени, как, например, у минеральной ваты или газосиликатных блоков. Единственной проблемой является деградация пенополистирола под действием солнечных лучей и рассеянного ультрафиолета. При длительном облучении материал становится рыхлым, покрывается трещинами и легко наполняется конденсатом, поэтому для сохранения первоначального значения теплопроводности необходимо закрывать утеплитель облицовкой.

  • Состав и пропорции раствора для кладки кирпича
  • Как сделать цветной раствор для кирпича
  • Размер и вес белого силикатного кирпича
  • Кирпич облицовочный силикатный

Таблица теплопроводности утеплителей, сравнение характеристик материалов для дома

Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.

Главные параметры

Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.

Чувствительность к влаге

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.

Также не рекомендуется применять водопоглощающую изоляцию при отделке ванных комнат, санузлов, кухонь и других помещений с высоким уровнем влажности.

Плотность и теплоемкость

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.

Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Коэффициент сопротивления

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.

 

Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр — если речь идет об изоляции — должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Теплопроводность основных видов утеплителей

Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала.

Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:

Преимущества и недостатки

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму.

Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Таблица теплопроводности изоляционного материала

Связанные ресурсы: теплопередача

Таблица теплопроводности изоляционного материала

Технология теплопередачи

Таблица теплопроводности различных изоляционных материалов (Типичные значения являются приблизительными, основанными на среднем значении доступных результатов. Диапазоны отмечены знаком «–».

Материал м 2 ·K/(Вт·дюйм) фут 2 ·°F·ч/(БТЕ·дюйм) м·К/Вт
Панель с вакуумной изоляцией 7,04 !5,28–8,8 3000 !Р-30–Р-50
Силикатный аэрогель 1,76 !1,76 1000 !R-10
Жесткая панель из полиуретана (вспененный CFC/HCFC) начальный 1,32 !1,23–1,41 0700 !Р-7–Р-8
Жесткая панель из полиуретана (вспененный CFC/HCFC) для возраста 5–10 лет 1.1 !1.10 0625 !R-6.25
Жесткая панель из полиуретана (вспененный пентан) начальный 1,2 !1,20 0680 !R-6.8
Жесткая панель из полиуретана (вспененный пентан) для возраста 5–10 лет 0,97 !0,97 0550 !R-5.5
Фольгированная жесткая панель из полиуретана (вспененный пентан)     45-48
Жесткая панель из полиизоцианурата с фольгированным покрытием (вспененный пентан) начальный 1,2 !1,20 0680 !R-6. 8 55
Жесткая панель из полиизоцианурата с фольгированным покрытием (вспененный пентан), возраст 5–10 лет 0,97 !0,97 0550 !R-5.5
Полиизоциануратная пена для распыления 1,11 !0,76–1,46 0430 !R-4.3–R-8.3
Напыляемый пенополиуретан с закрытыми порами 1,055 !0,97–1,14 0550 !R-5,5–R-6,5
Фенольная пена для распыления 1,04 !0,85–1,23 0480 !R-4.8–R-7
Утеплитель для одежды Thinsulate 1.01 !1.01 0575 !R-5.75
Карбамидоформальдегидные панели 0,97 !0,88–1,06 0500 !Р-5–Р-6
Пена мочевины 0,924 !0,92 0525 !R-5.25
Экструдированный пенополистирол (XPS) высокой плотности 0,915 !0,88–0,95 0500 !Р-5–Р-5.4 26-40
Полистирольная плита 0,88 !0,88 0500 !R-5. 00
Жесткая панель из фенола 0,79 !0,70–0,88 0400 !Р-4–Р-5
Карбамидоформальдегидная пена 0,755 !0,70–0,81 0400 !Р-4–Р-4,6
Войлок из стекловолокна высокой плотности 0,755 !0,63–0,88 0360 !R-3.6–R-5
Экструдированный пенополистирол (XPS) низкой плотности 0,725 !0,63–0,82 0360 !R-3.6–R-4.7
Icynene сыпучий (разливной) 0,7 !0,70 0400 !Р-4
Формованный пенополистирол (EPS) высокой плотности 0,7 !0,70 0420 !R-4.2 22-32
Пена для дома 0,686 !0,69 0390 !R-3.9
Рисовая шелуха 0,5 !0,50 0300 !R-3.0 24
Войлок из стекловолокна 0,655 !0,55–0,76 0310 !R-3.1–R-4.3
Хлопчатобумажная вата (утеплитель Blue Jean) 0,65 !0,65 0370 !R-3. 7
Формованный пенополистирол (EPS) низкой плотности 0,65 !0,65 0385 !R-3.85
Айсинин спрей 0,63 !0,63 0360 !R-3.6
Распыляемый пенополиуретан с открытыми порами 0,63 !0,63 0360 !R-3.6
Картон 0,61 !0,52–0,7 0300 !Р-3–Р-4
Войлок из каменной и шлаковой ваты 0,6 !0,52–0,68 0300 !Р-3–Р-3,85
Наполнитель из целлюлозы 0,595 !0,52–0,67 0300 !Р-3–Р-3,8
Влажный спрей из целлюлозы 0,595 !0,52–0,67 0300 !Р-3–Р-3,8
Каменная и шлаковая вата насыпная 0,545 !0,44–0,65 0250 !R-2,5–R-3,7
Наполнитель из стекловолокна 0,545 !0,44–0,65 0250 !R-2,5–R-3,7
Вспененный полиэтилен 0,52 !0,52 0300 !Р-3
Цементная пена 0,52 !0,35–0,69 0200 !Р-2–Р-3. 9
Насыпной перлит 0,48 !0,48 0270 !R-2.7
Деревянные панели, такие как обшивка 0,44 !0,44 0250 !R-2.5 9
Жесткая панель из стекловолокна 0,44 !0,44 0250 !R-2.5
Насыпной вермикулит 0,4 !0,38–0,42 0213 !R-2.13–R-2.4
Вермикулит 0,375 !0,38 0213 !R-2.13 16-17
Тюк соломы 0,26 !0,26 0145 !R-1.45 16-22
Паперкрет   0260 !R-2.6-R-3.2  
Мягкая древесина (большинство) 0,25 !0,25 0141 !R-1.41 7,7
Древесная щепа и другие сыпучие изделия из древесины 0,18 !0,18 0100 !R-1
Снег 0,18 !0,18 0100 !R-1
Твердая древесина (большинство) 0,12 !0,12 0071 !R-0,71 5,5
Кирпич 0,03 !0,030 0020 !Р-0. 2 1,3-1,8
Стекло 0,024 !0,025 0024 !R-0.14
Залитый бетон 0,014 !0,014 0008 !R-0,08 0,43-0,87

Пробка

Пробка, вероятно, является одним из старейших изоляционных материалов, используемых в коммерческих целях, а в прошлом она была наиболее широко используемым изоляционным материалом в холодильной промышленности. В настоящее время из-за дефицита пробковых деревьев его цена относительно высока по сравнению с другими изоляционными материалами. Поэтому его применение весьма ограничено, за исключением некоторых фундаментов машин для снижения передачи вибраций. Он доступен в виде вспененных плит или плит, а также в гранулированном виде, его плотность варьируется от 110 до 130 кг/м 3 , а среднее механическое сопротивление составляет 2,2 кг/м 2 . Его можно использовать только до температуры 65 °C. Обладает хорошей теплоизоляционной эффективностью, достаточно устойчив к сжатию и трудно воспламеняется. Его основным техническим ограничением является склонность к поглощению влаги со средней паропроницаемостью 12,5 г см м -2 сут -1 мм рт.ст. -1 . В таблице A и B приведены некоторые типичные характеристики пробки.

ТАБЛИЦА A
Значения теплопроводности и плотности при 0 °C стекловолоконной изоляции

Тип

Плотность

Теплопроводность

(кг/м 3 )

(Вт м -1 °С -1 ) / (ккал ч -1 м -1 °С -1 )

Тип I

10-18

0,044/0,038

Тип II

19-30

0,037/0,032

Тип III

31-45

0,034/0,029

Тип IV

46-65

0,033/0,028

Тип V

66-90

0,033/0,028

Тип VI

91

0,036/0,031

Стекловолокно, связанное смолой

64-144

0,036/0,031

Источник : Подготовлено авторами на основе данных Мельгарехо, 19 лет. 95.

ТАБЛИЦА B
Значения теплопроводности и плотности пробковой изоляции при 20-25 °C

Тип

Плотность

Теплопроводность

(кг/м 3 )

(Вт м -1 °С -1 ) / (ккал ч -1 м -1 °С -1 )

Гранулированный сыпучий, сухой

115

0,052/0,0447

Гранулированный

86

0,048/0,041

Расширенная пробковая плита

130

0,04/0,344

Расширенная пробковая плита

150

0,043/0,037

Расширенный, связанный смолами/битумом

100-150

0,043/0,037

Расширенный, связанный смолами/битумом

150-250

0,048/0,041

Источник : Подготовлено авторами на основе данных Melgarejo, 1995.

Связанные ресурсы:

  • Теплопроводность обычных металлов и сплавов
  • Преобразование теплопроводности
  • Расчет многослойного цилиндра с установившейся проводимостью
  • Потери тепла из голой и изолированной трубы
  • Потери тепла из трубы снаружи
  • Калькулятор тепловых потерь в трубе
  • Уравнение тепловых потерь в изолированных трубах и калькулятор

 

Испытание экструдированного полистирола с помощью тепломера

Рисунок 1.   Нанесение акриловой штукатурки на изоляционные плиты пенополистирола на фасаде многоквартирного дома. 1

Экструдированный полистирол – это строительный материал с высокими изоляционными свойствами, обычно укладываемый на наружную поверхность надземных стен с шипами или на внутреннюю часть фундаментных стен. Таким образом, знание показателей теплопроводности экструдированного пенополистирола важно при определении теплоизоляционного потенциала здания. Его цель — служить защитным механизмом от потерь тепла в зданиях, направленным на снижение эксплуатационных расходов. Экструдированный пенополистирол часто путают с пенополистиролом. Несмотря на сходство в некоторых аспектах, таких как состав (полимеризованный полистирол), эти два изоляционных материала сильно различаются. Экструдированный полистирол создается в процессе, называемом экструзией, отсюда и название. Во время этого процесса материал из полистирола экструдируется через фильеру, в результате чего материал расширяется в однородную изоляционную плиту с закрытыми порами (рис. 2). С другой стороны, пенополистирол создается путем помещения маленьких шариков пенопласта в форму и применения пара для расширения шариков с образованием изоляционной плиты (рис. 2). В процессе производства пенополистирола между шариками пенопласта образуются пустоты, открывающие пути для проникновения потенциальной влаги.

Рисунок 2 . Микроскопические различия между составом утеплителей из экструдированного (слева) и пенополистирола (справа). 2

Экструдированный полистирол Теплопроводность

Измеритель теплового потока Thermtest (HFM) представляет собой стационарную систему теплопередачи, измеряющую теплопроводность и тепловое сопротивление плоских изоляционных материалов, таких как пенопласт, твердые материалы и текстиль (рис. 3). HFM измеряет теплопроводность в диапазоне от 0,005 до 0,5 Вт/м·К и в диапазоне температур от -20°C до 70°C в соответствии со стандартом ASTM C518-15 — Стандартный метод испытаний свойств теплопередачи в установившемся режиме. с помощью прибора для измерения теплового потока. Пользователи могут рассчитывать на высокую точность (3%) и прецизионность (0,5%) с помощью этой методики измерения, прослеживаемой ASTM.

Рис. 3. Расходомер тепла Thermtest (слева) и образцы различной толщины для испытания теплопроводности экструдированного полистирола (справа).

В соответствии со стандартом ASTM C518-15, для обеспечения надлежащей работы HFM прибор должен быть откалиброван с материалами, имеющими такую ​​же теплопроводность и толщину, как и оцениваемые материалы. Если калибровочный стандарт испытывается при одной толщине, прибор для измерения теплового потока может быть откалиброван для этой толщины. Однако, если испытания должны проводиться при различных толщинах, отличных от калиброванной толщины, необходимо провести тщательное исследование погрешности HFM для других толщин. Для этого эксперимента исследователи Thermtest решили проверить границы точности HFM, протестировав несколько толщин образцов на основе только одной калибровочной толщины.

Для начала калибровочный образец (NIST SRM 1450d – 1″) был помещен между двумя параллельными пластинами внутри HFM (рис. 4). Заданный температурный градиент (10 – 30°С) поперек пластин был установлен для имитации потерь тепла из внутренней среды здания в более холодную внешнюю среду. Затем верхнюю пластину прижимали к образцу до автоматической толщины образца. HFM автоматически определяет толщину образца с помощью четырех цифровых энкодеров, расположенных в каждом углу верхней пластины. Каждый цифровой энкодер измеряет толщину на своем посту, а затем рассчитывается среднее значение. Затем верхняя пластина автоматически настраивается на среднюю высоту, передавая усилие примерно 5 фунтов на квадратный дюйм на испытуемый образец. Этот автоматический толщиномер имеет точность ~ 0,1 м. Если испытуемый образец обладает высокой сжимаемостью и известно приблизительное усилие сжатия, ручная установка толщины может быть более подходящим вариантом для получения точных и точных результатов теплопроводности.

Рис. 4. Вид изнутри дверцы HFM. Параллельные пластины (красная и синяя) создают одномерный тепловой поток через испытуемый образец, имитируя потери тепла из внутренней части здания во внешнюю среду.

При постоянных, но различных температурах параллельные пластины установили стационарное состояние, одномерный тепловой поток через испытуемый образец и термопары, встроенные в каждую пластину, измерили температуру по обе стороны от калибровочного образца. Датчики теплового потока, находящиеся в контакте с верхней и нижней пластинами, собирали данные о результирующем тепловом потоке испытуемого образца (рис. 4). Путем соответствующей калибровки датчика(ов) теплового потока с помощью эталонов и измерения температуры пластин и расстояния между пластинами для расчета теплопроводности (λ) используется закон теплопроводности Фурье:

После выполнения калибровки, как указано выше, каждая толщина образца экструдированного полистирола была испытана в соответствии с этапами, описанными выше.

Целью этого эксперимента было определение точности Thermtest HFM для измерения теплопроводности экструдированного полистирола различной толщины при 20°C с одним калибровочным образцом. Показатели теплопроводности, полученные в результате испытаний, проведенных на толщине от 10,1 мм до 40,4 мм, не превышали значения теплопроводности контрольного испытания толщиной 25,2 мм (менее 3%) (рис. 5). Достигнутые результаты коррелируют с результатами, полученными в результате эксперимента, проведенного Аль-Аджланом в 2006 году, а также с данными, предоставленными производителем.

Рис. 5. Значения теплопроводности и теплового сопротивления экструдированного полистирола различной толщины, откалиброванные по одному слою NIST SRM 1450d и полученные при средней температуре 20°C с использованием Thermtest HFM.

Al-Ajlan (2006), сообщает, что производитель обеспечил теплопроводность пенополистирола на уровне 0,034 Вт/мК. Эта теплопроводность несколько выше заявленной производителем теплопроводности экструдированного пенополистирола (0,032). Хотя экструдированный пенополистирол имеет более низкую теплопроводность, то есть он с большей вероятностью защитит вашу внутреннюю среду от нежелательных перепадов температуры, он имеет значительно более высокую стоимость, чем пенополистирол. Особое внимание следует уделить выбору подходящей пенопластовой теплоизоляционной плиты для ваших строительных нужд.

Thermtest HFM — это быстрый, надежный и гибкий метод измерения теплопроводности твердых материалов, пеноматериалов и текстиля. Хотя это исследование не предназначено для тестирования образцов различной толщины с одной калибровочной толщиной, это исследование доказывает способность HFM тестировать теплопроводность образцов с небольшими изменениями толщины по сравнению с калибровочным образцом.